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EXTENDED ABSTRACT 
 
In many industries, materials handling represents a 
significant component of the operational cost, 
making equipment selection an important 
challenge to management.  To meet this challenge, 
extensive research has taken place in the mining 
and construction industries which are heavily 
dependant on equipment.  Yet this research effort 
has not resulted in an acceptable solution strategy 
for these industries. The complexity of the 
problem is due to the many factors that contribute 
to the operating expense of equipment.  
Consequently, available methods can only 
consider a small subset of the possible 
combinations of trucks and loaders.   

This paper addresses equipment selection for 
surface mines.  Given a mine plan, the ultimate 
objective is to select the trucks and loaders such 
that the overall cost of materials handling is 
minimised.  Such a fleet must be robust enough to 
cope with the dynamic nature of mining operations 
where the production schedule can sometimes be 
dependent on refinery requirements and demand.  
Due to the scale of operations in mining, even a 
small improvement in operation efficiency 
translates to substantial savings over the life of the 
mine. 

There is a considerable amount of literature 
concerning shovel-truck productivity for 
construction equipment selection and shovel-truck 
equipment selection for surface mines. Although a 
variety of modelling methods have been applied, 
such as Queuing Theory, Bunching Theory, Linear 
Programming and Genetic Algorithms, the 
solutions obtained are consistently inadequate.   In 
the mining industry current methods use 
spreadsheets and are heavily dependent on the 
expertise of a specialist consultant.   

Classical Methods include concepts such as match 
factor, bunching theory and productivity curves.  
These methods often rely on brute force to achieve 
a feasible solution, where a handful of truck types 
may be enumerated by hand for the minimum cost 
fleet size.  Operations Research techniques such as 
Integer Programming (IP) and Nonlinear 
Programming have been applied in a bid to achieve 
an optimal solution.    Current IP solutions tend to 

oversimplify the model or rely on excessive 
assumptions.  More complex constraints can be 
included in these formulations, which help to 
describe a more realistic idea of the performance 
of a particular fleet.  Artificial Intelligence 
techniques such as expert systems, knowledge 
based methods and genetic algorithms have been 
applied to equipment selection with some success, 
although optimality has not been demonstrated in 
the literature.  

Common weaknesses amongst all of these models 
are fleet homogeneity, loader (or truck) type pre-
selection and restricted number of passes (from 
loader to truck).  Fleet homogeneity assumes that 
the truck fleet should only consist of one type of 
truck.  Yet there is no reason to believe that a 
mixed-type fleet underperforms a homogeneous-
type fleet.  Loader (or truck) type pre-selection 
requires a highly skilled and experienced engineer 
to select a loader type based on geographical and 
geological information.  This can be a time 
consuming task and a demonstration of optimality 
is unlikely. Although there is a general preference 
for restricting the maximum passes from loader to 
truck, there is also no evidence in literature to 
support this constraint.  The equipment type 
selection should occur alongside fleet size 
selection if a bid at optimality is desired. Models 
that consider the condition of pre-existing 
equipment do not exist in the literature.  Some 
research has modeled the equipment replacement 
problem but focuses on replacement time rather 
than optimising the type and number of 
trucks/loaders replacements. 

This paper provides a critical analysis of the 
various models for surface mining operations, 
identifying important constraints and suitable 
objectives for an equipment selection model.  A 
new Mixed Integer Linear Programming model is 
presented that makes use of a linear approximation 
of the cost function.  This model allows for mixed-
type fleets and selects the truck and loader types 
within the solution. The results demonstrate that 
heterogeneous fleets can result in savings for the 
mining operation.  Problems arising from IP 
formulations are discussed. 
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1 Introduction 

The problem of equipment selection in a surface 
mine is complex.  Many features, restrictions and 
criteria need to be considered (Naoum and Haidar 
2000).  The model must reflect the important 
constraints of the mining operations to a level that 
is acceptable and used by mining engineers.  
Martin consultants (Martin et al. 1982) list the 
selection considerations for a truck as follows: 
• Material characteristics of the mine 
• Loading equipment 
• Haul route requirements 
• Maneuvering space 
• Dumping conditions 
• Capacity 
• Engine power and altitude limitations 
• Final drive gear ratios for mechanical drives 
• Two axle or three axle configuration 
• Mechanical or electrical drive system 
• Tires size, tread and ply rating 

However the problem is much more complex than 
these points convey.  Literature has clearly 
demonstrated that the speed that a haul truck can 
travel is heavily influenced by rolling resistance 
(Gove, 1994). Research also indicates that truck 
bunching can severely affect productivity (Smith 
2000). Other parameters include: 
• Mine and dump plan restrictions 
• Truck and loader availability restrictions 
• Truck queuing effect 
• Truck and Loader life constraints 

A clear and simple method of determining the 
optimal truck and loader has not yet presented 
itself in the literature.  Current industry practice 
relies heavily on an equipment selection expert to 
enter data and interpret solutions.  These solutions 
do not select from the entire set of available truck 
and loader types, but rather select from a small 
hand-picked subset.  Additionally, these methods 
only allow for homogeneous fleets in the solution 
space. Optimal heterogeneous fleets are possible 
where production requirements must be met 
almost exactly.  In an industry where even a small 
increase in efficiency can translate to huge savings, 
optimality or near optimal solutions are important 
(Naoum and Haidar 2000). 

Feasible solutions to the equipment selection 
problem exist under a number of related industry 
canopies: Mining Method Selection (MMS), 
Equipment Selection (ES) and Shovel-Truck 
Productivity (STP) [Figure 1].  This paper brings 
together these seemingly disparate streams of 
work. 

The literature survey that follows demonstrates 
that a wide variety of technical and classical 
modelling approaches have been applied to the 
problem of equipment selection in surface mines.  

Those methods deemed classical include “match 
factor” and “bunching theory”.  Shovel-truck 
productivity methods incorporate both match 
factor and bunching ideas into the solution.  
However, much of the literature on STP exists for 
construction case studies and little published 
researched applies to surface mining.  Nonetheless 
these methods must be addressed here as they 
represent the core ideas behind current industry 
practice (Smith 2000). 

 

 

 

 

 

 

 

 

 

Figure 1. Distribution of literature for ES. 

The Mining Method selection problem focuses on 
choosing the correct excavation method for the 
given mining conditions.  Generally, this research 
is based on anecdotal methods, where a feasible 
solution is sought, rather than an optimal solution.  
Much of the literature on mining method selection 
does not discuss equipment selection modelling in 
enough detail to be discussed here, but is 
nonetheless an important area to research when 
considering pre-selection procedures. 

The Shovel-truck Productivity problem has been 
well established in construction and earthmoving 
literature (Kesimal 98).  Even though limited 
literature exists that specifically applies these 
methods to select equipment for surface mines, 
these methods are commonly applied to the 
equipment selection problem in the mining 
industry.  This work uses many assumptions, 
considerable expert knowledge/experience and 
relies on heuristic solution methods to achieve a 
solution.  The inability to demonstrate optimality 
and also the desire to consider larger truck and 
loader sets has spawned the search for a program-
aided solution.  These more advanced formulations 
fall into the category of Equipment Selection. 

The inclusion of sensible ownership, operating 
(and maintenance) costs may play a crucial role in 
the solution.  Yet in integer programs the costs are 
often accepted as a constant input to which no 
further calculations are performed.  This highlights 
an important area of research for equipment 
selection in surface mines. 

Equipment Selection 

• Genetic Algorithms 
• Simulation 
• Integer Programming 
• Expert System 
• Decision Support System 
• Petri Nets 
• Life Cycle Costing 

Shovel-truck Productivity

• Bunching Theory 
• Productivity Curves 
• Match Factor 
• Queuing Theory 
• Simulation 
• Game theory 

Mining Method 

• Anecdotal 
• Fuzzy set theory 
• Integer Programming
• Expert System 

Mining Industry Construction Industry

Equipment Selection 
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The Equipment Selection problem work has 
focused on achieving optimal or near optimal 
solutions and relies on computer generated 
solutions.  The most logical way to categorise the 
literature is in terms of the method applied.  
Within these sections, the problem definitions and 
assumptions can be discussed in a clear manner. 

There are many closely related problems such as 
mine production scheduling, truck dispatching, 
equipment costing, and equipment replacement.  
These works are not within the scope of this study 
and will not be discussed here. 

2 Literature Survey  

2.1 Mining Method Selection 

The Mining Method Selection (MMS) problem is 
an approach to Equipment Selection that stems 
from the logic that the environmental conditions 
will imply a particular mining method, and that the 
selection of loader and consequently trucks follows 
intuitively from there.   

Atkinson (1992) acknowledges the 
interdependency of ground preparation, excavation 
and loading, transport and mineral treatment: that 
“the optimum cost per ton may not be obtained by 
attempting to minimize each of the individual 
operational costs”. It is the complexity of 
combining these factors into one problem that has 
led many engineers to the primarily anecdotal and 
knowledge based solution methods applied to the 
mining method selection problem.  As each step is 
completed these methods assume that all other 
steps logically follow.  In this way, the loader type 
and loader fleet size is selected based on 
diggability studies; the truck type is selected based 
on the loader; and, the truck fleet size is selected 
based on all the above information.   

2.2 Equipment Selection 

The Equipment Selection (ES) problem aims to 
select an appropriate set of trucks and loaders 
subject to various objectives and constraints.  The 
methods applied to this problem are varied, as are 
the assumptions and types of constraints that are 
included in the models.   

2.2.1 Integer Programming 
The use of integer programming methods is well 
established in both the mining and construction 
operations.  However much of the focus is on 
project completion, dispatching or scheduling.  
The models tend to assume given equipment type, 
rather than allowing the models to select these with 
the fleet size.  Fleet homogeneity and restricted 
passes between loader and truck are also common 
constraints (Celebi 1998) that have not been 
demonstrated to be sensible. 

Jayawardane and Harris (1990) place importance 
on early project completion time for earthwork 
operations.  While this is important for the 
construction industry, the mining production 
schedule should take into account any project 
completion dates and early completion is not often 
a consideration due to milling constraints.  The 
production schedule is assumed to be provided for 
equipment selection models and this is 
incorporated into the constraints. 

In other formulations, “budgeting constraints” 
have been considered where the maximum 
permissible budget cash outlay for a given time 
period is an upper bound (Cebesoy et al. 1995). 
This constraint can be applied to both ownership 
costs and operating costs. “Mutual Exclusivity” is 
a common constraint that restricts the choice of 
equipment type to one.  Cebesoy et al. (1995) 
describes heterogeneous fleets as “unacceptable or 
even unthinkable” although only anecdotal 
evidence has supported these claims to date. 

2.2.2 Simulation 

Simulation is a well used and notably powerful 
tool for the mining industry.  Although simulation 
is most effectively used in mining equipment 
selection to analyse the earth-moving system, 
some equipment selection solutions exist that use 
simulation models. Kannan et al. (2000) recognise 
that despite the complementary role of academic 
research and industry applied simulation models, a 
gap exists between the two: academia follow 
“opportunity driven” models and industry aims for 
“need-based” models. The authors provide some 
defined requirements and “success factors” for 
simulation programming. A short but directed 
literature survey of simulation modelling in the 
construction industry is also included. 

Hrebar and Dagdelen (1979) developed a 
simulation method for dragline stripping 
equipment selection.  This model provides dragline 
reach and bucket capacity as output to create a 
subset of considered equipment; further equipment 
selection can then be made analytically from this 
reduced set of equipment. 

2.2.3 Artificial Intelligence 

The most common methods among the literature 
are the expert system and decision support system 
methods (Bascetin 2004).  The expert systems 
approach is often preferred for complex systems: it 
is a structured attempt to capture human expertise 
into an efficient program (Welgama and Gibson 
1995). Amirkhanian and Baker (1992) developed 
an expert system for equipment selection in 
construction incorporating 930 rules.   These rules 
interpret “information concerning a particular 
project’s soil conditions, operator performance, 
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and required earth-moving operations”.  Although 
this method does not claim optimality of its 
solutions, it does highlight an important aspect of 
modelling equipment selection: the equipment 
subset to be considered in the model will be 
dependent on the soil and mining conditions.  In 
this sense, rule-based pre-selection is a logical pre-
process to any equipment selection model 
(Bascetin 2004). 

Naoum and Haidar (2000) have developed a 
genetic algorithm model for the equipment 
selection problem.  Although their model satisfies 
the requirements for an integer programming 
solution, the authors pursued a genetic algorithm 
solution.  The solution incorporates the lifetime 
discounted cost of the equipment, which is 
formally attached to the assumption that the 
equipment is used from purchase until official 
retirement age, and not sold or replaced before that 
time.  The authors argue that intelligent search 
techniques are necessary because integer 
programming is incapable of solving a problem 
with more than one type of independent variable.  
While this is not true, intelligent search techniques 
are certainly required when constraints become 
nonlinear.  Nonlinearities in the constraints arise 
due to queuing, and have not yet been sufficiently 
modelled using integer programming or genetic 
algorithms. 

2.3 Shovel-truck Productivity 

The ability to accurately predict the productivity of 
a truck and loader fleet is an important problem to 
mining and construction and is intrinsically linked 
to equipment selection.  In particular we are 
interested in “predicting the travel times on the 
haul and return portions of the truck cycle... and 
the prediction of the interaction effect between the 
shovel and truck at the loading point” (Morgan and 
Peterson 1968). 

2.3.1 Match Factor 

Consider Figure 2: the productivity of the truck 
and loader fleet cannot exceed the lowest capacity 
of the trucks or the loader.  That is, before the 
intersection the productivity of the fleet is limited 
by the capacity of the truck fleet, and the loader 
will have additional waiting periods.  After the 
intersection the productivity of the fleet is limited 
by the capacity of the loader, and the trucks will 
have additional waiting periods.  The intersection 
itself is the theoretical “perfect match point” 
(Morgan and Peterson, 1968).  

This match point is also influenced by the natural 
variation in haul cycles which can lead to further 
queuing.  This is known as bunching and is 
discussed further in the proceeding section. 

 
Figure 2. Theoretical “match point” occurring at 
the intersection. 

Match Factor operates under the assumption that 
the most economical fleet will also be the most 
productive and efficient fleet (corresponding to the 
intersection).  The results in section 4 demonstrate 
that this is not the case, and that optimal cost fleets 
can have efficiency as low as 50%.  In Figure 2 
this efficiency could correspond to 4 trucks 
operating with 1 loader. 

The Match Factor has a dual purpose: it is 
indicative of the suitability of the size of the truck 
fleet; it is used to determine the efficiency of the 
fleet which can be fed back into performance 
calculations.  The Match Factor itself is a simple 
calculation: 

cycle dumpload/haul/
cycle loading

loaders
trucks ×=MF                     (1) 

The theoretical perfect match occurs at an MF of 1.  
This formula clearly only considers homogeneous 
fleets.  Due to the assumption of maximum 
efficiency, the match factor can be misleading 
when determining the lowest cost fleet. 

2.3.2 Bunching Theory 

Bunching models capture the tendency of moving 
objects to bunch together when moving in a line.  
This is usually due to some of the objects being 
operated or moving more efficiently than others.  It 
can also be due to small unpredictable delays. 
Bunching is known to reduce a fleet’s ability to 
meet its maximum capacity.  Nagatani (2001) has 
studied into the problem of modelling bunching 
transitions in general traffic flow and bus routes.  
The bunching transition in the truck cycle may be 
modeled in the same manner.  In the bus model, 
bunching of the buses is exacerbated by an 
increase in the number of passengers the 'slower' 
buses are required to pick up.  That is, if for some 
reason a bus is delayed the time gap between it and 
the bus in front can only become greater as it must 
stop to pick up more passengers than if it were on 
time (Nagatani 2001). 

Bunching certainly occurs in a system of a loader 
and its correlating fleet of trucks.  The relationship 
is not as complex as that of buses and passengers; 
if a truck has a greater cycle time due to some 
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delay this time is absorbed by either the queue or 
the fleet cycle time.  That is, the slowest truck will 
cause the trucks that follow to wait.  In this 
manner, the cycle times of all of the trucks 
approaches the cycle time of the slowest truck.  
This is a conservative measure and is not adopted 
in practice: industry generally adopts the average 
cycle time. The use of slowest cycle time provides 
an interesting study for the effect of truck ordering 
in the fleet.   

2.3.3 Queuing Theory 

Queuing theory is the study of the waiting times, 
lengths, and other properties of queues. Waiting 
time for trucks and loaders has been the focus of 
some shovel-truck productivity research.  
Although this has not resulted in good ES 
solutions, it may provide a suitable upper bound 
for an IP model.  Queuing Theory was first notably 
applied to shovel-truck productivity by O’Shea in 
1964.  Further to this study, Karshenas (1989) has 
outlined several improvements that were 
incorporated into an equipment selection program. 

These models use the inter-arrival time of one 
truck instead of the inter-arrival time of the entire 
fleet.  However the model requires the times 
between any arrivals.  No justification for this 
change in the theory is given in any literature.  
Huang and Kumar (1994) developed a case study 
using the queuing theory method.  Their definition 
of arrival time is not provided in the paper.  
Further application of queuing theory exists in the 
development of an upper bound on the truck fleet 
size. 

3 Linear Program with approximate cost 
function [single period] 

The choice of objective function is paramount to 
the type of solution produced. For this model we 
wish to minimise the cost of operating the fleet and 
are not concerned with how profit varies from fleet 
to fleet.  It is important to recognise the distinction 
between these two ideas: although a tonnage 
requirement has been placed in the constraints, 
some fleets will produce more tonnes in the same 
time as other fleets.  If the model were to 
maximise profit, greater detail of the production 
schedule would need to be included in the model.  
This objective function will not be discussed 
further here, and instead we pursue minimising the 
cost of operating the fleet. 

Creating a linear program of the equipment 
selection problem presents an issue with the 
linearity of the cost function.  The actual cost 
function is unlikely to be linear for at least the 
following reasons: 
• Cost of unit operation will increase as the 
machine ages, 

• Cost of unit repairs and maintenance will 
increase as the machine ages, 
• Unit productivity will decrease as the unit ages, 
• Cost of operation is dependent on the unit’s 
surrounding fleet and its corresponding efficiency. 

Two clarifications must be made if we are to find a 
linear approximation for the cost function: the 
bunching effect must be absorbed by the slowest 
cycle time; and a flat cost per tonne per unit must 
be accepted as a fair cost comparison for the 
lifetime of the machines (although demonstrating 
this is beyond the scope of this study).  For a 
multi-period IP model the cost assumption can be 
softened.  In order to take advantage of some of 
the new ideas discussed in this paper, the decision 
variables, duly defined as the number of units of 
machine type per fleet, must also define which 
loader the truck is working with and vice versa.  
For example, a CAT789 truck may operate more 
efficiently and cost effectively with an EX3600 
loader.  The variables should reflect this 
complexity of decision making, as should their 
related costs and cycle times. 

xi,j : the number of trucks of type i working with 
loader type j, 

yi,j : the number of loaders of type j working 
with truck type i. 

With these decision variables the model includes 
the opportunity to select heterogeneous fleets.  The 
data should also echo this additional dimension: 
loaders will have a different cycle times with 
different trucks, and vice versa. 

A useful objective function is the overall cost per 
tonne of the operating fleet.  For this to be linear 
we must accept the assumption that the operating 
fleet will only extract the required production of 
the production schedule, and will not do any more 
(or less) work in spite of its maximum capacity. In 
this manner the actual fleet capacity is the 
production requirement and thus is the same for all 
feasible solutions.  For simplicity of the example, 
the objective function will minimise the overall 
cost per hour of the operating fleet, which is 
equivalent to cost per tonne under the above 
assumption. 

In order to create effective constraints that act as 
lower bounds on truck and loader fleets, a suitable 
estimate of unit productivity must be obtained.   
Traditionally this is a combination of unit 
availability (percentage of time that the unit is 
available to work), capacity, cycle time and fleet 
efficiency. Fleet efficiency may incorporate the 
effects of match factor, bunching and queuing.  
This component has a tendency to create 
nonlinearities in the model if integrated in its truest 
form.  However, as previously discussed, the 
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efficiency of the fleet can be absorbed 
conservatively but effectively into the cycle time. 
The lower bound on the loader fleet is constructed 
in the same way. 

Due to difference in size, some machines simply 
cannot work together.  Truck and loader 
compatibility is an important inclusion in the 
model. This can be reflected in the cost matrix 
where incompatible machines i and j can be 
allocated an arbitrarily large cost.   

Additional constraints include non-negativity 
constraints on both the truck and loader variables, 
and also pair-wise selection.  That is, if truck i is 
selected because it works cheapest with loader j, 
then loader j should also be selected 
(corresponding to 1, =jiρ ). 
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where 
Cx

i,j is the cost per hour of operating truck 
type i with loader type j, 
Cy

i,j is the cost per hour of operating loader 
type j with truck type i, 
T is the required tonnage per second for the 
given period, 
Px

i,j is the productivity of truck type i working 
with loader type j, 
Px

i,j is the productivity of loader type j 
working with truck type i, 

ji,ρ  is a binary variable where 1 defines the 
pair i,j is selected; 0 not selected, 
M is an arbitrarily large number. 

4 Results 
A linear version of the match factor method was 
compared to the presented linear model. The 
purpose of this comparison is to demonstrate that 
the linear program opens opportunities to select 
heterogeneous fleets which may be chosen as the 
optimal fleet for minimised cost. The linear match 
factor (LMF) method was employed through a 
Microsoft Excel spreadsheet.  The mixed integer 
linear program (MILP) was solved using Ilog 
CPLEX v.9.0. Both methods incorporated 7604 
operating hours per one year period; production 
requirements ranging from 10Mt – 50Mt; cycle 
times of trucks and loaders; capacity of trucks and 
loaders; and the percentage availability of the 
machines after maintenance.  The comparison was 

made on a cost per hour basis, which increases as a 
piecewise linear function as the fleet size 
increases. 

  The brute force LMF method requires a full 
enumeration of fleet combinations to determine the 
best solution.  This enumeration includes fleets 
with 1 loader, 2 loaders and so forth, and a 
spreadsheet function is required to determine the 
lowest cost fleet from all of these combinations, 
which can take a lot of time to set up properly.  
Also, tedious changes to these calculations may 
occur if a simple change in mine parameters is 
necessary.  

At this stage it is not known how much more 
realistic the solutions from a nonlinear model that 
formalizes efficiency losses will be. The MILP 
solution is generated within seconds using 
CPLEX, and optimality is guaranteed subject to 
said assumptions. Other advantages include 
opportunity for heterogeneous solutions and 
changes to mining parameters are easily 
incorporated into the program. 

The comparison can be made in two ways: pre-
selecting the loader and allowing both methods to 
choose the optimal truck fleet; allow both methods 
to select both the truck and loader fleets. 

Model Required 
Production 

Loaders  Trucks Cost per 
hour ($) 

Max
Cap 
(Mt) 

MILP 
preselected 
loader 

20 1 O&K RH170 1 CAT 785C ; 
3 Komatsu 
830E 

2054.97 20.05 

LMF 
preselected 
loader 

20 1 O&K RH170 4 Komatsu 
830E 

2115.07 20.5 

MILP 47 1 Hitachi 
EX3600; 1 
P&H 4100A 

7 Dresser 830E 3188.62 47.5 

LMF 47 2 Hitachi 
EX3600 

8 Dresser 830E 3327.91 51.0 

Table 1. Selected results from MILP and LMF. 

The results demonstrate that optimal 
heterogeneous solutions are possible.  All optimal 
homogeneous solutions are identical for the two 
methods, although the time to find the optimal 
solution is not.  The time taken to complete a full 
enumeration of solutions is subject to the 
complexity of the spreadsheet user interface, and 
has not been approximated here. 

5 Conclusions and Recommendations 

The given linear program is able to quickly search 
the entire set of available trucks and loaders for an 
optimal solution set subject to the defined 
assumptions.   

Industry standards incorporate match factor and 
bunching concepts into the solution.  The inclusion 
of an efficiency expression turns the current MILP 
formulation into a nonlinear formulation. The 
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nonlinearity issue can be solved using constraint 
programming methods. 

Several extensions to this work and further studies 
have arisen and include: 
• The full effect of bunching in haul trucks is not 
well recognised. 
• It would be a useful study to develop a 
bunching transition model to determine the effect 
of bunching and match factor. 
• The effect of including rolling resistance in the 
equipment selection model can be studied.   
• Derive new models using different objective 
functions such as maximising profit. 
• The incorporation of equipment usage may be 
important. 

The linear program may also be extended to 
include multi-periods so that the aim to optimise 
the materials handling over the life of the mine 
may be realised. 

6 References 

Amirkhanian, S. and Baker, N (1992), Expert 
System for Equipment Selection for Earth-
moving operations,  Journal of Construction 
Engineering and Management, 118(2), 318-
331, June. 

Atkinson, T. (1992), Selection and sizing of 
mining equipment, Chapter 13.3, pp. 1311–
1333, SME Mining Engineering Handbook, 
Vol 2. SME, Colorado, 2nd edition, 1992. 

Bascetin, A. (2004), An application of the analytic 
hierarchy process in equipment selection at 
Orhaneli open pit coal mine, Mining 
Technology, 113, A192 – A199, June. 

Cebesoy, T., Gozen, M. and Yahsi, S. (1995), A 
systematic decision making model for optimum 
surface mining equipment selection, Mine 
Planning and Equipment Selection 1995, 369-
377. 

Celebi, N. (1998), An equipment selection and 
cost analysis system for openpit coal mines,  
International Journal of Surface Mining, 
Reclamation and Environment, 12, 181-187. 

Gove, D. and Morgan, W. (1994), Optimizing 
truck-loader matching, Mining Engineering, 
46(10), 1179-1185. 

Huang, Y. and Kumar, U. (1994), Optimizing the 
number of Load-Haul-Dump machines in a 
Swedish mine by using queuing theory – A 
case study, Mine Planning and Equipment 
Selection, Balkema: Rotterdam, 1994. 

Hrebar, M. and Dagdelen, K. (1979), Chapter 44: 
Equipment selection using simulation of 
dragline stripping methods, 16th application of 

computers and operations research in the 
mineral industry, New York, 1979.  

Jayawardane, A. and Harris, F. (1990), Further 
development of integer programming in 
earthwork optimization, Journal of 
Construction Engineering and Management, 
116(1), 18-34, March.  

Kannan, G., Schmitz, L. and Larsen, C. (2000), An 
industry perspective on the role of equipment-
based earthmoving simulation, In Proceedings 
of the 2000 Winter Simulation Conference.  
1945-1952. 

Karshenas, S. (1989), Truck Capacity Selection for 
Earthmoving, Journal of Construction 
Engineering and Management, 115(2), 212-
227, June. 

Kesimal, A. (1998), Shovel-truck productivity and 
efficiency studies for overburden removal in an 
open-pit coal mine, Transactions of the 
Institute of Mining and Metallurgy A, 107, 
A37-A40. 

Martin, J., Martin, T., Bennett, T., and Martin, K. 
(1982), Surface Mining Equipment, Martin 
Consultants Inc., Colorado, USA. 

Morgan, W. and Peterson, L. (1968), Determining 
Shovel-Truck Productivity, Mining 
Engineering, 76-80, December. 

Nagatani, T. (2001), Bunching transition in a time-
headway model of a bus route, Physical Review 
E, 63(036115), 1-7. 

Naoum, S. and Haidar, A. (2000), A hybrid 
knowledge base system and genetic algorithms 
for equipment selection, Engineering, 
Construction and Architectural Management, 
7(1), 3-14. 

Nunnally, S. (1977), Managing Construction 
Equipment, Prentice-Hall, 1977, New Jersey. 

O’Shea, J. B. (1964), An Application of the Theory 
of queues to the Forecasting of Shovel-Truck 
Fleet Productions, Masters Thesis, University 
of Illinois. 

Smith, S., Wood, G. and Gould, M. (2000), A new 
earthworks estimating methodology, 
Construction Management and Economics, 
18(2), 219-228. 

Welgama, P. and Gibson, P. (1995), A hybrid 
knowledge based/optimization system for 
automated selection of materials handling 
system, Computers Industrial Engineering, 
28(2), 205-217. 

1736


