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EXTENDED ABSTRACT

Many interacting predator-prey populations have a
natural tendency to exhibit persistent limit-cycle
or damped oscillations, especially in the presence
of environmental stochasticity. The restriction
of habitats, and the resultant compression of
ecosystems into small conservation reserves can
induce these oscillations in previously stable predator-
prey relationships.

During the course of these oscillations, the abundance
of both species regularly decreases to low levels.
At these times, the inherent stochasticity of the
environment will result in a high probability of species
extinction. In these situations, actions should be taken
by management authorities to stabilise the system and
avoid extinction. In many practical cases, funding
limitations restrict the actions available to managers,
and so we assume that the only options available
to a manager are to cull individuals from the two
populations. Operating within these constraints, we
show in this paper that strategic culling of organisms
can greatly reduce the probability of a species
becoming extinct.

We use the mathematical technique of Stochastic
Dynamic Programming to determine the optimal
management strategy for these oscillation-prone
populations. Application of the optimal strategy
results in a much more persistent system, with only a
small number of interventions being necessary. These
methods can be applied to many different species,
and can incorporate more complex system dynamics
without a significant increase in computational time.
The optimal strategies that result from our analyses
offer general insights into how such systems should
be managed.
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1 INTRODUCTION

It is well known that predator and prey populations
of certain species exhibit natural cyclic behaviour:
their abundances do not settle down to particular
values, but change in a manner that repeats through
time. The most famous example are the Canadian
lynx and snowshoe hare populations in North America
(Ginsburg & Colyvan 2004). The causes of natural
limit-cycles in these populations are contentious, and
the problem has received considerable theoretical and
empirical attention (see: Turchin 2003, Ginsburg &
Colyvan 2004 for reviews).

Population cycles can also be created by human
interference in naturally stable systems. When the
habitat available to an ecosystem is reduced, its
species are “compressed” into a smaller region, and
limit cycles can develop (Barnes 1983). Typically,
high predator density leads to low prey abundance,
followed by a rapid decline in the predator population
through starvation. This low predator abundance
allows the prey population to increase, at which
point the predators also begin to increase, and
the cycle begins again. In a large system these
cycles are dampened by spatial factors (Jansen &
de Roos 2000), but in small systems such as many
conservation reserves, they can be very dangerous to
species’ persistence, especially the predator. When
the abundance of a species is very low, a few
unfortunate events (e.g. accidental deaths, poaching)
can be devastating.

The number of areas designated as conservation
reserves is set to increase in the coming decades
(James et al. 2001), and these areas will represent
islands of safety amid an otherwise hostile landscape.
The gradient of habitat quality across the boundary of
the reserve will act to funnel unnaturally high numbers
of organisms into these reserves. Reserve managers
would obviously like to ensure the persistence of
the protected species, but while it is possible to
manipulate the abundances of the species, options
that will have a positive effect on numbers (e.g.
captive breeding, translocation) are generally too
expensive, as are non-lethal measures that will
reduce growth rates (e.g. sterilisation, contraception,
isolation). Frequently the managers’ options are
limited to culling. The idea of killing organisms to
prevent their extinction seems quite contradictory –
indeed, if such measures are applied at the wrong
time, the effects can be negative to species persistence.
However, with careful analysis, judicious culling can
benefit ecosystem persistence.

Whether or not culling should occur at a particular
time will depend heavily on the abundances of both
species. The non-linear time-progression of the
system means the effects of culling will not be
immediately obvious, and will not necessarily be

intuitive (e.g. removing individuals of a particular
species might lead to that species developing greater
abundances than would otherwise have occurred).
Taking into account the progression of the oscillatory
system dynamics is crucial to developing management
strategies that will best ensure the persistence of both
predator and prey. This problem is an exercise in
dynamic Optimal Control. Although the problem
of when to cull individuals has been discussed,
the optimal control strategy has not been explicitly
formulated. We use dynamic decision theory to
formulate this management problem explicitly, and
then apply Stochastic Dynamic Programming (SDP)
to determine the management strategy that will best
ensure the persistence of the predator-prey system.
SDP will formulate a strategy that will take into
account the system’s inherent unpredictability, and
the costs and benefits associated with the fluctuating
populations and their control.

2 METHODS

The Population Model: To understand the effects
of management interventions on the time-evolution
of the predator-prey system, we must first devise a
quantitative ecosystem model that includes important
system dynamics. We set up a general predator-prey
model, where the dynamics of the prey populationNt

are deterministic, and those of the predator population
Pt are stochastic. In reality both species’ dynamics
will be unpredictable, but stochasticity will be most
important to predator dynamics as their population
will be much smaller. We keep track of the actual
numbers of each species (Nt ∈ {0, 1, 2, . . .}, Pt ∈
{0, 1, 2, . . .}). To allow the application of SDP, our
model is discrete in time (t = 1, 2, . . . ). The prey
population grows logistically, with carrying capacity
K and growth rater.

Nt+1 = Nt (1 + r(1 −Nt/K)) . (1)

The predator population grows stochastically. Each
timestep the predators seek out prey, a process that
becomes more difficult as prey become more scarce.
To reflect this, the amount of prey caught by each
predator is drawn from a uniform distribution between
zero andCmaxNt/K. The upper bound of this
distribution depends on prey density: if the prey
numbers are at their carrying capacity, each predator
can catch as many asCmax prey per timestep. As prey
become scarce, this maximum decreases. The number
of prey caught by theith individual is thus selected
from the distribution:

Ci
t ∼ Uniform(0, Cmax/NtK).

This catch is then rounded to the nearest whole
number of individuals.

The number of prey that each predator catches defines
its dynamics. If the predator catches very few prey,
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it will starve to death. The predator may catch
enough prey to survive, but not enough to support
reproduction. If the predator is fortunate enough to
catch above a certain number of prey, they will have
sufficient energy reserves to reproduce, and will give
birth to one offspring. The predator dynamics thus
follow the equation:

Pt+1 = Pt +

Pt
∑

i=1

bi −

Pt
∑

i=1

di, (2)

bi =

{

0 if Ci
t < Cbirth,

1 if Ci
t ≥ Cbirth,

di =

{

0 if Ci
t > Cdeath,

1 if Ci
t ≤ Cdeath,

where bi represents the reproduction of theith

individual, anddi indicates whether theith individual
died from starvation. The numbers of predators and
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Figure 1. (a) Simulated population cycles in phase
space for different prey carrying capacitiesK. The
probability of population extinction decreases asK
increases. (b) Expected time to extinction as a
function ofK. Solid line indicates the mean, dotted
lines indicate±1 standard deviation.

prey will depend primarily on the habitat’s carrying
capacity – the system is controlled from the bottom-
up. The importance of stochasticity will likewise
depend on the carrying capacity. The predator
population will increase as the prey population
increases, and once the number of predators becomes
very large, the net effect of the random fluctuations
will become relatively unimportant. The possibility
of the fluctuations causing a stochastic extinction in a

large population becomes remote as the prey carrying
capacity increases, as demonstrated in figure 1b.

Extinction is most likely to occur when the predator
population is at a low abundance level. At this point,
a series of unfortunate events (e.g. unsuccessful
predator foraging, or a large number of random
deaths) could result in the predator population
declining to zero (see figure 2).
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Figure 2. Typical dynamics displayed by a single
realisation of a stochastic predator-prey system, in the
lead-up to the extinction of the predator population,
highlighted by the black box. (a) the predator
abundance, (b) the prey abundance, (c) the stochastic
cycles displayed in the phase plane.

The System Dynamics as a Markov Process Our
optimisation method, Stochastic Dynamic Program-
ming, requires that the system dynamics be expressed
as a discrete time Markov process, where the system’s
evolution is defined by the probability of transition
between system “states”. In this predator-prey system,
a state is defined by the abundance of predators and
prey. The changes that the system will undergo
– births, deaths, predation – depend only on the
two species’ abundances, and so we use these
two values to define a state. Regardless of the
carrying capacity, the potential population of both
species is theoretically unlimited, however very large
populations of either species are not sustainable for
any length of time. We therefore place a “cap” on the
abundance of predators (Pc), and on the abundance of
prey (Nc). These caps ensure that our state-space is
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finite, but we will set them at values much higher than
the system would naturally encounter, so they do not
artificially interfere with the system dynamics.

We use the notationSi to represent theith state of the
system. Statei is defined as:

Si ≡

[

Ni = (i− 1)(modNc + 1), Pi = b
i

Nc + 1
c

]

.

Wherea(modb) is the remainder ofa divided byb,
andbcc is the greatest whole number that is less than
c (thefloor of c). There are a total ofSmax = (Nc +
1)(Pc + 1) states. IfNc = 10, then some example
states would be:

S1 ≡ [N(t) = 0, P (t) = 0] ,

S2 ≡ [N(t) = 1, P (t) = 0] ,

S14 ≡ [N(t) = 2, P (t) = 1] ,

S20 ≡ [N(t) = 8, P (t) = 1] ,

S40 ≡ [N(t) = 6, P (t) = 3] .

The predator-prey dynamics are inherently stochastic,
as the future evolution of the system is not known
with certainty. However, given that the system is
in a particular state, its subsequent state will one of
a number of possible states (some more likely than
others). The dynamics of such a Markov process are
governed by a transition matrixT, whose elements
Tij represent the probability that the stateSi will
evolve into the stateSj in the next timestep.

Instead of definingT a priori, it can be constructed
from repeated simulations of the predator-prey
equations and 2. After running a simulation, the
observed transitions are stored in a matrix. When
the entire simulation has been thus recorded, the
matrix is normalised by the sum of its rows. This
process is repeated many times, and the mean of
all the simulations is calculated. After sufficient
repetitions, the mean of these matrices converges
to the transition matrixT. The resultant matrix
encapsulates the probabilistic time-evolution of the
predator-prey system, and is quite simple to construct.
Our methods can therefore be easily applied to more
complex multi-species ecosystems.

Application of SDP: With this transition matrix,
we can obtain the optimal management scheme
by the application of a technique from Operations
Research called Stochastic Dynamic Programming.
SDP has been applied to many problems in dynamic
decision theory (e.g. behavioural ecology, Mangel &
Clark 1988; management of ecological communities,
Richards et al. 1999). Given a range of decisions,
SDP will yield an optimal management strategy for
our predator-prey system in the form of an state-
dependent “optimal decision space”, which identifies
the best decision for the manager to take in every state.
SDP calculates the strategy that will best achieve

the stated objective in a set timespan (T years),
which must first be defined. Our objective cannot be
simply: “we would like to ensure the persistence of
the predator population”. We must also specify over
what timespan e.g. “we would like to ensure that the
predator species persists forT years”. Theoretically
this means that the resulting optimal solution is also
time-dependent, and that the optimal decision space
to ensure persistence overT years will not necessarily
be optimal to ensure persistence over a different time
interval. In practice however, asT is allowed to
increase the solutions converge rapidly to a time-
independent solution (Richards et al. 1999).

Of course, the best decision for a manager to make
will depend on what needs to be achieved. Different
objectives will result in different optimal strategies.
The manager’s primary objective is that the predator
species persists over some time period. This objective
implicitly ensures the prey’s persistence, as the prey
population must be available for the predator to
persist. Each state of the system will have a value
assigned to it that reflects how well it fulfills the
objective. If we were interested only in thepersistence
of the predator population, every state with a positive
number of predators would have the same value
assigned to it. However if each predator is deemed
to be valuable, we would make the value of each
state dependent in some way on the quantity of
predators. For example, if our predator population
were elephants and attracted tourism income, we
might consider higher densities of elephants (and thus
a higher likelihood of tourists observing them) more
valuable. We will accordingly define the value of the
ith state as:

ψ(i) = VPP (i) + VNN(i),

the value of each predator (VP ), multiplied by the
predator abundance (P (i)), added to the value of
each prey individual (VN ), multiplied by the prey
abundance in that state (N(i)). In SDP, we can
assess value at the terminal time alone, or throughout
the entire timeseries. In the former case, we do
not particularly desire large numbers of predators
throughout the timeseries, only at the terminal time
T . In the latter case, a high predator abundance
throughout the timeseries is desirable. Continuing
with our elephant example, as tourism is occurring
continually, we must add value each year.

To best achieve the management objective, at each
timestep the manager must make a decision. In SDP
we must outline the full set of decisions available to
the manager, and the costs that will be incurred by
taking each one. All of our decisions involve either the
culling of prey individuals, or the culling of predator
individuals. We will further limit the number to be
culled. We label our decisions as follows:
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1. Do nothing

2. Cull a single predator

3. Cull two predators

4. Cull five prey

5. Cull ten prey

Of course, many more options could be defined. The
manager might be able to cull more than just two
predators, for example, or might be able to cull both
predators and prey simultaneously. These actions
will each have an associated cost that will act to
dissuade managers from applying them unless they
are necessary. These costs will reduce the value
of the system by a constant amount each time they
are applied. We define the cost associated with the
kth management decision asc(k). The effect of
each decision will be to alter the transition matrix
T, yielding a new matrixT(k) – after intervention,
the predator-prey system will not evolve in the same
way. At each timestep, one of the five decisions must
be taken (although decision 1 represents taking no
action).

The optimal strategy is determined by application
of the the “dynamic programming equation” (DPE),
defined according to the system valueψ(i), the
intervention costsc(k), and the transition matrices
T(k):

V(i, t, T ) = max
k∈[1,5]

[ψ(i)−c(k)+

Smax
X

j=1

Tji(k)V (j, t+1, T )].

(3)
The dynamic programming equation is applied as an
iterative optimisation algorithm. Following Bellman’s
principle of optimality, the optimal action to take at
time t, when the system is in statei, is the decisionk
that maximises the net value of the system in the next
time step (t + 1), given that all subsequent decisions
are also optimal. This net value incorporates the value
of the stateψ(i), minus the cost of the decisionk. It
then adds the value of those states that the current
state i will evolve into, given that the intervention
k has occurred, weighted by their probability of
occurrence through the transition matrixT(k). The
DPE is repeatedly applied from the terminal timeT ,
backwards to the initial time0. We must therefore
define the value of the system at the terminal time
(where our algorithm begins),T .

V(i, T, T ) = ψ(i).

Problems typically only arise when the state-space is
particularly large, as it then becomes computationally
difficult to store the necessary transition matrices
T(k). To avoid this, we have binned the prey
abundance into multiples of 5, markedly decreasing
the optimisation runtime. Comparisons with optimal
solutions without this binning revealed negligible
differences in the optimal strategy. For a more

thorough explanation of SDP, see Mangel & Clark
(1988) or Intriligator (1971)

Example Parameters: To illustrate the methods
outlined above, we apply SDP to a predator-prey
system with a given parameter set. The carrying
capacity of the habitat is set asK = 250, with a
growth rate ofr = 0.15, or 15 percent each year.
Each predator can eat a maximum ofCmax = 10 prey
each year; if the predator does not catch two prey,
it will die (Cdeath = 1); if the predator catches 4 or
more prey, it will reproduce (Cbirth = 4). We limit
the transition matrix toNc = 250 prey individuals,
and Pc = 20 predator individuals. Each predator
individual produces an annual revenue of1, prey
individuals provide no revenue. The cost of culling
a predator organism is set at50, higher than the cost
of culling a prey organism,5.

3 RESULTS

Figure 2 is a single simulation of a predator-prey
system with the above parameter values. The
application of SDP yields an optimal decision space:
a set of state-dependent decisions that will result
in a timeseries with the maximal expected value.
Figure 3 shows the optimal decisions for the example
system. The resultant decision space can be better
interpreted if an example oscillation of the system
is superimposed upon it, as shown by the thin black
line. The population dynamics represented by this
simulation have not been affected by management,
and the predator population quickly goes extinct.
We see immediately that in many of the states the

Figure 3. The state-dependent optimal decisions for
the example system defined. Lighter red indicates
culling a single predator, darker red indicate culling
two predators. Lighter blue indicates culling five prey,
darker blue indicates culling ten prey. The black line is
a realisation of an unmanaged system, superimposed
upon the decision space.

optimal decision isnot to intervene, but to let the
system evolve unaltered. Some of these states are
in the interior of the simulated population cycle, and
thus represent quite stable predator-prey abundances.
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Figure 4. Expected time to predator extinction for
SDP-managed and unmanaged systems, as a function
of the prey carrying capacity. The SDP-managed
system becomes notably more persistent than the
unmanaged system asK increases.

Taking active management decisions when the system
is in one of these states would not be particularly
beneficial, as the populations are not in any immediate
danger of extinction. The cost of management actions
would act to further dissuade interference. In states
where the abundance of both species is particularly
low, the optimal management action is also to do
nothing. This reflects the restrictive range of decision
options available to the manager. Although there
is some danger of extinction, none of the available
management options would be beneficial.

In regions of the state-space where the predator
abundance is particularly high, and the prey
abundance is quite low, the optimal decision is still to
do nothing. Although this may seem counter-intuitive,
it again reflects the restrictive management options.
Although in these states the predator population is in
imminent danger of extinction through starvation, it is
not optimal to cull one or two predators. Although
taking such action may decrease the probability of
the predator population becoming extinct, the system
state that would result from taking action is still a high
probability of extinction, and this small reduction is
not sufficient to outweigh the costs involved. SDP
takes into account the costs of the available actions,
and weighs them against the potential benefits of
action. In these cases the probability of extinction is
so high that inaction is optimal.

For the chosen parameter values, there is a large
region where it is optimal to remove individuals
from the predator population, and another region
where it is optimal to remove individuals from the
prey population. The superimposition of a simulated
population trajectory can help us understand the
placement of these regions. The state of the system
naturally cycles in an anti-clockwise direction. The
actions of the manager are limited to “pushing” the
oscillations to the left, by removing prey individuals,

Figure 5. The simulated frequencies of a set of
possible management decisions as a function of the
carrying capacity. Frequencies are the average of
decisions taken in 5000 independent simulations. In
most years, management intervention is not required,
and culling 2 predator organisms almost never occurs

or “pushing” them downward, by culling predators.
The persistence of the populations will best be
achieved by containing the population cycles – i.e.,
by reducing their radius. It is when the radius of
these cycles becomes too large that there is a danger of
species extinction, when the cycle intersects with one
of the axes. The decision to cull individuals is always
taken in a region of the state space where the resultant
“push” will reduce the amplitude of the population
cycle. If these decisions were taken at any other
time, they would result instead in larger amplitude
oscillations, and a higher probability of extinction.
There are very few places where it is optimal to cull
only a single individual; most decisions are either
to do nothing, or to cull the maximum number of
individuals possible. This implies that the oscillations
very quickly become dangerous if they begin to build
up a larger amplitude.

4 MANAGEMENT CONCLUSIONS

To determine the effectiveness of the SDP-created
optimal management strategy, we ran parallel sim-
ulations where one system was managed according
to the SDP strategy, and the other was unmanaged,
and compared the expected time until the predator
became extinct. We repeated this for increasing values
of the prey carrying capacityK, to determine the
importance of the habitat quality. The results are
shown in figure 4. Managing the system becomes
increasingly beneficial as the prey’s carrying capacity
K increases. For lowK values, the predator-prey
systems are so unstable that the limited management
options available cannot prevent the inevitable rapid
extinction of the predators. For largerK systems, the
management options increasingly allow longer-term
persistence. This increased persistence has a positive
effect on the costs associated with management.
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Although taking action costs money, these predator-
prey systems are providing ongoing revenue, and can
thus conceivably generate profit. The costs necessary
to ensure a persistent system are far less than the
profit it creates, and so the SDP-managed system is
far more profitable, as well as more persistent. During
the course of the managed system simulations, we
recorded the interventions made by the SDP-trained
managers. The proportion of timesteps that each
decision was taken is shown as a function of the
prey carrying capacityK in figure 5. The other
parameters in these systems were the same as our
previous system. We can see that interventions occur
very infrequently – no management intervention took
place in over 80% of the years, for all of the different
ecosystem sizes.

As K increases, the culling of large numbers of
prey becomes more prevalent in the manager’s
interventions. This reflects the increasing population
size, rather than the need to remove a higher
percentage of the individuals. Most of the
interventions called for involve culling prey species,
which is a fortunate coincidence for the managers.
Our representation of the effects of culling on each
species is simplistic, in particular for the predator
species. Prey species have evolved to being harvested
to some extent, by the predators. Predator species,
on the other hand, may not have been historically
subject to culling, being situated near, or at the apex
of their food web. Elephants, for example, have a
social structure that can be significantly disrupted by
culling. The low prevalence of predator culling is
therefore beneficial. Ideally however, the effects of
culling a specific predator species would be included
in decision-augmented transition matricesT(k).

In states where an active decision was necessary,
intervention mainly involved culling the minimum
number of individuals possible, rather than the
higher option. This is despite the relatively small
number of states where culling the lower number
of individuals was the optimal decision. The more
severe culling states were typically avoided with the
early application of judicious culling. There are
two conclusions we should draw from this. First,
the prevalence of particular interventions in decision-
space does not necessarily reflect how frequently they
will be implemented by a manager. For example,
although in much of the state space, two predator
organisms should be culled, this action is infrequent
in practice, as previous interventions keep the system
away from this state. This leads to the second point:
in dynamic systems, taking pre-emptive action that
acknowledges possible future developments can help
prevent their occurrence. Management that does not
quantitatively include the system dynamics would find
this difficult to achieve. As Barnes (1983, pp. 139)
notes, “by the time [the problem of dangerously

high levels of predators] is recognised, the time of
maximum cost-effectiveness of culling has passed.”
It is therefore crucial that the future evolution of the
system dynamics are considered when management
strategies are formulated.

Optimal control of dynamic systems is far more
complicated than static control, especially when
the options available to management are heavily
constrained. Nevertheless, we have shown that if
the objectives of management, and the dynamics of
the stochastically oscillating predator-prey system are
correctly formulated in a dynamic decision theory
framework, an optimal management strategy can be
determined upon application of Stochastic Dynamic
Programming. Our model was devised to reflect the
dynamics of a general predator-prey system, and the
methods outlined can be applied to any particular
system. The general conclusions of the model will
be applicable to many similar systems, and can be
used in the absence of specific modelling, to guide
management actions.
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