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EXTENDED ABSTRACT 

Barramundi (Lates calcarifer) is an important 
Queensland commercial fishery that exhibits 
dramatic inter-annual fluctuations in catch which, 
according to fishers, are explained in part by 
variations in the climate. Traditionally, modelling 
of fisheries harvest has focussed on the 
development of surplus production/yield models 
which use catch and effort data, and more 
complex age-structured models. More recently, 
however, the effect of climate variability has been 
shown to have a significant impact on the catch of 
fisheries such as anchovies, and so techniques to 
incorporate climate parameters into fisheries 
modelling and management are being developed. 
This paper explores, through correlation and cross 
validated regression modelling techniques, the 
possible impact of climate variability on the 
commercial barramundi fishery harvest in Princess 
Charlotte Bay (PCB) far north Queensland which 
varies on a year-to-year basis. Results suggest a 
strong relationship between tested climate 
variables two years prior and annual barramundi 
landings. 

A conceptual model explaining the life history of 
the barramundi was constructed to reduce the 
number of variables used in the analysis. Selected 
climate variables (air temperature, sea surface 
temperature (SST), evaporation, fresh water 
flows), and climate forecasting indices (Southern 
Oscillation Index (SOI) and Madden Julian 
Oscillation (MJO)), were initially correlated 
against local commercial catch data for PCB. 
Forward stepwise ridge regression (FSRR) 
analysis was then used in constructing models to 
quantify the effects of climate on barramundi. 

Zero-lagged correlations support the well 
established theory that early wet season fresh 

water flow affects the catchability of barramundi 
in PCB. This is because fish in the fresh water 
reaches are flushed into the estuary (and fishing 
grounds) in these years.  

Next, a FSRR model was developed from climate 
variables and selected: rainfall July - September-2 
(lagged two years), annual evaporation-2 and 
October – December SOI (no lag) and explained 
67.6% of the variance in catch adjusted for effort. 
A second model using climate forecasting indices 
explained only 53.1% of the variance in catch 
adjusted for effort. However, because each of 
these models required data collected in the year of 
fishing, they did not allow sufficient time for a 
response from fisheries managers or operators.  

A third FSRR model using climate variables 
known to impact on spawning and early juvenile 
development 2-3 years earlier, included rain July – 
September-2, evaporation annual-2 and average 
January – March SST-2 and explained 62.7% of 
the variance in catch. When the predictive 
capacity of the model was tested using a cross 
validated “leave-one-out” regression analysis, 
48.1% of the variance in future catch was 
explained (Figure 1). 
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Figure 1: Predicted vs Observed values from the 
Lagged Model. 
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1. INTRODUCTION 

In order to develop guidelines for the sustainable 
harvest of a fishery, modelling of the resource 
traditionally focussed on the development of 
surplus production/yield models which use catch 
and effort data (e.g. Fox 1970 ), and more 
complex age-structured models which require age 
class data including recruitment and mortality (e.g. 
Fournier and Archibald 1982). More recently, the 
effect of variations in climate (most notably sea 
surface temperatures and upwelling) have been 
shown to have a significant impact on the catch of 
fisheries such as anchovies (e.g. Glantz and 
Feingold 1990). In cases where there is an absence 
of age class data, analysis is restricted to 
correlative and regression modelling procedures to 
quantify the possible impact of various climate 
parameters on a fishery. The validity of using 
these techniques is discussed in a comparative 
paper by Stergiou and Christou (1996) who tested 
a suite of eight regression, univariate and 
multivariate time series modelling techniques to 
forecast annual commercial fisheries catch. They 
conclude that a simple multiple regression model 
incorporating climate variables performed better 
in terms of fitting accuracy than other techniques 
tested. 

Earlier publications which have considered the 
impact of climate on barramundi populations in 
Australia have focussed on regions other than the 
Queensland north-east coast, and used a variety of 
techniques and variables including the seasons 
(Davis 1988), rainfall (Griffin 1986, 1993; Magro 
et al. 1997), and fresh water flow (Griffin 1986; 
Sawynok 1998; Staunton-Smith et al. 2004). 
However, to date no studies have considered the 
possible impact of a range of climate variables or 
climate indices as a measure of more complex 
interactions with barramundi landings. This study 
considers the commercial barramundi fishery of 
Princess Charlotte Bay (PCB) in far north-east 
Queensland, the landings from which fluctuate on 
a year-to-year basis. This phenomena is believed 
by many fishers to be the result of climatic 
variability. Maximum and minimum air 
temperature, sea surface temperatures (SSTs), 
evaporation, rainfall, fresh water flow and indices 
of the Southern Oscillation (SOI) and Madden 
Julian Oscillation (MJO) are included in a life 
cycle model and multiple regression modelling 
techniques to quantify the impact of climate on the 
commercial barramundi catch in the PCB region. 

 

2. STUDY AREA 

The PCB region lies approximately 340 km north 
of Cairns on the east coast of Cape York Peninsula 
(Figure 2) with a climate typical of a tropical, 
monsoonal area. The foreshore and river estuaries 
are dominated by extensive saline flats which 
front dense mangrove forests, and are subject to a 
low tidal range (0.1 – 4.0 m). The Bay is fed by a 
number of large rivers and many smaller streams 
which coalesce during the wet season to form 
extensive wetlands and swamp areas. Original 
vegetation and ecosystems have remained 
relatively undisturbed and the catchment as a 
whole is classified as near pristine / relatively 
undisturbed. There are very few of the 
anthropogenic impacts seen in other areas along 
the east coast of Queensland such as habitat 
degradation, impediments to fresh water flow, 
stocking of fish fingerlings and urban / 
agricultural development. As a result, “noise” 
from man-induced factors that may impact on the 
fishery is minimal. In addition, the barramundi 
populations in the Bay are part of a discrete 
genetic strain (Shaklee et al. 1993) and so may be 
assumed to be homogeneous in biological aspects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  PCB region showing barramundi 
habitats, adjacent coral reefs and CFISH data grid 
squares. 
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3. DATA AND METHODOLOGY 

Barramundi have a complex life cycle which is 
detailed elsewhere (e.g. Garrett 1986). Adults 
generally spawn prior to, or at the beginning of, 
the wet season from October – January in salt 
water estuarine environments. Postlarve move into 
wetland, mangrove and shallow supralittoral 
nursery habitats before migrating into tidal creeks 
and further upstream as the end of the wet season 
approaches. Juveniles mature in freshwater 
habitats as males over 2-4 years before migrating 
downstream to congregate with females to spawn. 
Protandrous hermaphrodites, they undergo a sex 
reversal from male to female after spawning. As 
recommended in a number of other studies (e.g. 
Shepherd et al. 1984) a conceptual life history 
model of the barramundi was developed to link 
climate influences known to affect the fish, with 
the timing of the species life cycle (Figure 3). This 
reduces the number of variables used in the 
analysis and errors associated with indiscriminate 
selection of parameters.  

Climate data were collated from a number of 
sources, selected for critical times according to the 
life cycle model and formatted accordingly (Table 
1). Seasons were defined as per Vance et. al. 
(1998): pre-wet (October – December); wet 
(January – March); early dry (April – June) and 

dry (July – September) so as to capture the 
majority of the wet season rainfall in one season 
(January – March). 

Barramundi catch and effort data were sourced 
from the mandatory Commercial Fisheries 
Database System (CFISH) for eight 30 minute 
grid squares from the northern extremity of PCB 
south to Cape Flattery (Figure 2) for the thirteen 
year time-series from 1989 to 2001. Totals for the 
financial year were calculated in order to align 
with the fishing season. Although catch and effort 
were not significantly correlated at the p<0.05 
level, catch adjusted for effort was used (residuals 
from the catch versus effort regression), in order 
to reduce any signal from effort and to normalise 
the data. Residuals were tested for serial 
autocorrelation using the Box and Ljung test for 
lags up to three years and found to be marginally 
significant at the one year lag (r=0.488; p=0.049; 
Q=3.865). However, removing autocorrelation can 
increase the risk of a type II error, or bias results if 
the source of autocorrelation is due to covariance 
(Pyper and Peterman 1998). Because of this 
analyses were undertaken without adjusting either 
the fisheries or climate data for autocorrelation. 
The resulting 19 climate data sets selected as 
relevant were checked for normality using the 
Shapiro-Wilks test and histograms and 
transformed where necessary prior to analysis. 

6. Mature males 
return to estuary to 
congregate with 
females on spawning 
grounds (Early 
season freshwater 
flow)

1. Spawning and 
fertilized eggs in estuary 
(Salinity; Sea Water 
Temperature). Mature 
fish remain in saline 
environments

2. Larvae entrained 
in estuary and 
postlarvae enter 
wetland and 
brackish nursery 
habitats (Salinity; 
Water Temperature; 
Nursery Habitat 
Area; Access )

3. Fingerlings move 
from nursery 
habitats into tidal 
creeks and then 
upstream (Salinity; 
Water Temperature; 
Nursery Habitat 
Area )

5. Maturation of 
males in freshwater 
habitat 2-4 years 
(Water 
Temperature)

4. Juveniles in 
freshwater 
environment 
(Freshwater Habitat 
Area; Water 
Temperature)
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Figure 3. Conceptual model of PCB barramundi life cycle and climate influences. 
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Table 1: Climate and fisheries data sources and formats for PCB. 

Variable Source Notes Life cycle 
stage 

Total catchment seasonal  fresh water flows QDNRM&E Stream gauge Sum of 8 gauges 1-6 
Total seasonal rainfall BoM SILO database Average 5 stations 1-6 
Average December maximum air temp BoM SILO database Single point 1-3 
Average July minimum air temp BoM SILO database Single point 4-6 
Total annual evaporation BoM SILO database Single point 2-4 
Seasonal average sea surface temps (SSTs) 
for Oct-Dec and Jan-Mar 

NCEP Reynolds Optimally 
Interpolated SSTs 

Single point 6 and 1 

Total number of days in Madden Julian 
Oscillation (MJO) phase 

BoM Research Centre 
website 

Phases 1, 4 and 6 
6-3 

Average seasonal Southern Oscillation Index 
(SOI) for July–Sep, Oct-Dec and Jan-Mar 

QDPI and QDRNME 
Longpaddock website 

Base period 1887-
1989 

6-3 

BoM=Bureau of Meteorology; CFISH=Queensland Commercial Fisheries Database System; NCEP= National Center 
for Environmental Prediction (US); QDNRM&E=Queensland Department of Natural Resources, Mines and Energy 

 

4. MODELLING 

A correlation matrix of all relevant climate 
variables (lagged up to three years) against catch 
adjusted for effort was generated to identify 
significant relationships and possible collinearity 
between variables. Some of the independent 
variables were found to be significantly correlated 
with each other (e.g. rainfall October – December 
and fresh water flow October - December). 
However, as each describes a mechanism which 
affects the fishery in a different biological way 
(e.g. flow in the river bed versus rainfall 
replenishing wetland habitat separate from the 
river), it was considered valid to include all the 
variables selected. Collinearity between 
independent variables was compensated for 
through the use of forward stepwise ridge 
regression (FSRR) modelling (Staunton-Smith et 
al. 2004; StatSoft. Inc. 2005). As not all of the 
variables were collineated and correlations where 
they did exist were varied, the ridge regression 
constant l (lambda) was initially set at 0.1. 

Three different FSRR models were built. The first 
used each of the climate variables which showed a 
significant correlation to catch in the correlation 
matrix, including lagged variables (Climate 
Variables Model). The second model incorporated 
each of the indices of the SOI and MJO for all lags 
(Climate Indices Model), and the third model used 
only significantly correlated climate variables 
lagged by two and three years (Lagged Model) in 
order to capture impacts on early life cycle stages 
of the fish. The first two allowed for a comparison 
between the use of climate variables and climate 
indices in describing catch. The third explored the 
possibility of generating predictions of future 
catch with sufficient time for a response from 
fisheries managers and / or operators. Models 
were limited to three steps, as the use of more 

variables in the model risks an artificially high 
level of the variance being accounted for, and a 
corresponding decrease in forecasting skill due to 
the increased degrees of freedom (Shepherd, et al. 
1984). Residuals were checked for normality 
using a normal probability plot and for 
autocorrelation using the Durbin-Watson statistic. 
Adjusted coefficients of determination (R2) values 
which take into account the degrees of freedom in 
the model  were calculated (StatSoft. Inc. 2005). 

The predictive capability of regression-based 
models has been questioned by several authors 
such as Stergio and Christou (1996) and Myers 
(1998). However we suggest that the robustness of 
a regression model can be enhanced by using cross 
validation (as per Wilkes 1995 and the data-
splitting concept recommended by Myers 1998). 
Therefore the Lagged Model was cross validated 
using a “leave-one-out” (LOO) technique (Wilkes 
1995) which results in a Predictive R2 value as per 
Equation 1.1. This cross validated R2 value is used 
as a measure of the model’s predictive capability.  

Predictive R2 
SST
deletedSSE

−= 1     (1.1) 

 where  ∑
=

−=
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ii
dSSEdeleted y
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2)ˆ(
n

 where  is the iiy th observed value  

id̂ is the predicted value when is not 
included in the analysis. 
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Table 2. Barramundi catch adjusted for effort vs 
selected climate variables (0–3 year lags. 
Correlations (r) significant at the p<0.05 level*). 

Variable 0 lag 
 

1 year 
lag 

2 year
lag 

3 year
lag 

Climate variables 

Minimum temp Jul (oC) 0.10 -0.16 -0.25 -0.62* 

Maximum temp Dec (oC) -0.55 -0.25 -0.02 0.06 

Rain Jul-Sept (mm) -0.01 0.02 0.77* 0.46 

Rain Oct-Dec (mm) 0.56* 0.30 0.38 0.15 

Rain Jan-Mar (mm) 0.56* 0.31 0.62* 0.12 

Rain Apr-Jun (mm) 0.37 0.40 -0.02 0.14 

Flow Jul-Sep (Ml) 0.36 0.41 0.33 0.18 

Flow Oct-Dec (Ml) 0.71* 0.37 0.29 -0.02 

Flow Jan-Mar (Ml) 0.52 0.35 0.76* 0.36 

Flow Apr-Jun (Ml) 0.33 0.33 0.13 0.27 

Evaporation Annual (mm) -0.73* -0.48 -0.62* -0.34 

Average Oct-Dec SST (oC) 0.12 0.25 0.40 0.46 

Average Jan-Mar SST (oC) 0.32 0.17 0.58* 0.03 

Climate forecasting indices 

MJO Phase 1 -0.55 0.00 -0.26 -0.08 

MJO Phase 4 0.04 -0.39 -0.18 0.05 

MJO Phase 6 0.38 0.50 0.16 0.21 

Average July- Sep SOI 0.47 0.12 0.29 0.13 

Average Oct-Dec SOI 0.62* 0.19 0.29 0.14 

Average Jan-Mar SOI 0.47 -0.18 0.10 0.19 

 

Table 3: Comparison of forward stepwise ridge 
regression models (Variables significant at the 
p<0.05 level*). 

Climate Variables (Adjusted R²= .6756) 

Variable  
Regression 
Coefficient 

Standard 
Error 

p-
level 

Intercept 27524.44 19494.78 0.19 

Rain Jul-Sept (2yr lag)* 6453.33 2348.22 0.02 

Evap Annual (2yr lag) -0.01 0.00 0.07 

Av Oct-Dec SOI (no lag) 377.36 234.08 0.14 

Climate Indices (Adjusted R²= .5308) 

 Variable 
Regression 
Coefficient 

Standard 
Error 

p-
level 

Intercept 18929.36 7768.18 0.04 

Av Oct-Dec SOI (no lag)* 813.71 255.66 0.01 

MJO Phase 4 (1 yr lag)* -668.69 288.47 0.05 

Av Jul-Sept SOI (2 yr lag) 462.87 246.61 0.09 

Lagged Climate Variables (Adjusted R²= .6268) 

 Variable 
Regression 
Coefficient 

Standard 
Error 

p-
level 

Intercept -132042.32 156562.77 0.42 

Rain Jul-Sept (2yr lag)* 6552.84 2635.84 0.03 

Evap Annual (2yr lag) -0.01 0.00 0.07 

Av Jan-Mar SST (2yr lag) 5671.57 5452.42 0.33 

5. RESULTS 

The correlation matrix between selected climate 
variables and barramundi catch adjusted for effort 
identified 11 significant correlations (Table 2). 
The FSRR Climate Variables Model (as shown in 
Table 3) included rain July-September–2 (two 
years previous); evaporation annual–2 and average 
October-December SOI (no lag), and explained 
67.6% of the variance in catch adjusted for effort. 
The Climate Index Model explained 53.1% of the 
variance with average October - December SOI 
(no lag), MJO Phase 4–1 and July - September SOI-

2. The Lagged Model contained rain July - 
September–2, evaporation annual–2 and average 
January - March SST–2 and explained 62.7% of the 
variance (Table 3). Residuals for all models were 
normally distributed, independent (Durbin-Watson 
statistic; p<0.05) and fell within + 2 standard 
deviations of the mean indicating an absence of 
outliers.  

Predicted versus observed values of catch were 
plotted for the Lagged Model with all but four 
points falling within the 95% confidence limits 
(Figure 1). Cross validation of the Lagged Model 
returned an adjusted R2 value of 0.481 compared 
to the R2 value of 0.627 initially calculated. This 
shows the robustness of the model and indicates 
that even when used in a predictive capacity, the 
Lagged Model is explaining nearly half the 
variance in catch adjusted for effort in PCB. 

6. DISCUSSION 

Zero-lagged correlations support the well 
established theory that early wet season fresh 
water flow (r = 0.71) affects the catchability of 
barramundi in PCB as fresh water connections to 
the commercial fishery in tidal waters are 
enhanced. In early wet years, male fish residing in 
fresh water reaches return to the estuary in large 
numbers and are caught later that same year as 
rainfall and flow are high and connectivity to these 
areas is good. As would be expected, the October - 
December SOI as an indicator of seasonal rainfall, 
and hence flow, was also significantly correlated 
with catch in the same year (r = 0.62).  

Lagged correlations indicate that conditions which 
maintain optimum nursery habitat, and therefore 
improved survival of young-of-year barramundi 
such as high rainfall and fresh water flows in 
January - March, high rainfall in July - September, 
high January - March SSTs and low levels of 
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evaporation, are significantly affecting catch two 
years later. Annual evaporation, a parameter that 
has not been considered in earlier studies, gives a 
highly significant inverse relationship with 
barramundi catch. The impact of this on the 
fishery is explained by research in the Northern 
Territory which has shown that the size /area of 
available wetland nursery habitat appears to be the 
strongest measure of population fluctuations in 
barramundi (Griffin 1985). 

These findings also suggest that barramundi are 
growing to commercial size within 2-3 years 
depending on birth date and time of capture. 
Significant correlations with minimum 
temperatures three years prior may be identifying 
the effect of temperature on gonad activity / 
maturation, and hence spawning success in 
subsequent years (R. Garrett pers. comm.. August 
2005, Principal Fisheries Biologist, DPI&F). 
Growth rates for the species range considerably 
between genetic stocks and even from one river to 
the next (Shaklee, et al. 1993). Male barramundi 
in river systems north of 15oS on both the east and 
west coasts of Cape York Peninsular have been 
found to be breeding at age one or two years 
(Davis and Kirkwood 1984; Garrett 1986), and 
more recent work using sagittal otoliths to age 
barramundi are showing fish as young as 1 and 2 
years old are entering the commercial fishery 
(Staunton-Smith, et al. 2004). 

Variables selected in the Climate Variables Model 
capture this influence from climatic conditions 
two years prior to catch (rain July – September-2 
(+), evaporation-2 (-)). Catchability of barramundi 
in the year of fishing is explained by the inclusion 
of the October – December SOI (+) (no lag). This 
is also the first parameter selected for the Climate 
Indices Model, followed by phase 1 of the MJO-1 
(-) a measure of suppressed rainfall, and a possible 
indicator of shallow habitat maintenance, and July 
- September SOI-2 (+) a predictor of early wet 
season rainfall.  

Interestingly, rain from July – September-2 is the 
first variable selected in both the Climate 
Variables Model and Lagged Model which is 
somewhat surprising as PCB rainfall at this time 
of year, although variable, is minimal (0.1 – 21.3 
mm). It may be that this rain maintains juvenile 
habitats which would otherwise dry out, resulting 
in the death of all fish. There may also be the 
secondary benefit of establishing a suitable 
nursery habitat for the arrival of early spawned 
fish in September - October. Again, research in the 
Northern Territory has shown that spawning 
commences in the very early months of the wet 

season, before the regular monsoon rains, and that 
the success of this early spawning significantly 
depends on the amount of rain which falls to 
replenish water levels in supralittoral nursery 
swamps (Griffin 1985).  

The importance of conditions at the time of 
spawning and early development is clearly shown 
by the Lagged Model which includes rain July – 
September, annual evaporation and January – 
March SST (all lagged two years) and explains 
62.7% of the variation in catch with a cross 
validated R2 squared value of 0.48. 

7. CONCLUSION 

The impact of climate variability on the year-to-
year variation of commercial barramundi landings 
in the PCB region was explored using correlation 
and regression modelling techniques. A range of 
climate parameters including fresh water flow, 
rainfall, evaporation, air and sea surface 
temperatures and indices of the SOI and MJO, 
selected to coincide with critical life stages of the 
species, were analysed against local barramundi 
catch adjusted for effort. Zero-lagged correlations 
support the hypothesis that connectivity to 
estuarine habitats and subsequent catchability of 
fish is enhanced in wetter seasons. Lagged 
correlations indicate that conditions which 
maintain optimum nursery habitats (high July - 
September and January – March rainfall, high 
January – March freshwater flows and SSTs, and 
low annual evaporation) result in higher catches 
two years later.  

A FSSR model built from significantly correlated 
lagged climate parameters explained 62.7% of the 
variance in catch adjusted for effort in the Bay two 
years prior to catch. Despite the high level of 
physical significance of this particular model, 
there are well known caveats with regression 
based models in general (as highlighted by Myers 
1998 and Walters and Collie 1988). Hence, we 
tested the predictive capacity of the model using a 
cross validated “LOO” regression analysis, which 
adjusted the R2 value to 0.481. These results 
highlight the critical importance of climate on 
various aspects of the barramundi life cycle which 
must be accounted for in management strategies, 
especially in this era of looming climate change 
and vulnerable fish stocks. 
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