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EXTENDED ABSTRACT 

 
This paper proposes two types of stochastic 
correlation structures for Multivariate Stochastic 
Volatility (MSV) models, namely the constant 
correlation (CC) MSV and dynamic correlation 
(DC) MSV models, from which the stochastic 
covariance structures could be obtained easily. 
Both structures can be used for purposes of 
optimal portfolio and risk management, and for 
calculating Value-at-Risk (VaR) forecasts and 
optimal capital charges under the Basel Accord. 
The choice between the CC MSV and DC MSV 
models can be made using a deviance 
information criterion. A technique is developed 
to estimate the DC MSV model using the 
Markov Chain Monte Carlo (MCMC) procedure.  
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1. Introduction  

 

Covariance and correlation structures are used 

routinely for optimal portfolio choice, risk 

management, obtaining Value-at-Risk (VaR) 

forecasts, and determining optimal capital 

charges under the Basel Accord. This issue does 

not yet seem to have been examined in the 

Multivariate Stochastic Volatility (MSV) 

literature.   

 

For multivariate GARCH models, the most 

general expression is called the ‘vec’ model (see 

Engle and Kroner (1995)). The vec model 

parameterizes the vector of conditional 

covariance matrix of the returns vector, which is 

determined by its lags and the vector of outer 

products of the lagged returns vector. A serious 

issue with the vec model is that it has many 

parameters to be estimated, and will not 

guarantee positive definiteness of the conditional 

covariance matrix without further restrictions. 

Bollerslev et al. (1988) suggested the diagonal 

GARCH model, which restricts the off-diagonal 

elements of the parameters matrices to be zero, 

and also reduced the number of parameters 

drastically. Engle and Kroner (1995) proposed 

the Baba, Engle, Kraft and Kroner (or BEKK) 

specification that guaranteed the positive 

definiteness of the conditional covariance matrix. 

This is essential for obtaining sensible VaR 

forecasts. Bollerslev (1990) proposed the 

Constant Conditional Correlation (CCC) model, 

where the time-varying covariances are 

proportional to the conditional standard 

deviation derived from univariate GARCH 

processes. This specification also guarantees the 

positive definiteness of the conditional 

covariance matrix. Recently, Engle (2002) 

developed the Dynamic Conditional Correlation 

(DCC) model, which allows the conditional 

correlation matrix to vary parsimoniously over 

time. McAleer (2005) provides a comprehensive 

comparison of a wide range of univariate and 

multivariate, conditional and stochastic, 

financial volatility models. 

 

This paper proposes two types of stochastic 

correlation structures for MSV models, namely 

the constant correlation (CC) MSV and dynamic 

correlation (DC) MSV models, from which the 

stochastic covariance structures could be 

obtained easily. Both structures can be used for 

purposes of optimal portfolio and risk 

management, for calculating VaR forecasts, and 

for determining optimal Basel Accord capital 

charges. The choice between the CC MSV and 

DC MSV models can be made using a deviance 

information criterion (see Berg et al. (2004)). A 

technique is developed to estimate the DC MSV 

model using the Markov Chain Monte Carlo 

(MCMC) procedure.  

 

2 Constant and Dynamic Correlations 

 

This section develops two types of correlation 

models for MSV models, namely the CC MSV 

and DC MSV models, from which the stochastic 

covariance structures may be obtained easily. 

 

2.1 Constant Correlation MSV Models 

 

Consider the constant correlation (CC) MSV 

model proposed by Harvey, Ruiz and Shephard 
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(1994). Let ty  be an 1M ×  vector of 

stochastic process, as follows: 

( ), 0, ,t t t ty D Nε ε= Γ:  (1) 

( ){ }diag exp / 2 ,t tD h=  (2) 

( ) ( )1 , 0, ,t t t th h N ημ φ μ η η+ = + − + Σo :  (3) 

where the operator ‘ o’ denotes the Hadamard 

element-by-element product of two 

identically-sized matrices or vectors. Here, we 

use ‘exp’ as the operator for vectors to denote 

element-by-element exponentiation, and ‘diag’ 

for vectors to create a diagonal matrix. This 

model deals with two kinds of correlation 

matrices, namely the correlations between mean 

variables, Γ , and the covariance matrix of 
volatility, ηΣ . It should be noted that the model 

is different from the Constant Conditional 

Correlation (CCC) model of Bollerslev (1990) 

with respect to two major points, namely (i) the 

volatilities are stochastic, and (ii) the 

disturbances of the volatilities are correlated 

simultaneously.  

 

In order to obtain the VaR forecasts for a given 

portfolio and to determine the optimal capital 

charges for a portfolio under the Basel Accord, it 

would be necessary to calculate the stochastic 

covariance matrix, ,tΣ  from the correlation 

matrix, as .t t tD DΣ = Γ  

 

There are two ways in which to deal with the 

so-called ‘leverage effects’. One approach is to 

extend the model (1)-(3) in order to assume 

negative correlations between returns and 

changes of volatilities as follows: 

( ) { }1/ 2 1/ 2
1 ,11 ,diag ,..., ,t t m mmE η ηε η κ σ κ σ′ =   

where ,iiησ  is the ( ,i i )th element of ηΣ , and 

iκ  is restricted to be negative. The model is a 

multivariate extension of Harvey and Shephard 

(1996), and has been analysed in Asai and 

McAleer (2004). The other approach is to 

incorporate ty  and ty  in equation (3), as 

follows: 

( )1 1t t th h yμ φ μ λ+ = + − +o o   

    ( )2 , 0, .t t ty N ηλ η η+ + Σo :  (4) 

This model was proposed by Asai and McAleer 

(2004) to develop the multivariate extension of 

the SV model suggested by Danielsson (1994). 

In the Bayesian framework, Yu (2005) and 

Omori et al. (2004) estimated the univariate 

model of Harvey and Shephard (1996) using the 

MCMC technique. 

 

As the purpose of the present paper is to consider 

the stochastic correlation MSV model, namely 

DC MSV, we do not consider asymmetric 

models, although such extensions are 

straightforward for the CC MSV model.  

 

2.2 Dynamic Correlation MSV Models 

 

This subsection develops a dynamic correlation 

(DC) MSV model, as an extension of the CC 

MSV model, which is based on the differences 

between the itε . Our approach is based on the 

Wishart distribution. It is known that the Wishart 

distribution of a sample variance covariance 

matrix computed from i.i.d. multivariate 

Gaussian observation (see Anderson (1984) and 

2204



Stuart and Ord (1994)). By considering the 

serially dependent Wishart Process, we have a 

process of positive definite matrices, under 

appropriate conditions. A standardization of the 

process leads to a serially dependent process of 

correlation matrices. 

 

Let tε  have a multivariate normal distribution, 

( )0, tN Γ , conditional on the stochastic 

correlation matrix, tΓ , where 

( ) { }( )

1 1
1

1/ 2

,  ,

~ , ,  diagonal ,
t t t t t t t

t m t t

Q Q Q Q Q

W Q Q

ψ

ν

∗− ∗−
+

∗

Γ = = Ω + + Ξ

Ξ Λ =
 (5) 

and ( , )mW ν Λ  denotes a Wishart distribution, 

and ‘diagonal’ creates a diagonal matrix by 

setting the off-diagonal elements of matrices to 

be zero. The DC MSV model guarantees the 

positive definiteness of tΓ  under the 

assumption that tQ  is positive definite, 

0 1ψ< < , and that Ω  and Λ  are symmetric 

positive definite matrices. The second condition 

also implies that the time-varying stochastic 

correlations are mean reverting. Given 1Q  is 

positive definite, tQ  is guaranteed to be positive 

definite (the proof is obtained in a similar 

manner to that of the DCC model - see below for 

the case of 1ν = ). By the positive definiteness 

of tQ , tΓ  will also be positive definite. With 

the above dynamic and stochastic structures, the 

DC MSV model for t t ty D ε=  is defined by (2), 

(3) and (5). 

 

As in the case of the CC MSV model, in order to 

obtain the VaR forecasts for a given portfolio and 

to determine the optimal capital charges for a 

portfolio under the Basel Accord for the DC 

MSV model, it is necessary to calculate the 

stochastic covariance matrix, ,tΣ  from the 

stochastic correlation matrix, as .t t t tD DΣ = Γ  

 

In order to investigate the properties of the DC 

MSV model, we consider the case of 1ν = , for 

simplicity. In this case, tΞ  can be expressed as 

t t tξ ξ ′Ξ = , where ( )0,t Nξ Λ: . Then we have 

 

1 ,t t t tQ Qψ ξ ξ+ ′= Ω + +  (6) 

 

which is analogous to the DCC model of Engle 

(2002), namely 

 

1 .t t t tQ Qα βε ε+ ′= Ω + +  

 

Comparing the last terms in the two equations 

given above, that of the DCC model is 

predetermined and can be observed by using 

estimated conditional volatility, while that of the 

DC MSV model is unobservable. Furthermore, 

letting ( )vect tq Q= , we have a VAR(1) process 

for tq , as follows: 

 

( ) ( )1 vec ,t t t tq qω λ ψ ξ ξ+ ′= + + + − Λ  (7) 

 

where ( )vecω = Ω  and ( )vecλ = Λ . Since the 

expectation of the last term is zero, it is possible 

to obtain ( ) ( ) ( )11tE q ψ ω λ−= − + , or 

( ) ( ) ( )11tE Q ψ −= − Ω + Λ . Similarly, it can be 

shown that 

( ) ( ) ( )( )2

21 ,t mmm
V q I Kψ −= − + Λ ⊗ Λ  

where ijK  is the commutation matrix. Noticing 
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that t t tξ ξ ′Ξ = , the other moments can be 

obtained through tedious calculation by using the 

moment of the multivariate normal distribution. 

When 1ν = , it may be natural to assume that 

( ) ( )1
1 01Q ψ −= − Ω + Ξ , since its mean is equal 

to the unconditional mean, and as it is a positive 

definite matrix. 

 

In the following, we consider 1ν =  for 

convenience as (i) it is easy to interpret in this 

case, and (ii) an approximated Gaussian process 

of (7) based on tξ  is used to develop the 

MCMC technique.  

 

3 Bayesian MCMC: An Overview 

 

In this section, we develop a technique to 

estimate the DC MSV model via Markov Chain 

Monte Carlo (MCMC) procedure (see, for 

example, Chib and Greenberg (1996)). For 

univariate SV models, there are two kinds of 

efficient and fast MCMC methods, namely (i) 

the integration sampler suggested by Kim et al. 

(1998) and Chib et al. (2002), and (ii) the 

multi-move sampler proposed by Shephard and 

Pitt (1997, 2004) and Watanabe and Omori 

(2004). For reasons explained in Subsection 3.2 

below, we develop the block samplers which are 

an extension of Shephard and Pitt (1997, 2004).  

 

Apart from MCMC, competing approaches 

include the likelihood approach based on 

importance sampling, such as Sandmann and 

Koopman (1998) and Liesenfeld and Richard 

(2003), and the reprojection method proposed by 

Gallant and Tauchen (1998). Asai and McAleer 

(2004) and Liesenfeld and Richard (2003) 

estimated MSV models by using the importance 

sampling procedures. Although we have to deal 

with the latent process of tQ , which has Wishart 

disturbances, the importance sampling approach 

is inapplicable when the latent process is 

non-Gaussian. Furthermore, the reprojection 

method needs to be extended further for 

application to MSV models. 

 

Let 1θ  denote the vector of parameters to be 

estimated in the latent process for the dynamic 

correlations, tQ , and 2θ  the vector of 

parameters for the volatility processes, th . 

Given the prior density, ( )1 2,π θ θ , the aim of 

Bayesian inference is to obtain the parameter 

vector, ( )1 2,θ θ , from the augmented posterior 

distribution, namely. 

 

( ) ( )

( )

( ) ( )

1 2 1 2

1 2
1

1 1 1 2

, , , | ,

| , , ,

| , | , .

T

t t t
t

t t t t

Q h y

f y Q h

f Q Q f h h

π θ θ π θ θ

θ θ

θ θ
=

− −

∝ ×

×Π  

 

In order to conduct inferences on the parameters, 

we produce a sample ( )( ) ( ) ( ) ( )
1 2, , ,g g g gQ hθ θ  

from this density by the MCMC method. The 

produced draws ( )( ) ( )
1 2,g gθ θ  are taken from the 

posterior density marginalized over ( ),Q h .  

 

The proposed MCMC algorithm is based on the 

two blocks, ( )1,Qθ  and ( )2 , hθ :  
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Algorithm 

1. Initialize Q  and ( )1 2,θ θ . 

2. Sample h  and 2θ  from 2 , ,h y Qθ  

through drawing: 

(a) h  from 2, ,h y Qθ ; (b) 2θ  from 2 | hθ .  

3. Sample Q  and 1θ  from 1, ,Q y hθ  

through drawing: 

(a) Q  from 1, ,Q y hθ ; (b) 1θ  from 1 | Qθ . 

4. Go to Step 2. 

 

The remainder of this section proposes the 

sampling method for each step mentioned above. 

Step 3a is most important. Our method is based 

on the Metropolis-Hastings (MH) algorithm (see 

Chib and Greenberg (1995)). Since the process 

of tq  is linear but non-Gaussian, we consider a 

linear approximation of the equation, and apply 

the simulation smoother proposed by de Jong 

and Shephard (1995) in order to generate 

candidates for the MH algorithm. Sampling all 

latent variables as one block will run into large 

very large rejection frequencies, while 

generating a single state at a time, which yields a 

highly autocorrelated sample, and needs a huge 

number of samples to conduct a statistical 

inference. We will take an intermediate approach, 

namely a block sampler such as Shephard and 

Pitt (1997) and Elerian et al. (2001). 

 

Step 3b is based on the MH algorithm. We will 

use the Wishart distribution to generate 

candidates for Ω  and 1−Λ , while we use the  
gamma distribution for ψ . In order to 

implement Step 2a, we extend the multi-move  

sampler proposed by Shephard and Pitt (1997, 

2004) and Watanabe and Omori (2004). 

Although their approach was developed 

specifically for univariate SV models, the 

extension to MSV models is straightforward. As 

the model for th  can be interpreted as a 

seemingly unrelated regression (SUR) model, in 

that SUR can be written as a regression model 

with parameter restrictions, Step 2b follows from 

the updates of a VAR(1) model with parameter 

restrictions. 

 

5 Conclusion 

 

As covariance and correlation structures are used 

routinely for optimal portfolio choice, risk 

management, obtaining Value-at-Risk (VaR) 

forecasts, and determining optimal capital 

charges under the Basel Accord, it is essential to 

model the covariances and correlations 

accurately. This issue does not yet seem to have 

been examined in the Multivariate Stochastic 

Volatility (MSV) literature. 

 

This paper proposed two types of stochastic 

correlation structures for MSV models, namely 

the constant correlation (CC) MSV and dynamic 

correlation (DC) MSV models, from which the 

stochastic covariance structures could be 

obtained easily. The choice between the CC 

MSV and DC MSV models was shown to be 

based on a deviance information criterion. A 

technique was developed to estimate the DC 

MSV model using the Markov Chain Monte 

Carlo (MCMC) procedure.  
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