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EXTENDED ABSTRACT

This paper introduces a method for representing
uncertainty in ranking by single or multiple indicators.
The method can potentially integrate parametric and
structural uncertainty of model outputs. It requires
estimating the range of conditions over which a
ranking of items should be robust. The ranking is
then subjected to perturbation tests, and the results
displayed graphically.

Ranking a set of measurements, or ranking a set of
model outputs, is a generic task for decision support.
In the case of multiple indicators, a composite index
is often defined. However, as Patil and Taillie (2004)
point out, “every such composite involves judgements
(often arbitrary or controversial) about tradeoffs or
substitutability among indicators.” These concerns are
addressed by the concept of partial order.

Partially-ordered sets can be used to identify items
that are objectively comparable, in the sense that all
indicators favour one item over the other. If there is
a tradeoff between two items (i.e. their indicators are
inconsistent) then they are not inherently comparable.
The concept of partial order been used recently to
rank multiple indicators. For example, Hollert et al.
(2002) used it to rank ecotoxicological contamination
of small streams according to different chemical and
biological tests.

This paper extends the use of partial order,
from representating ambiguity, to also representing
uncertainty. Outputs from perturbed models can
be treated as additional indicators, alongside outputs
from alternative model structures. Another possibility
is the use of data resampling (jackknife or bootstrap
tests) to generate perturbed indicators.

An example of a robust partial order is shown on
Figure 1, where sites in a river system are ranked by
their median flow magnitude. For this analysis, river
flow time-series were used from 9 sites in a common
18-year period. For the ranking to be robust, it should
not change when a single year is included or excluded
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Figure 1. Partial order of sites by median flow.
Magnitude of median flow increases upwards. The
graph on the left shows ambiguity introduced by a
jackknife procedure, where each single year of record
was excluded in turn. The middle graph shows
the ambiguity introduced by varying the percentile
parameter from 50% (median) to between 40% and
60%. The final graph shows the case where parameter
perturbations were applied to each jackknife replicate.

from the common period. Additionally, it should be
equivalent for any percentiles between 40% and 60%
(not just the exact median, 50%). The partial order on
Figure 1 shows the comparisons that are robust under
these conditions – in this case, it is almost a complete
order. There are only three sites with ambiguous
ranks.

This paper also gives a more complex case study,
combining multiple indicators.

Representing uncertainty in ranking should provide
an improved basis for decision-making. The lack
of agreement between indicators, or their lack
of robustness, lead naturally to reconsidering and
revising the modelling process.
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1 INTRODUCTION

Ranking a set of measurements, or ranking a set of
model outputs, is a generic task for decision support.
This is trivial when only one indicator is considered;
in the case of multiple indicators, a composite index
is often defined. The definition of such an index is
often subjective, chosen as much for convenience as
for conceptual reasons.

Partially-ordered sets have been used recently to rank
multiple indicators objectively (e.g. Patil and Taillie,
2004; Hollert et al., 2002; Weigert and Steinberg,
2002). They allow some conclusions to be drawn
about the order of items, but refrain from comparing
items where their indicators are inconsistent.

This paper introduces a further use for partial order: to
represent uncertainty in ranking. When ranking model
outputs, there is often considerable uncertainty in the
model parameters, inputs and assumptions. These
can be perturbed (varied within a plausible range),
testing the robustness of comparing items. Any robust
comparisons can be displayed as a partial order.

Representing uncertainty in ranking should provide an
improved basis for decision-making.

2 RANKING AND PRIORITISATION

One of the most fundamental uses of decision support
systems is in ranking a collection of items. Such a
ranking or prioritisation might apply to:

• alternative management scenarios, with respect
to their predicted outcomes. For example,
which dam management scenario gives the
best combination of agricultural profit and
floodplain ecosystem health?

• a set of locations, with respect to how severe
some problem is, or how great an opportunity
is presented. For example, where is dryland
salinity predicted to be most severe?

• a set of types, species, etc. For example, which
weed species are most likely to invade some
region?

Management decisions typically must take multiple
criteria into account. Many decision support systems
generate a unique ranking by combining different
indicators into a composite index (e.g. Brans and
Vincke, 1985; Young et al., 2003). However, as Patil
and Taillie (2004) point out, “every such composite
involves judgements (often arbitrary or controversial)
about tradeoffs or substitutability among indicators.”

These concerns are addressed by the concept of partial
order.

2.1 Partial Order in Decision Support

A different approach to multi-criteria ranking uses
the theory of partially ordered sets (posets). This
works with items that are objectively comparable, in
the sense that all indicators favour one item over the
other. If there is a tradeoff between two items (i.e.
their indicators are inconsistent) then they are not
inherently comparable.

Partial orders can be visualised with Hasse diagrams.
These show the cover relationships (adjacent com-
parable relationships) between items on a graph. To
construct a Hasse diagram, the following procedure is
sufficient:

1. Draw lines from each item to those others that it
is objectively greater than (where all indicators
agree).

2. Position the items so that all lines point
downwards: the greatest items are then at the
top of the diagram. This implies that the
diagram has a certain number of levels.

3. Remove those lines implied by transitivity, that
is, if A > B and B > C then there is no need
to also show that A > C. This step simplifies
the diagram.

An example of a Hasse diagram will be shown in the
next section.

Hasse diagrams must be interpreted with care. Only
those items that are directly connected, or connected
by a chain of cover relationships, are comparable.
Incomparable items cannot be positioned uniquely
on the diagram, so there is not necessarily a simple
scale from “good” at the top to “bad” at the bottom.
Nonetheless, the information in a partial order is often
useful for decision making.

Partial order has been applied to several multi-criteria
problems. For example, Hollert et al. (2002)
used it to rank ecotoxicological contamination of
small streams according to different chemical and
biological tests. This helps to prioritise sites for
management. Patil and Taillie (2004) applied the
theory to UNEP environmental quality indicators
(land, air and water) for each of 106 countries. Their
approach avoids unsupportable assumptions about the
relative importance of component indicators. Weigert
and Steinberg (2002) demonstrated the use of partial
order in urban water resource management scenarios.
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Where there are many different indicators, or the
indicators disagree, many items may be incomparable.
In these cases, Weigert and Steinberg (2002) suggest
that “they should be subject to public discussions and
subsequent political decisions.” These authors also
suggest selectively combining indicators or taking
subsets of indicators to resolve ambiguities.

Patil and Taillie (2004) discuss the complete orders
that are consistent with a given partial order (linear
extensions). They identify the range of possible ranks
for each item. Furthermore, they compute the rank
probability distribution of each item, and work out the
complete order that is most probable, in some sense.
Some authors also use the average rank of each item
to generate a complete order. My personal opinion is
that, if a complete order is required, indicator values
should be combined (such as a traditional weighted
sum), rather than extending the partial order.

2.2 Partial Order to Represent Uncertainty

A major challenge in environmental management (as
well as in other areas) is to integrate uncertainty into
decision support (Refsgaard et al., 2004). When
predictive models are used, sensitivity and uncertainty
assessment can be used to evaluate whether decisions
based on them are adequately robust to minor changes
in parameters, inputs or assumptions (Saltelli and
Scott, 1997). The outputs of interest vary depending
on the application, but Norton et al. (2003) list the
rank position of items as a common basis for decision-
making.

When the rank order of model outputs is of interest,
the results of sensitivity assessment can be represented
as a partial order. Outputs produced from perturbed
models (e.g. varying one or several parameters
through a plausible range) can be treated as additional
indicators (equally valid with the base case), by
analogy with the approach described in Section 2.1.
Accordingly, Hasse diagrams can be used to represent
uncertainty in rankings.

This approach differs from a naive Monte-Carlo
assessment, where a range of inputs is translated into
a range of outputs. In that case, if two outputs have
an overlapping range they might be thought to be
indistinguishable. However, even though the values
of both vary substantially, one might be always greater
than the other (i.e. they vary in a correlated fashion).
Using partial order reveals this.

The proposed use of partial order to represent
uncertainty can apply to ranking by a single indicator,
or to ranking by multiple indicators. In the
latter case, ambiguity and uncertainty are combined.
If the multiple indicators are alternative model
formulations, the ambiguity may represent (a part of)

structural uncertainty.

3 CASE STUDY: RANKING RIVERS BY
FLOW INDICES

In this section the proposed method will be
demonstrated with a simple case study. Considering
statistics derived from river flow time series as simple
models, they are used to rank a set of rivers.

3.1 The Namoi Dataset

Rivers were selected from the Namoi River basin,
within the Murray-Darling Basin, in northern NSW,
Australia. The region was chosen partly because it has
a relatively large number of stream gauging stations
with long records.

The focus here is on natural flow features, so only
unregulated rivers were considered. Furthermore,
rivers subject to substantial groundwater extraction
were excluded: in this case, the Mooki and Cox’s
Creek systems were excluded.

River flow data was from a common period at all
sites, in order to compare them independently of
climatic differences. The period was chosen so that
as many sites as possible had adequate data: at least
15 available years from an 18-year period (this was an
arbitrary criterion). The chosen period covered the 18
water years 1969-1986 (inclusive). Water years were
defined as beginning 1 October in the named calendar
year, and were “available” if fewer than 10% of their
daily values were missing. Data was obtained from
Pinneena 8 (DIPNR, 2004).

Nine sites (stream gauging stations) were selected, the
details of which are shown in Table 1. Additionally,
Figure 2 gives a visual display of the available data
years.
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Table 1. Stream gauging stations selected from the Namoi basin. Sites were selected if they (a) were unregulated
and free from large-scale groundwater extraction; and (b) had no more than 3 missing data years in the common
18-year period covering water years 1969-1986 (inclusive).

station ID river name station name catchment (km2) period of record latitude longitude
419005 Namoi North Cuerindi 2538 1915- -30.68 150.78
419010 Macdonald Woolbrook 844 1927- -30.97 151.35
419016 Cockburn Mulla Crossing 900 1936- -31.06 151.13
419028 Macdonald Retreat 1760 1965-1987 -30.63 151.11
419029 Halls Ck Ukolan 376 1965- -30.71 150.83
419036 Duncans Ck Woolomin 93 1965-1986 -31.32 151.16
419038 Macdonald Cobrabald 358 1965-1987 -31.19 151.45
419044 Maules Ck Damsite 45 1968-1992 -30.53 150.3
419051 Maules Ck Avoca East 667 1972- -30.5 150.08

start of calendar year (water year follows)

1970 1980 1987
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Figure 2. Available flow data in the common 18-year period covering water years 1969-1986 (inclusive). Years
were defined as being available if fewer than 10% of their daily values were missing. The point following a marked
year (such as “1980”) represents the water year beginning 1 October in that calendar year.
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3.2 Ranking by Median Daily Flow

The first case simply involves ranking the rivers by
their typical size: the median flow magnitude. That
is, the flow exceeded 50% of the time. It is trivial to
compute the median for each site and to rank these.
However, the results might depend on specific years
of the flow record. For the ranking to be robust, it
should not change when a single year is included or
excluded from the common period. This can be tested
with a jackknife procedure (Efron and Gong, 1983):
each year of the common period was excluded (one
at a time), and the statistics recomputed. In some
of these replicates, two sites switched their rank (036
and 051), and therefore their rank is ambiguous. The
partial order produced by this method is shown at the
left of Figure 3.

Note that the first-order jackknife (removing one
at a time) can be extended to higher orders. For
instance, the second-order jackknife removes every
combination of two years at a time (with 18 years, 153
replicates). This provides a more demanding test of
robustness.

To test parameter sensitivity, the percentile parameter
(50% for the median) can be varied. Subjectively, I
would like the ranking to be valid not just for the
exact median; anywhere between the 40% and 60%
percentiles should be equivalent. Accordingly, the
statistics were recomputed at several percentiles in
that range. The partial order produced by this method
is shown at the middle of Figure 3.

Combining the two types of perturbation, several
percentiles between 40% and 60% were computed for
each jackknife replicate. The partial order produced
by this method is shown at the right of Figure 3. It
is interesting to note that this gives extra information
beyond either of the single tests: that site 029 is
incomparable with site 036.

3.3 Ranking by “Harshness” Indices

The next case is more complex, combining three
indicators and representing uncertainty in each. The
three statistics were selected as potential indicators
of “harshness” (referring to stream habitat conditions)
from the list given by Fritz and Dodds (2005). The
statistics were:

• Annual coefficient of variation (CV): standard
deviation divided by mean of total flows in each
available water year.

• Frequency of zero flow conditions (ZERO): the
average number of days per year with flow less
than a low threshold (by default, 0.1 ML/day).
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Figure 3. Partial order of sites by median flow.
Magnitude of median flow increases upwards. The
graph on the left shows ambiguity introduced by a
jackknife procedure, where each single year of record
was excluded in turn. The middle graph shows
the ambiguity introduced by varying the percentile
parameter from 50% (median) to between 40% and
60%. The final graph shows the case where parameter
perturbations were applied to each jackknife replicate.

• Flood-flow index (FFI): the proportion of total
flows that are not base-flow, according to a
base-flow separation filter. This has the reverse
order to a base-flow index. Baseflow separation
used the minimum filter (Croke et al., 2002),
with a default window size of 5 days.

Each indicator was subjected to perturbations as
described in the previous section. These comprised
a first-order jackknife resampling of the flow data,
and a simple parameter perturbation for each of
these replicates. The parameter perturbations were as
follows:

• for annual coefficient of variation: the year
boundary was varied from 1 October by +/- 37
days (10% of days in the year);

• for frequency of zero flow conditions: the
threshold was varied from 0.1 ML/day to be
0.01 and 1 ML/day;

• for flood-flow index: the window size of the
base-flow filter was varied from 5 days to be 3
and 7 days.

The partial orders produced by these perturbations are
shown on Figures 4, 5 and 6, referring to CV, ZERO
and FFI respectively.
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Figure 4. Partial order of sites by annual coefficient of
variation. The ambiguity represents sensitivity to the
following perturbations. A jackknife procedure was
applied, excluding each year of record in turn. For
each of these replicates, the year boundary was varied
from 1 October by +/- 37 days.
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Figure 5. Partial order of sites by frequency of zero
flow conditions. The ambiguity represents sensitivity
to the following perturbations. A jackknife procedure
was applied, excluding each year of record in turn. For
each of these replicates, the threshold for “zero” flow
was varied from 0.1 ML/day to be 0.01 and 1 ML/day.
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Figure 6. Partial order of sites by flood-flow index.
The ambiguity represents sensitivity to the following
perturbations. A jackknife procedure was applied,
excluding each year of record in turn. For each of
these replicates, the window size of the base-flow filter
was varied from 5 days to be 3 and 7 days.
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Figure 7. Partial order of sites by three potential
indicators of “harshness”. Harshness increases
upwards. The three component indicators are those
shown on Figures 4, 5 and 6, and include the
uncertainty of each according to perturbations of
parameters and input data.

The partial order for each of these indicators is based
on a matrix of indicator values, with sites against
replicates. To combine them into an overall partial
order is as simple as joining the matrices, so that all
replicates are considered together. The corresponding
Hasse diagram is shown on Figure 7.

Figure 7 shows robust statements about the relative
“harshness” of stream habitat at each site. Based
on three possible indicators of harshness (these
might be thought of as alternative model structures /
conceptualisations) and specified tests of robustness
(jackknife resampling and parameter perturbation),
several conclusions can be drawn. Sites 044 and
051 are candidates for the most harsh stream. By
looking at the component indicators’ Hasse diagrams
(Figures 4, 5 and 6), these two sites have the equally
highest CV (incomparable due to uncertainty), but 044
is clearly more harsh in the other cases. On the other
hand, there are six incomparable sites that are the least
harsh: 005, 010, 038, 028, 029 and 036. Much of
this ambiguity is introduced by CV (see Figure 4),
so this indicator might be revised to allow stronger
conclusions.

4 CONCLUSIONS

This paper proposed a method for representing
uncertainty in ranking by single or multiple indicators.
This method can potentially integrate parametric,
input and structural uncertainty of model outputs. Of
course, the choice of perturbation tests is somewhat
subjective, and requires estimating the range of
conditions over which the ranking should be robust.
The lack of agreement between indicators, or their
lack of robustness, lead naturally to reconsidering and
revising the modelling process.

5 ACKNOWLEDGEMENTS

The analyses and visual displays in this paper
were produced with open-source software tools:
the R system for statistical computing (Ihaka and

2461



Gentleman, 1996; http://www.R-project.org/) and
Graphviz (http://www.graphviz.org/).

6 REFERENCES

Brans, J.P. and P.H. Vincke (1985), A Preference
Ranking Organisation Method. (The PROME-
THEE Method for Multiple Criteria Decision
Making), Management Science, 31(6), 647-656.

Croke, B.F.W, A.B. Smith and A.J. Jakeman (2002),
A One-Parameter Groundwater Discharge Model
Linked to the IHACRES Rainfall-Runoff Model,
In: Rizzoli, A.E. and A.J. Jakeman (Eds.), In-
tegrated Assessment and Decision Support, Pro-
ceedings of the 1st Biennial Meeting of the Inter-
national Environmental Modelling and Software
Society, Volume 1, 428-433.

DIPNR (2004), Pinneena version 8 hydrological
database. NSW Department of Infrastructure,
Planning and Natural Resources.

Efron, B. and G. Gong (1983), A Leisurely Look at
the Bootstrap, the Jackknife, and Cross-Validation,
The American Statistician, 37(1), 36-48.

Fritz, K.M. and W.K. Dodds (2005), Harshness: char-
acterisation of intermittent stream habitat over
space and time, Marine and Freshwater Research,
56, 13-23.

Hollert, H., S. Heise, S. Pudenz, R. Brggemann, W.
Ahlf and T. Braunbeck (2002), Application of a
sediment quality triad and different statistical ap-
proaches (Hasse diagrams and fuzzy logic) to the
comparative evaluation of small streams, Ecotoxi-
cology, 11, 311-321.

Ihaka, R. and R. Gentleman (1996), R: a language for
data analysis and graphics, Journal of Computa-
tional and Graphical Statistics, 5, 299-314.

Norton, J.P., R. Argent, R. Nathan, G. Podger and R.
Vertessy (2003), Sensitivity-Assessment Needs of
Complex Simulation Models for Integrated Catch-
ment Management, In: Post, D.M. (Ed.), MOD-
SIM 2003: International Congress on Modelling
and Simulation, Townsville, Australia.

Patil, G.P. and C. Taillie (2004), Multiple indica-
tors, partially ordered sets, and linear extensions:
Multi-criterion ranking and prioritization, Envi-
ronmental and Ecological Statistics, 11, 199-228.

Refsgaard, J.C., J.P. van der Sluijs, A.L. Hjberg and P.
Vanrolleghem (2004), Harmoni-CA Guidance 1:
Uncertainty Analysis, European Commission Fifth
Framework Programme.

Saltelli, A. and M. Scott (1997), Guest editorial: The
role of sensitivity analysis in the corroboration of
models and its link to model structural and para-
metric uncertainty, Reliability Engineering and
System Safety, 57, 1-4.

Weigert, F.B. and C.E.W. Steinberg (2002), Sustain-
able development – assessment of water resource
management measures, Water Science and Tech-
nology, 46(67), 5562.

Young, W.J., A.C. Scott, S.M. Cuddy and B.A.
Rennie (2003), Murray Flow Assessment Tool
– a technical description. Client Report, 2003.
CSIRO Land and Water, Canberra. Available from:
http://www.clw.csiro.au/publications/

2462

http://www.R-project.org/
http://www.graphviz.org/
http://www.clw.csiro.au/publications/

	Introduction
	Ranking and Prioritisation
	Partial Order in Decision Support
	Partial Order to Represent Uncertainty

	Case Study: Ranking Rivers by Flow Indices
	The Namoi Dataset
	Ranking by Median Daily Flow
	Ranking by ``Harshness'' Indices

	Conclusions
	Acknowledgements
	REFERENCES

