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EXTENDED ABSTRACT  

Scale-free networks are a recently developed 
approach to modeling the interactions found in 
complex natural and man-made systems. Such 
networks exhibit a power-law distribution of node 
link (degree) frequencies P(k) in which a small 
number of highly connected nodes predominate 
over a much greater number of sparsely connected 
ones.  

The importance of scale-free networks is 
emphasized by the number of real networks now 
identified as exhibiting power-law distributions. 
A recently identified, but now classic example of 
a scale-free network is the World Wide Web: web 
pages are nodes, which are connected by 
hyperlinks. Other examples of such networks 
traverse disparate fields: scientific paper citations, 
communications networks and power grids, 
neural networks, and protein-protein interactions.  

The now classic Albert-Barabási constructive 
algorithm for constructing scale-free networks 
centers on the concept of preferential attachment 
in which the probability of a new node linking to 
an existing node is proportional to its relative 
number of links. This paper contends that when a 
new node is appended, the global knowledge of 
node degrees required by Albert-Barabási 
approach is unrealistic. Instead we propose a 
locally-derived linking criterion in which only a 
small part of the total network is considered each 
time. The Albert-Barabási constructive algorithm 
then becomes a limiting case of the proposed 
local algorithm. This paper investigates the some 
of properties of the resulting networks.  

As shown in Figure 1, the degree distributions of 
networks constructed using local preferential 
linking exhibit an unusually fat tail. That is, the 
network has a small number of extremely well-
connected nodes which, in effect, comprise ‘super 
hubs’.  
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 Figure 1.  Node degree distributions P(k) for 
200,000 node networks each with linkage rate 
m = 3 created using global preferential linking 
(Barabási-Albert) versus local preferential linking 
with neighborhood distance l = 1 (this research). 
The trend-line is an eyeballed estimate. 

The cumulative probability distribution of node 
degrees proves to be a sensitive means of 
evaluating subtle differences between generated 
distributions. Figure 2 highlights the existence of 
‘super hubs’ in the extended tail of the connectivity 
distribution produced by from the local preferential 
linking approach. 
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Figure 2.  Cumulative node degree distributions 
P(k) for 200,000 node networks each with linkage 
rate m = 3 created using global preferential linking 
(Barabási-Albert) versus local preferential linking 
with neighborhood distance l = 1 (this research). 
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1. INTRODUCTION 

1.1. Random Networks 

Networks have been used to model the structure of 
many systems.  Objects are represented as nodes,1 
relationships between objects as links. Links may 
be directed from one object to another, or non-
directed. The number of links for a given node is 
the degree k of the node. 2 The degree distribution 
of a network with N nodes P(k, N) is a key statistic 
in describing the network. 

"Classical" random networks as characterized by 
Erdös and Rényi (1959, 1961) comprise a fixed 
number of nodes N.  In constructing a network, 
links between nodes are made randomly with equal 
probability. Such networks have a Poisson 
distribution in which the degree distribution 
decreases rapidly; highly connected nodes are 
vanishingly unlikely, as in Figure 3, “Static 
network, random linking”. These networks were 
the focus of attention for network science for 
almost four decades. 

By way of contrast, an empirical study of part of a 
real-world network—the World Wide Web 
(www)—identified a ‘fat-tailed’ degree distribution 
having many highly-connected nodes like that 
shown in Figure 3 for “Growing network, 
preferential linking” (Albert et al. 1999). A web 
crawler was used to compile a complete map of the 
Notre Dame University domain, nd.edu. Web 
pages were mapped as nodes; hyperlinks as links. 
The degree distribution of this network was found 
to follow a power law, λ−∝ kkP )( . When 
log(P(k)) is plotted against log(k), this function is 
linear with a slope of -λ (Figure 3). For the domain 
investigated, outgoing hyperlinks had 2.45=outλ  
and incoming links, 1.1=inλ . Significantly, the 
degree distribution is independent of the size of the 
network. It is scale-free.  

Key properties of scale-free networks are that they 
are dominated by a relatively few, highly 
connected nodes ('hubs'), with the vast majority of 
nodes being poorly connected.  Scale-free 
networks are therefore extremely resistant to 
disruption by random deletion of nodes. On the 

                                                           
1 The nomenclature of networks adopted varies 
with context: Mathematicians refer to networks as 
“graphs” made of “vertices” and “edges”;  
Physicists use the terms ‘nodes’ or ‘sites’, and 
‘links’ or ‘bonds’. 
2 Also referred to as ‘connectivity’. 

other hand, targeted deletion of hubs can rapidly 
destroy a large proportion of network connectivity. 
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 Figure 3. Empirical node degree distributions 
P(k) for networks that link to nodes with equal 
probability, compared with the Barabási-Albert 
network where the probability of linking is 
proportional to node degree, k. Each network has 
200,000 nodes. 

Scale-free networks also exhibit the 'small-world' 
effect (Milgram, 1967, Watts and Strogatz, 1988) 
in that the average shortest distance between 
randomly selected nodes is relatively small.  For 
instance Barabási et al. (1999) estimated the 
average diameter of the www is 18.59=d links. 
In other words, any two pages of what was then 
estimated to be the 800 million web pages of the 
World Wide Web are, in principle, only separated 
by an average of about 19 clicks. (This, of course, 
assumes an intelligent search.  A random search 
would take a many, many more clicks.) 

Theoretical physicists, principally Dorogovtsev 
and Mendes (2001), have used a continuum 
approach to develop a theory of evolving 
networks. An extensive review of growing 
networks, their properties, theoretical models, and 
real-world examples, is presented in Dorogovtsev 
and Mendes 2003. 

Having identified the www as a scale-free network, 
Barabási and Albert (1999) went on to describe a 
simple construction algorithm for a growing 
network based upon preferential linking.  In the 
method of preferential linking used, the probability 
of establishing a link from a new node to an 
existing node is proportional to the relative number 
of its links (its degree k). The algorithm was 
shown to produce a power-law degree distribution 
analogous to that found for the www, with 

2.9.≈λ   

In their 1999 paper, Barabási and Albert 
demonstrated that both the growth and the 
preferential linking features of their algorithm are 
required to generate a network with a power-law 
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degree distribution.  First, they used a growing 
algorithm in which new nodes were linked 
randomly with equal probability to existing nodes.  
This eliminated the power-law distribution, and 
resulted in a rapidly increasing, exponential, 
degree distribution, kekP β−≈)(  shown in Figure 
3, “Growing network, random linking”. In a 
second approach, the researchers took a fixed 
number of nodes N, selected nodes at random, and 
then preferentially linked from them.  While 

initially the resulting networks exhibited power-
law scaling, this relationship ultimately breaks 
down because, if construction continues long 
enough, all nodes become mutually linked.  

The Barabási-Albert scale-free network model has 
been found to describe a wide variety of 
phenomena (Table 1). 

 

 

Table 1. Examples of real-world scale-free networks (In part after a compilation by Dorogovtsev and 
Mendes, 2003.) 

Network No. of Nodes No. of Links λ Source 

Map of nd.edu domain 326,000 1,470,000 λin  = 2.1 
λout = 2.45 

Albert et al. 1999 

ISI citations 1981 – June 
1997 

783,000 6,716,000 λin  = 3.0 Redner 1988 

Collaboration network 
of screen actors 

212,000 61,086,000 λ    = 2.3 Newman 2001e 

Web of human sexual 
contacts 

2810 — λ    = 3.4 Liljeros et al. 2001 

Protein-protein 
interactions (yeast 
proteome) 

1,870 2,240 λ    ≈ 2.5 Jeong et al. 2001 

Java development 
framework—classes and 
interactions 

1,376 2,174 λ    = 2.5 Valverde et al. 2002 

Large digital electronic 
circuits 

20,000 40,000 λ    = 3.0 Ferrer I Cancho et al. 
2001b 

Energy landscape 
network for a 14-atom 
cluster 

4196 87,219 λ    = 3.0 Doye 2002 

Coauthorships in the 
SPIRES e-archive 

56,600 4,899,000 λ    = 1.2 Newman 2001 

E-mail net 59,192 — λ    = 1.8 Ebel et al. 2002 

English words, as they 
are linked within 
sentences 

470,000 17,000,000 λ    = 1.5, 
2.7  

Ferrer I Cancho et al. 
2001a 

Air transportation: non-
stop passenger flights 
between cities. 

3883 531,574 2.0 Guimerà et al. 2003, 
2005 

 

In this paper, we take issue with the Albert – 
Barabási construction algorithm, noting that their 
approach to preferential linking requires at all 
times global knowledge of the degree distribution 
P(k, N) of the evolving network. This is readily 

apparent when implementing the algorithm, as at 
each time step3 s, when a new node is added, the 

                                                           
3 Note that in the “classic” Albert -- Barabási 
algorithm, one new node is added at each time 
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probability of attaching that node to an existing 
one i requires calculation of the probability 

∑=
j

jii kkkp /)( . That is, not only must the 

degrees of individual nodes be tracked, but a total 
of all node degrees must be maintained. In terms 
of large real-world networks, this is unrealistic.  
For instance, when a web page author is creating 
hyperlinks they do not consider the World Wide 
Web in its entirety; they use their local knowledge. 
Such knowledge is inevitably a tiny proportion of 
the present-day World Wide Web. 

The apparent need for global knowledge while 
constructing a scale-free network is somewhat 
puzzling.  The scale-free property suggests that the 
degree distribution of the network is independent 
of its size.  Therefore, it should be possible to use 
knowledge of the degree distribution of some 
lesser part of the network as a sufficient 
alternative.  If this were possible, then there would 
be no need for global knowledge during network 
construction. Surprisingly, this inconsistency 
appears to have escaped the attention of other 
researchers in the field. 

We suggest that the use of local knowledge in 
network construction could result in a more 
realistic model for the behavior of real-world 
networks. 

The above observations lead to the question, “Can 
a modified Albert-Barabási algorithm using only 
local knowledge create a scale-free network with 
similar properties to those evolved using global 
knowledge?” 

2. NETWORK CONSTRUCTION USING 
LOCAL KNOWLEDGE 

The Barabási-Albert network construction 
algorithm is as follows (Barabási and Albert 
1999): 

• Start with a small number of nodes m0. 

• At each time step s add a new node with 
linkage rate )( 0mm ≤  links made 
preferentially to existing network nodes. The 
probability of linking to node i is 

∑
+

=
sm

jii kkkp
0

./)(  

• Stop when the network has reached the 
required size smN += 0 . 

                                                                                   

step.  Therefore, if the initial size of a network is 

0m , the size of the network at time s is 0ms + . 

We now propose a modified algorithm requiring 
only a local knowledge of network nodes when 
preferentially linking from a new node: 

• Start with a small number of nodes m0. 

• At each time step s: 

• Select an existing node us at random. 

• Assemble a set Ls of ls “local nodes” 
consisting of  us and those nodes within 
distance d of us (i.e. its 
“neighbourhood”).4 

• Add a new node vs with )( 0mm ≤  links 
made preferentially to m nodes in Ls. The 
probability of linking to node i of the l 
local nodes is ∑=

l
jii kkkp ./)(  

• Stop when the network has reached the 
required size smN += 0 . 

In the above algorithm the method of preferential 
linking is the same as in the Barabási-Albert 
approach, except that instead of using the degree 
information from all nodes, only that from the set 
of “local nodes” L is used. 

 

3. EMPIRICAL COMPARISON OF 
“LOCAL” AND “GLOBAL” NETWORKS 

Python scripts were written to implement 
constructive algorithms for the following 
networks: 

• A static network with random linking (the 
“traditional” Erdös-Rényi network). 

• A growing network in which each new node is 
randomly linked with equal probability to 
existing nodes. 

• A growing network with global preferential 
random linking. (The Barabási-Albert “scale-
free” network, described above). 

• A growing network with local preferential 
random linking, as proposed in this research 
(above). 

Because scale-free effects are only readily 
apparent in large networks, the scripts were used to 
create networks that were as large as possible 
given the hardware and time available.  The 
Psycho run-time compiler available for Python 
was used to minimize the effect on execution time 
of using a scripted language.  The networks 

                                                           
4 The distance between two nodes is the shortest 
path length between them, measured in links. 
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created and analyzed ranged in size from about 
12,000 to 200,000 nodes 

Figure 3 shows the node degree distributions for 
the well-known networks already introduced. The 
Erdös-Rényi network has a Poisson degree 
distribution, and the growing, randomly linked 
network an exponential degree distribution. In both 
these distributions the degree probability rapidly 
decreases as node degree increases.  Both 
networks have a natural scale of the order of the 
average degree (Dorogovtsev and Mendes, 2003). 
By way of contrast, the Barabási-Albert network is 
fat-tailed; it has a small number of very highly 
connected nodes.  The linear plot is consistent with 
a power law, λ−∝ kkP )( , with 2.9.≈λ  The 
distribution is therefore scale-free. 

Note that the spread of points in the power-law 
plot at low probabilities is a size effect found in 
real distributions.  That is, the uncertainty in the 
distribution becomes large where there are only a 
few nodes (1–10) of the same connectivity. 

The plot of degree distribution for the network 
constructed with local preferential linking shows a 
significant superficial resemblance to the plot for 
the Barabási-Albert network (Figure 4).  On closer 
examination, the plot can be divided into three 
parts.  The central part is essentially linear. For this 
section, the slope λ is estimated at 2.8.  This is 
only slightly less than that for the global linked 
network.  However, for the first point of the local 
distribution, the probability of 3== mk  is 0.92. 
That is, 92% of network nodes failed to gain 
additional links through later preferential linking.  
This contrasts with the global models in which 
only 40% of nodes are in this category. Finally, the 
tail of the local distribution extends to include a 
few rare nodes that are much more connected than 
any in the equivalent global network model. 

Plotting the respective cumulative degree 
probability distributions (Figure 5) confirms the 
significant differences between the two 
distributions. Here, the plot for the global 
preferentially linked network is still clearly linear, 
with an expected cumulative power function slope 
of λ-1 (Dorogovtsev and Mendes 2003). On the 
other hand, the local preferentially linked network 
appears to comprise an initial linear component 
with 3.4≈λ  and a final, perhaps linear, 
component with a λ of around 1.7. The region 
between these components could be interpreted as 
a transition between them. The unusually long tail 
of the locally derived distribution confirms the 
presence of the few extremely highly connected 
nodes—what might be termed ‘super hubs’. This is 
dramatically illustrated by comparing the most 
connected node for each of the respective 200,000 

node example networks. The most connected node 
in network with global preferential linking has 
1,283 links, while the equivalent for the local 
network has 107,716 links.  
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 Figure 4.  Node degree distributions P(k) for 
200,000 node networks each with linkage rate 
m = 3 created using global preferential linking 
(Barabási-Albert) versus local preferential linking 
with neighborhood distance l = 1 (this research). 
The trend-line is an eyeballed estimate. 

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000

C
um

m
ul

at
iv

e 
P(

k)

k

Global Preferential Linking
Local Preferential Linking

 
Figure 5.  Cumulative node degree distributions 
P(k) for 200,000 node networks each with linkage 
rate m = 3 created using global preferential linking 
(Barabási-Albert) versus local preferential linking 
with neighborhood distance l = 1 (this research).   

This ‘super hub’ outcome for local linking appears 
to be a consequence of the constrained access to 
the network when assembling the set of local 
nodes Ls.  For a network such as the above, where 
m = 3 and d = 1, most of the nodes randomly 
targeted within the network will be of degree k = 3. 
Such nodes are also likely to have neighbors with a 
connectivity of three.  Therefore, most of the time 
the local neighborhood will also consist of three 
nodes, each with the same degree, k = m = 3. In 
such cases, the intended preferential linking 
degenerates to simple random linking. As noted 
above, this linking strategy in a growing network 
results in an exponential degree distribution, 
accounting for the initial rapidly decreasing node 
distribution in Figure 5. 
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The extended tail of the local distribution in Figure 
5 can be explained by considering that, when one 
of the occasional nodes having k >> m is included 
in the local nodes Ls, it will very likely be linked 
to.  Essentially, this becomes an extreme example 
of “the rich get richer”. Therefore, the tail of the 
distribution exhibits more extreme preferential 
linking than the Barabási-Albert model, in which 
case it is reasonable to expect a power-law trend 
with a gamma substantially less than 2.9. (λ ≈ 1.7 
in the example network). 

As might be expected, the further the net is cast for 
local nodes Ls, the more nodes l are included and 
the closer the resulting network resembles the 
Barabási-Albert model. This effect is readily 
apparent in Figure 6, despite the plots for locally 
linked networks having relatively small numbers 
of nodes. The limiting case is when d is large 
enough to cause the whole network to be included 
in Ls, in which case node selection is global and 
the local and global algorithms coincide in their 
outcomes. 
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Figure 6. Cumulative node degree distributions 
P(k) networks each with linkage rate m = 3 created 
using local preferential linking with neighborhood 
distances l = 1 (50,000 nodes),  l = 2 (26,000 
nodes),  l = 3 (18,000 nodes),  l = 4 (12,000 nodes) 
versus global preferential linking (200,000 nodes). 

4. REAL-WORLD NETWORKS 
Investigations of real-world scale-free networks 
have typically yielded degree distributions with 
gamma in the range of 2–3, compared with the 
simple Barabási-Albert model where λ = 2.9. 
Interestingly, some studies have identified 
significantly lower values of gamma, (Table 1).  
The extent to which these networks are modeled 
by the proposed local preferential linking approach 
has yet to be investigated. 

5. CONCLUSIONS AND FUTURE WORK 
Clearly, this paper is a very limited investigation 
into the parameters and properties of the proposed 
approach to network construction using local 

preferential linking. The results obtained indicate 
interesting similarities and differences between the 
example networks obtained using the two methods.  
The most significant property of the networks 
constructed using local preferential linking is the 
unusually fat tail of the degree distribution. The 
network has a small number of extremely well-
connected nodes which, in effect, comprise ‘super 
hubs’. 

There are a number of possible future directions 
for this work. For example, we propose to 
empirically investigate the effect on local 
preferential linking of varying the linking rate m 
over a wide range and to further evaluate the 
impact of increasing the neighborhood distance d 
used to select the set of ‘local’ nodes.  Of 
particular interest is the relationship between 
network parameters and the origin and properties 
of a giant connected component in the network.  

Parallel with the empirical investigations, we hope 
to develop a theoretical analysis of the local-based 
networks proposed in this work. However, a 
potential downside of using local knowledge 
appears to be a possible increased difficulty in 
applying the continuum approach that has been so 
successful in analyzing the properties of other 
random networks (Dorogovtsev and Mendes 
2003). 

Of particular interest will be the potential 
explanatory power of these network models. 
Therefore, in addition to investigating the degree 
distributions of a range of networks, and their 
gamma exponents, we will be paying attention to 
other network properties. These include clustering, 
and the distribution and averages of shortest path 
lengths, which are of particular relevance for 
modeling communication and social networks.  

Finally, we will endeavor to identify further real-
world networks that can be usefully modeled using 
local preferential linking in network construction. 
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