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EXTENDED ABSTRACT 

Artificial neural network-based applications have 
yet to live up to the promises made during their 
earlier theoretical period.  There have been many 
small-scale applications, and the technology has 
been widely applied but as yet there have been no 
real autonomous systems demonstrated that are 
capable of truly  sophisticated learning or 
complex behaviour.  The reason for this apparent 
failure to deliver on earlier promises, and the 
reason therefore that artificial neural networks are 
no longer as fashionable as they once were, is 
postulated to be the constraints that are placed 
upon neural network models by their designers, 
with fixed architecture, dynamics and learning 
rules being applied in ways that prevent all but a 
small proportion of NNs’ full potential to be 
realised.   

Here, a model of neural network growth and 
activity is described that is intended to minimise 
the constraints of design and which uses 
evolutionary methods to develop a working 
system most suited to a specified task.  The 
design of the network model follows broadly 
biologically plausible lines, with modularity, 
uptake and release of hormones, and self-
detection of the model’s actions allowing 
behavioural development through feedback.  The 
method is still undergoing development, but has 
been demonstrated to work effectively when 
applied to a test case. 

The constraint-minimisation methodology is 
applied to the problem of optical character 
recognition, and demonstrates the ability to 
develop rapid and accurate abilities in the area.  
The system developed is designed to react to a 
combination of simulated visual and audio inputs, 
responding to these inputs through audio output 
that is used to develop a feedback system.  
Through this method, the evolved network 
becomes capable of mimicking the audio inputs 
and following a period of training, of responding 
correctly to the visual inputs without audio 
prompting. 

It is seen as unavoidable that some design 
specification, and therefore constraint, is necessary 
in order to develop the network.  The problem lies 
in identifying the network components and design 
parameters that are necessary, and the relationships 
between these different aspects of the system.  
Once this has been achieved in such a way that the 
design of the system is as flexible as possible, it is 
then evolved from an initial design using a 
definition of fitness that corresponds to an ability to 
mimic audio inputs and respond to visual outputs 
correctly.  The components and parameters that 
have been identified as necessary to the system 
include the following: 
 

• Nodes (parameters include location, internal 
chemical levels, input activation and output 
activation) 

• Synapses (parameters include input and output 
node identification, connection weight, type 
and internal chemical levels) 

• Architecture (this includes considerations of 
modularity, connectivity, module spatial 
dimensions and module population size) 

• Node development (factors include node 
growth and node removal) 

• Synapse development (factors include synapse 
growth and synapse removal) 

• Hormone density (which is affected by 
diffusion rates, density differentials, node and 
synapse hormone production) 

The application developed here does not yet use all 
of these considerations (specifically, node and 
synapse growth and removal are not implemented).  
The evolutionary development of the network takes 
place over four epochs of successively more 
complex inputs and output requirements.  The 
ultimate aim of the system is to provide a base for 
further development of semi-autonomous neural 
network learning systems capable of interaction 
with the real world. 
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1. INTRODUCTION 

The design of a successful neural network 
evolution system is elusive, with systems 
developed for solving specific problems, but 
nothing yet capable of providing a general 
solution.  Nolfi & Parisi (2002) discuss the wide 
variety of methods that can be employed in 
evolving artificial neural networks, ranging from 
mutation of the individual connection weights to 
evolution of the architecture and learning strategy. 

In particular, any system capable of providing a 
network that can generalise will have to avoid 
constraining the design to fit the problem.  
Therefore, researchers need to identify each of the 
parameters that are of real importance within a 
neural network, and then identify which other 
parameters can affect them.  The relationships 
could then be expressed in a manner that allows 
them to be evolved, and the network could be 
initialised as a modular system and which develops 
into a network that can handle the inputs given to 
it.  Dinerstein et al. (2003) emphasise the need to 
have modularity in a neural network capable of 
performing complex tasks. 

Optical character recognition (OCR) is a common 
goal of artificial intelligence, with the ability to 
read handwritten documents or identify characters 
within a real situation, such as car number-plates, 
being extremely useful.  Avi-Itzhak (1995), Guyon 
(1991), Gatos et al. (1993) and LeCun et al. (1990) 
amongst others, applied neural networks to optical 
character recognition.  The development of OCR 
capabilities is used here as a target to demonstrate 
the capabilities of the neural network method used.  
In addition mimicry, a behaviour commonly seen 
amongst animals, will be another of the system’s 
goals. 

The training method that is used must be as 
flexible as possible, allowing many different types 
of learning.  In order to develop a system capable 
of avoiding or at least minimising design 
constraints, the degree of flexibility inherent 
within the system must be sufficient to encompass 
as broad a range of designs as possible.  A 
comparison of different neural network algorithms 
applied to the problem of OCR (Van der Smagt, 
1990) showed that learning and accuracy rates 
were sensitive to changes in network structure and 
training technique.  However, it is impossible to 
avoid specifying any aspects of the design, so 
therefore the specification must be very general.  
One modelling method that has been recognised as 
providing the ability to implement a very wide 
range of mathematical functions is feedforward 

neural networks.  In this work, the interactions 
between parameters is modelled using neural 
networks that are evolved to provide a system 
capable of learning.  Parameters, the presence or 
absence of relationships between these parameters 
and the location of input and output components 
are the only design specifications given to the 
system.  The rest is kept flexible. 

García-Pedrajas et al. (2001) demonstrated a novel 
evolutionary approach for neural network 
development that used crossover between 
genotypes on a radial basis function network.  
Various difficulties remain to be solved with the 
method of evolving designs, rather than the 
implementation of evolutionary pressures on the 
genotypes themselves (Stanley & Miikkulainen, 
2002).  In terms of the imagery supplied to the 
network, this is kept relatively simple, with 
character images corrected to align them within the 
field of view.  A combination of image correction 
and neural network methods was shown to 
improve classification (Chowdhury et al., 2002). 

2. METHODS 

Several considerations must be used when 
designing a neural network system through 
evolution.  These can usually be broadly 
categorised into component design, component 
dynamics, network architecture, evolutionary 
methods and network training algorithms. 

2.1. Network component design 

Although the network design is required to be as 
general as possible, certain design specifications 
must be given in order to start from somewhere.  
The following system components, parameters and 
functionalities have been identified as necessary 
and integral to the design of the system, with each 
component being affected by a range of others: 

Nodes 
• Location – fixed 
• Internal factors – affected by node 

internal factors, input activation, output 
activation, local hormone density 

• Input activation – affected by connecting 
synapse activation 

• Output activation – affected by input 
activation, node internal factors, local 
hormone density 

Synapses 
• Input node - constant 
• Output node - constant 
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• Weight – affected by weight, type, 
internal factors 

• Type – affected by type, internal factors 
• Internal factors – affected by type, 

weight, signal sent, internal factors 

Initial design 
• Modularity - initialisation 
• Connectivity - initialisation 
• Module size – initialisation 
• Module population - initialisation 

Node development 
• Node growth – affected by local hormone 

density, local node density 
• Node removal – affected by local 

hormone density, local node density, local 
synapse density, internal factors 

Synapse development 
• Synapse growth – affected by local 

hormone density, local node density, local 
synapse density 

• Synapse removal – affected by local 
hormone density, local node density, local 
synapse density, internal factors 

Hormone density 
• Density – affected by neighbourhood 

density differential, diffusion rate, local 
node activations, type 

There is an obvious desire for the system to be as 
flexible as possible.  Each factor is numbered and 
identified, and has a value and a list of factors 
identified that can affect it.  When a new factor is 
created, for example using node growth, a 
subroutine creates a corresponding list, and when a 
factor is removed another subroutine removes it.  
A specific set of factors forms the input node 
activations, and another forms the output node 
activations.  For each cell in the spatial array 
which contains the network, there is a count of the 
number of nodes and the number of synapses in 
that cell, and this count is adjusted to deal with 
additional nodes and synapses.  For each node 
there are total of ten factors to be considered, and 
for each synapse there are eleven factors. 

Development of the network therefore requires the 
use of a large list of factors and an equally large 
list of network weightings.  Training of the 
network takes place, as described below, through 
the activation of the input node factors, which is 
then followed by the adjustment of every single 
factor in the network.  For a network of over 200 
nodes and over 2000 synapses which occurs during 
the final stages of evolution, this means a total of 

>26000 factors are calculated using the secondary 
neural networks, requiring approximately 2 million 
calculations.  It is therefore necessary to keep these 
calculations as simple as possible to cut down on 
processing time, by avoiding complex secondary 
neural network node activation calculations. 

2.2. Secondary networks 

For each of the above parameters identified as a 
required network component, there are 
initialisation settings, and a secondary neural 
network which provides the relationships between 
the factors and all factors that can affect them.  
This secondary neural network is relatively simple 
and small, and subject to evolution in the same 
way that the initialisation settings are.  The number 
of hormone types is set at three, and the number of 
synapse types at three.  There are also three node 
internal factors, and three synapse internal factors 
for each type.  This means a total of twenty 
networks each with a number of inputs ranging 
from 1 (node input activation) to 8 (several 
factors).  Each secondary network has one hidden 
layer, each with ten nodes.  So there are 
approximately 1000 values describing the 
dynamics of the system, with perhaps 200 
additional values for the initialisation.  While this 
is a large number of factors, it is well within the 
limits of evolutionary methodologies as far as 
optimisation is concerned, and is relatively small 
compared to systems where the weights of 
connections are themselves evolved. 

2.3. Network modularity 

The internal structure of the network is known to 
have a strong impact on its performance and 
behaviour.  Modularity, or the splitting of the 
network into several sub-compartments, has been 
shown effective as a method of generating lifelike 
behaviour, with hierarchical patterns of response in 
which different individual actions can be combined 
in many ways.  The network design here is 
modular, with specific sections of the network 
corresponding to specific actions being defined in 
terms of size and location, and with other modules 
being subject to alteration by the evolutionary 
process.  The input module corresponding to 
vision occupies the y=0 surface or ‘wall’ of a cube 
of side length 1, with the audio inputs being 
situated in the centre of the z=1 surface and the 
audio outputs in the centre of the z=0 surface.  The 
remaining modules are left to occupy the internal 
space of this cube, as shown in Figure 1. 
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Figure 1. Modularity design of the neural network 

Various parameters within the neural network 
relate directly to the modularity of the system.  
These include the population of each module and 
its dimensions (which are fixed for the input and 
output modules), and the connectivity both 
between nodes within a module, and between 
nodes in different modules.  The population of 
each module is limited using maximum and 
minimum values, and the dimensions are restricted 
to the range [0, 1].  Connectivity between  nodes, 
both within a module and between different 
modules, is defined using two parameters.  The 
first (X) is a probability of connection for two 
nodes if there is no distance connecting them, and 
the second (Y) is a value giving an exponential 
rate of decay of this probability with distance.  
Equation 1 gives the relationship defining the 
probability P of connection of two nodes using 
these parameters. 

P = Xe-Y   (eqn. 1) 

2.4. Evolutionary methods 

A standard evolutionary methodology is applied, 
with the network’s level of fitness being measured 
and used to determine whether the mutations are 
accepted.  There is a small annealing allowance to 
provide the network with the ability to jump out of 
local minima, corresponding to the simulation of 
temperature within an annealing substance.  
Following measurement of the network’s fitness, 
this fitness value is compared to the best value 
obtained so far.  If the current fitness value is 
better than the best so far, or is within the 
annealing allowance, then the latest mutations are 
kept.  If not, then the mutations are discarded. 

2.5. Network training & design 

During each evolutionary phase, there is a single 
network being trained at any one time.  The 

training takes the form of a series of a set number 
of time slices (1000), with each set having a fixed 
length and being called a ‘step’.  In each step there 
are 10 time ‘quanta’ during which a single 
activation-adjustment cycle.  Each step will 
involve the network being given one input set, and 
being trained to give the appropriate output.  This 
will mean that each network will have a total of 
approximately 10000 training quanta, with each 
quantum involving the activation of every neuron 
and synapse in the network.  It is estimated that 
each synapse will require 1000 Hz of processing 
time, and that the maximum number of synapses 
will be approximately 2000.  This means that the 
number of processing cycles required for each 
generation will be between 2x1010 processing 
cycles, which on a high-end desktop PC takes 
approximately 20 seconds.  The problem here lies 
in balancing the number of evolutionary steps with 
the size of the network in order to optimise the 
system’s development.  If the network did not have 
to be evolved, then it would be possible to get 
away with having as many as 100000 synapses 
running at full speed, which would allow 
approximately 10000 nodes and therefore more 
sophisticated behaviour. 

Each training step includes the random selection of 
one of the character images, and the transmission 
of this information to the network throughout the 
step.  Additionally, the input to be mimicked is 
given for the first five quanta, and looked for 
during the second five (giving a total of ten time 
quanta for each step).  The controlling algorithm 
will only look for the output during the second 
five-quanta segment, and will ignore outputs given 
during the first five.  For the entire evolutionary 
algorith, the following program structure is used: 

Initialise arrays 
Initialise variables 
Initialise pre-evolutionary settings 
Loop through generations 
    Initialise network 
    Loop through training steps 
        Give input 
        Determine node settings 
        Determine synapse settings 
        Adjust node population 
        Adjust synapse population 
    Measure network fitness 
    Subject network to evolutionary pressures 
    Display results 
    Save results 

2.6. Input data 

The ICDAR 2005 Robust Reading website 
(http://algoval.essex.ac.uk:8080/icdar2005/index.jsp) is 
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the site from which the datasets were obtained.  
For each number, a total of 50 images were 
selected to train the neural network.  All that is 
available from the website at the moment is 
numbers.  The first step involved translating all of 
the images into ascii files.  This has been done, 
with each image now occupying a text file which 
has 8x8 values in greyscale. 

Audio input corresponding to each character was 
obtained by recording a male voice saying the 
numbers 0 to 9.  The recordings were translated 
into text files with eight columns of values over 
five time steps, with each column corresponding to 
a frequency range (0-50 Hz, 50-100 Hz, 100-200 
Hz, 200-500 Hz, 500-1000 Hz, 1000-2000 Hz, 
2000-5000 Hz, 5000-10000 Hz).  The values in 
each cell were obtained by integrating the Fourier 
transform of the audio file, sampled at a rate of 
22050 Hz, over each range and adjusting to fit on 
the range [0, 1]. 

2.7. Developmental epochs 

The network development took place over several 
epochs, each of which comprised successively 
more complex training data.  During the first 
epoch, only two inputs were given to the network, 
with one of the inputs activated and the other 
inactive.  Successive training sets were used 
throughout each generation to train the network to 
mimic the single input that was being given.  This 
developmental epoch was continued, with the 
network evolving to the point where it could 
successfully repeat the given input (i.e. by the end 
of the training session, if input node 1 was active 
and input node 2 was inactive, then the network 
would give an output of the same kind). 

Following the first developmental epoch, the 
network was evolved further using an additional 
three, each more complex than the last.  Epoch two 
involved the use of four inputs, with four possible 
input node variations (1100, 1010, 0101, 0011).  
Epoch three involved the use of twenty possible 
inputs, with ten randomly selected input sets each 
with four 1s and five 0s.  The final epoch involved 
the use of the 10 optical character input sets, each 
of which comprised 64 input variables given over 
five time steps. 

3. RESULTS 

Initial results during the first epoch showed that 
the network was evolving, but that it was not doing 
so in a manner that led to consistently better 
performance than a random initialisation.  The 
range of fitness values increased greatly from the 
initial settings, but were equally likely to be lower 

than the original fitness value than higher.  This 
was discovered to be due to the overall system 
design, in which auditory outputs were fed back 
into the auditory input module in order to interfere 
with the externally supplied auditory input.  The 
rationale behind this was that if the network’s 
audio output matched the external audio input, 
then there would be a reinforcement of input which 
would lead to the network being more likely to 
produce the correct output.  If the auditory output 
did not match with the external audio input, then 
the interference would prevent attractors forming 
in the neural network.  However, this was found to 
be the case only if the audio input and output node 
activations were adjusted to provide a constant 
total activation (i.e. total output was constant). 

Following adjustment to the network design, the 
first epoch using only two inputs evolved to a 
fitness level of 75% in 4523 generations, at which 
point the second epoch was initiated.  Figure 2 
shows the fitness level development throughout 
the first epoch. 

Figure 2.  Fitness evolution during the first 
evolutionary epoch 

The second and third epochs took 1894 and 7747 
generations respectively to reach the 75% fitness 
threshold required for epoch succession.  Epoch 
four was implemented for a total of 10000 
generations, by the end of which the greatest 
fitness level reached was 54%.  This level of 
fitness appeared to be a plateau, as can be seen in 
Figure 3. 

Figure 3.  Fitness evolution during the fourth 
evolutionary epoch 
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For the network trained during the very last 
generation of epoch four, detailed examination of 
the accuracy levels and the ability to recognise 
specific characters was carried out.  Accuracy was 
defined using a measure of the Hamming distance 
of the actual output from the audio input given.  
The Hamming distance was measured to each of 
the possible audio inputs, and a measure of how 
often the audio output given was closest to the 
target output.  It was found that the network was 
capable of achieving the correct response using 
these criteria for 6 out of the 10 characters (1, 2, 4, 
5, 7, 8), with the Hamming distances to the target 
output taking 2nd place for the characters 3 and 6, 
3rd place for the character 0 and with the worst 
position being 5th place, for the character 9. 

4. DISCUSSION 

Development of a method of evolving neural 
networks using a relatively constraint-free design 
has been shown possible in this work.  The 
developed network is capable of learning to mimic 
simulated audio inputs from a virtual trainer, and 
can recognise optical characters while providing an 
output corresponding to the given audio inputs.  
The extremely flexible design of this system 
means that it could be applied to a wide range of 
situation where neural network training is relevant, 
and provides the potential for more sophisticated 
NN development than was carried out here. 

Initial attempts to develop the network did not 
prove as effective as intended, with adjustments 
being required in order to improve both the 
evolutionary algorithm and the input/output 
feedback concept.  These corrections to the system 
show that there is still a requirement to consider 
the design that is being used, with the original 
concept constraining the capabilities of the 
network to evolve and satisfy the fitness 
requirements placed upon it. 
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