
Evolving a Minimally Constrained Image Recognition
Neural Network

Aitkenhead, M.J.

The Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, UK, E-Mail:
m.aitkenhead@macaulay.ac.uk

Keywords: Image recognition; neural network; modularity; evolutionary computation.

EXTENDED ABSTRACT

Artificial neural network-based applications have
yet to live up to the promises made during their
earlier theoretical period. There have been many
small-scale applications, and the technology has
been widely applied but as yet there have been no
real autonomous systems demonstrated that are
capable of truly sophisticated learning or
complex behaviour. The reason for this apparent
failure to deliver on earlier promises, and the
reason therefore that artificial neural networks are
no longer as fashionable as they once were, is
postulated to be the constraints that are placed
upon neural network models by their designers,
with fixed architecture, dynamics and learning
rules being applied in ways that prevent all but a
small proportion of NNs’ full potential to be
realised.

Here, a model of neural network growth and
activity is described that is intended to minimise
the constraints of design and which uses
evolutionary methods to develop a working
system most suited to a specified task. The
design of the network model follows broadly
biologically plausible lines, with modularity,
uptake and release of hormones, and self-
detection of the model’s actions allowing
behavioural development through feedback. The
method is still undergoing development, but has
been demonstrated to work effectively when
applied to a test case.

The constraint-minimisation methodology is
applied to the problem of optical character
recognition, and demonstrates the ability to
develop rapid and accurate abilities in the area.
The system developed is designed to react to a
combination of simulated visual and audio inputs,
responding to these inputs through audio output
that is used to develop a feedback system.
Through this method, the evolved network
becomes capable of mimicking the audio inputs
and following a period of training, of responding
correctly to the visual inputs without audio
prompting.

It is seen as unavoidable that some design
specification, and therefore constraint, is necessary
in order to develop the network. The problem lies
in identifying the network components and design
parameters that are necessary, and the relationships
between these different aspects of the system.
Once this has been achieved in such a way that the
design of the system is as flexible as possible, it is
then evolved from an initial design using a
definition of fitness that corresponds to an ability to
mimic audio inputs and respond to visual outputs
correctly. The components and parameters that
have been identified as necessary to the system
include the following:

• Nodes (parameters include location, internal
chemical levels, input activation and output
activation)

• Synapses (parameters include input and output
node identification, connection weight, type
and internal chemical levels)

• Architecture (this includes considerations of
modularity, connectivity, module spatial
dimensions and module population size)

• Node development (factors include node
growth and node removal)

• Synapse development (factors include synapse
growth and synapse removal)

• Hormone density (which is affected by
diffusion rates, density differentials, node and
synapse hormone production)

The application developed here does not yet use all
of these considerations (specifically, node and
synapse growth and removal are not implemented).
The evolutionary development of the network takes
place over four epochs of successively more
complex inputs and output requirements. The
ultimate aim of the system is to provide a base for
further development of semi-autonomous neural
network learning systems capable of interaction
with the real world.

45

1. INTRODUCTION

The design of a successful neural network
evolution system is elusive, with systems
developed for solving specific problems, but
nothing yet capable of providing a general
solution. Nolfi & Parisi (2002) discuss the wide
variety of methods that can be employed in
evolving artificial neural networks, ranging from
mutation of the individual connection weights to
evolution of the architecture and learning strategy.

In particular, any system capable of providing a
network that can generalise will have to avoid
constraining the design to fit the problem.
Therefore, researchers need to identify each of the
parameters that are of real importance within a
neural network, and then identify which other
parameters can affect them. The relationships
could then be expressed in a manner that allows
them to be evolved, and the network could be
initialised as a modular system and which develops
into a network that can handle the inputs given to
it. Dinerstein et al. (2003) emphasise the need to
have modularity in a neural network capable of
performing complex tasks.

Optical character recognition (OCR) is a common
goal of artificial intelligence, with the ability to
read handwritten documents or identify characters
within a real situation, such as car number-plates,
being extremely useful. Avi-Itzhak (1995), Guyon
(1991), Gatos et al. (1993) and LeCun et al. (1990)
amongst others, applied neural networks to optical
character recognition. The development of OCR
capabilities is used here as a target to demonstrate
the capabilities of the neural network method used.
In addition mimicry, a behaviour commonly seen
amongst animals, will be another of the system’s
goals.

The training method that is used must be as
flexible as possible, allowing many different types
of learning. In order to develop a system capable
of avoiding or at least minimising design
constraints, the degree of flexibility inherent
within the system must be sufficient to encompass
as broad a range of designs as possible. A
comparison of different neural network algorithms
applied to the problem of OCR (Van der Smagt,
1990) showed that learning and accuracy rates
were sensitive to changes in network structure and
training technique. However, it is impossible to
avoid specifying any aspects of the design, so
therefore the specification must be very general.
One modelling method that has been recognised as
providing the ability to implement a very wide
range of mathematical functions is feedforward

neural networks. In this work, the interactions
between parameters is modelled using neural
networks that are evolved to provide a system
capable of learning. Parameters, the presence or
absence of relationships between these parameters
and the location of input and output components
are the only design specifications given to the
system. The rest is kept flexible.

García-Pedrajas et al. (2001) demonstrated a novel
evolutionary approach for neural network
development that used crossover between
genotypes on a radial basis function network.
Various difficulties remain to be solved with the
method of evolving designs, rather than the
implementation of evolutionary pressures on the
genotypes themselves (Stanley & Miikkulainen,
2002). In terms of the imagery supplied to the
network, this is kept relatively simple, with
character images corrected to align them within the
field of view. A combination of image correction
and neural network methods was shown to
improve classification (Chowdhury et al., 2002).

2. METHODS

Several considerations must be used when
designing a neural network system through
evolution. These can usually be broadly
categorised into component design, component
dynamics, network architecture, evolutionary
methods and network training algorithms.

2.1. Network component design

Although the network design is required to be as
general as possible, certain design specifications
must be given in order to start from somewhere.
The following system components, parameters and
functionalities have been identified as necessary
and integral to the design of the system, with each
component being affected by a range of others:

Nodes
• Location – fixed
• Internal factors – affected by node

internal factors, input activation, output
activation, local hormone density

• Input activation – affected by connecting
synapse activation

• Output activation – affected by input
activation, node internal factors, local
hormone density

Synapses
• Input node - constant
• Output node - constant

46

• Weight – affected by weight, type,
internal factors

• Type – affected by type, internal factors
• Internal factors – affected by type,

weight, signal sent, internal factors

Initial design
• Modularity - initialisation
• Connectivity - initialisation
• Module size – initialisation
• Module population - initialisation

Node development
• Node growth – affected by local hormone

density, local node density
• Node removal – affected by local

hormone density, local node density, local
synapse density, internal factors

Synapse development
• Synapse growth – affected by local

hormone density, local node density, local
synapse density

• Synapse removal – affected by local
hormone density, local node density, local
synapse density, internal factors

Hormone density
• Density – affected by neighbourhood

density differential, diffusion rate, local
node activations, type

There is an obvious desire for the system to be as
flexible as possible. Each factor is numbered and
identified, and has a value and a list of factors
identified that can affect it. When a new factor is
created, for example using node growth, a
subroutine creates a corresponding list, and when a
factor is removed another subroutine removes it.
A specific set of factors forms the input node
activations, and another forms the output node
activations. For each cell in the spatial array
which contains the network, there is a count of the
number of nodes and the number of synapses in
that cell, and this count is adjusted to deal with
additional nodes and synapses. For each node
there are total of ten factors to be considered, and
for each synapse there are eleven factors.

Development of the network therefore requires the
use of a large list of factors and an equally large
list of network weightings. Training of the
network takes place, as described below, through
the activation of the input node factors, which is
then followed by the adjustment of every single
factor in the network. For a network of over 200
nodes and over 2000 synapses which occurs during
the final stages of evolution, this means a total of

>26000 factors are calculated using the secondary
neural networks, requiring approximately 2 million
calculations. It is therefore necessary to keep these
calculations as simple as possible to cut down on
processing time, by avoiding complex secondary
neural network node activation calculations.

2.2. Secondary networks

For each of the above parameters identified as a
required network component, there are
initialisation settings, and a secondary neural
network which provides the relationships between
the factors and all factors that can affect them.
This secondary neural network is relatively simple
and small, and subject to evolution in the same
way that the initialisation settings are. The number
of hormone types is set at three, and the number of
synapse types at three. There are also three node
internal factors, and three synapse internal factors
for each type. This means a total of twenty
networks each with a number of inputs ranging
from 1 (node input activation) to 8 (several
factors). Each secondary network has one hidden
layer, each with ten nodes. So there are
approximately 1000 values describing the
dynamics of the system, with perhaps 200
additional values for the initialisation. While this
is a large number of factors, it is well within the
limits of evolutionary methodologies as far as
optimisation is concerned, and is relatively small
compared to systems where the weights of
connections are themselves evolved.

2.3. Network modularity

The internal structure of the network is known to
have a strong impact on its performance and
behaviour. Modularity, or the splitting of the
network into several sub-compartments, has been
shown effective as a method of generating lifelike
behaviour, with hierarchical patterns of response in
which different individual actions can be combined
in many ways. The network design here is
modular, with specific sections of the network
corresponding to specific actions being defined in
terms of size and location, and with other modules
being subject to alteration by the evolutionary
process. The input module corresponding to
vision occupies the y=0 surface or ‘wall’ of a cube
of side length 1, with the audio inputs being
situated in the centre of the z=1 surface and the
audio outputs in the centre of the z=0 surface. The
remaining modules are left to occupy the internal
space of this cube, as shown in Figure 1.

47

Figure 1. Modularity design of the neural network

Various parameters within the neural network
relate directly to the modularity of the system.
These include the population of each module and
its dimensions (which are fixed for the input and
output modules), and the connectivity both
between nodes within a module, and between
nodes in different modules. The population of
each module is limited using maximum and
minimum values, and the dimensions are restricted
to the range [0, 1]. Connectivity between nodes,
both within a module and between different
modules, is defined using two parameters. The
first (X) is a probability of connection for two
nodes if there is no distance connecting them, and
the second (Y) is a value giving an exponential
rate of decay of this probability with distance.
Equation 1 gives the relationship defining the
probability P of connection of two nodes using
these parameters.

P = Xe-Y (eqn. 1)

2.4. Evolutionary methods

A standard evolutionary methodology is applied,
with the network’s level of fitness being measured
and used to determine whether the mutations are
accepted. There is a small annealing allowance to
provide the network with the ability to jump out of
local minima, corresponding to the simulation of
temperature within an annealing substance.
Following measurement of the network’s fitness,
this fitness value is compared to the best value
obtained so far. If the current fitness value is
better than the best so far, or is within the
annealing allowance, then the latest mutations are
kept. If not, then the mutations are discarded.

2.5. Network training & design

During each evolutionary phase, there is a single
network being trained at any one time. The

training takes the form of a series of a set number
of time slices (1000), with each set having a fixed
length and being called a ‘step’. In each step there
are 10 time ‘quanta’ during which a single
activation-adjustment cycle. Each step will
involve the network being given one input set, and
being trained to give the appropriate output. This
will mean that each network will have a total of
approximately 10000 training quanta, with each
quantum involving the activation of every neuron
and synapse in the network. It is estimated that
each synapse will require 1000 Hz of processing
time, and that the maximum number of synapses
will be approximately 2000. This means that the
number of processing cycles required for each
generation will be between 2x1010 processing
cycles, which on a high-end desktop PC takes
approximately 20 seconds. The problem here lies
in balancing the number of evolutionary steps with
the size of the network in order to optimise the
system’s development. If the network did not have
to be evolved, then it would be possible to get
away with having as many as 100000 synapses
running at full speed, which would allow
approximately 10000 nodes and therefore more
sophisticated behaviour.

Each training step includes the random selection of
one of the character images, and the transmission
of this information to the network throughout the
step. Additionally, the input to be mimicked is
given for the first five quanta, and looked for
during the second five (giving a total of ten time
quanta for each step). The controlling algorithm
will only look for the output during the second
five-quanta segment, and will ignore outputs given
during the first five. For the entire evolutionary
algorith, the following program structure is used:

Initialise arrays
Initialise variables
Initialise pre-evolutionary settings
Loop through generations
 Initialise network
 Loop through training steps
 Give input
 Determine node settings
 Determine synapse settings
 Adjust node population
 Adjust synapse population
 Measure network fitness
 Subject network to evolutionary pressures
 Display results
 Save results

2.6. Input data

The ICDAR 2005 Robust Reading website
(http://algoval.essex.ac.uk:8080/icdar2005/index.jsp) is

48

the site from which the datasets were obtained.
For each number, a total of 50 images were
selected to train the neural network. All that is
available from the website at the moment is
numbers. The first step involved translating all of
the images into ascii files. This has been done,
with each image now occupying a text file which
has 8x8 values in greyscale.

Audio input corresponding to each character was
obtained by recording a male voice saying the
numbers 0 to 9. The recordings were translated
into text files with eight columns of values over
five time steps, with each column corresponding to
a frequency range (0-50 Hz, 50-100 Hz, 100-200
Hz, 200-500 Hz, 500-1000 Hz, 1000-2000 Hz,
2000-5000 Hz, 5000-10000 Hz). The values in
each cell were obtained by integrating the Fourier
transform of the audio file, sampled at a rate of
22050 Hz, over each range and adjusting to fit on
the range [0, 1].

2.7. Developmental epochs

The network development took place over several
epochs, each of which comprised successively
more complex training data. During the first
epoch, only two inputs were given to the network,
with one of the inputs activated and the other
inactive. Successive training sets were used
throughout each generation to train the network to
mimic the single input that was being given. This
developmental epoch was continued, with the
network evolving to the point where it could
successfully repeat the given input (i.e. by the end
of the training session, if input node 1 was active
and input node 2 was inactive, then the network
would give an output of the same kind).

Following the first developmental epoch, the
network was evolved further using an additional
three, each more complex than the last. Epoch two
involved the use of four inputs, with four possible
input node variations (1100, 1010, 0101, 0011).
Epoch three involved the use of twenty possible
inputs, with ten randomly selected input sets each
with four 1s and five 0s. The final epoch involved
the use of the 10 optical character input sets, each
of which comprised 64 input variables given over
five time steps.

3. RESULTS

Initial results during the first epoch showed that
the network was evolving, but that it was not doing
so in a manner that led to consistently better
performance than a random initialisation. The
range of fitness values increased greatly from the
initial settings, but were equally likely to be lower

than the original fitness value than higher. This
was discovered to be due to the overall system
design, in which auditory outputs were fed back
into the auditory input module in order to interfere
with the externally supplied auditory input. The
rationale behind this was that if the network’s
audio output matched the external audio input,
then there would be a reinforcement of input which
would lead to the network being more likely to
produce the correct output. If the auditory output
did not match with the external audio input, then
the interference would prevent attractors forming
in the neural network. However, this was found to
be the case only if the audio input and output node
activations were adjusted to provide a constant
total activation (i.e. total output was constant).

Following adjustment to the network design, the
first epoch using only two inputs evolved to a
fitness level of 75% in 4523 generations, at which
point the second epoch was initiated. Figure 2
shows the fitness level development throughout
the first epoch.

Figure 2. Fitness evolution during the first
evolutionary epoch

The second and third epochs took 1894 and 7747
generations respectively to reach the 75% fitness
threshold required for epoch succession. Epoch
four was implemented for a total of 10000
generations, by the end of which the greatest
fitness level reached was 54%. This level of
fitness appeared to be a plateau, as can be seen in
Figure 3.

Figure 3. Fitness evolution during the fourth
evolutionary epoch

49

For the network trained during the very last
generation of epoch four, detailed examination of
the accuracy levels and the ability to recognise
specific characters was carried out. Accuracy was
defined using a measure of the Hamming distance
of the actual output from the audio input given.
The Hamming distance was measured to each of
the possible audio inputs, and a measure of how
often the audio output given was closest to the
target output. It was found that the network was
capable of achieving the correct response using
these criteria for 6 out of the 10 characters (1, 2, 4,
5, 7, 8), with the Hamming distances to the target
output taking 2nd place for the characters 3 and 6,
3rd place for the character 0 and with the worst
position being 5th place, for the character 9.

4. DISCUSSION

Development of a method of evolving neural
networks using a relatively constraint-free design
has been shown possible in this work. The
developed network is capable of learning to mimic
simulated audio inputs from a virtual trainer, and
can recognise optical characters while providing an
output corresponding to the given audio inputs.
The extremely flexible design of this system
means that it could be applied to a wide range of
situation where neural network training is relevant,
and provides the potential for more sophisticated
NN development than was carried out here.

Initial attempts to develop the network did not
prove as effective as intended, with adjustments
being required in order to improve both the
evolutionary algorithm and the input/output
feedback concept. These corrections to the system
show that there is still a requirement to consider
the design that is being used, with the original
concept constraining the capabilities of the
network to evolve and satisfy the fitness
requirements placed upon it.

5. REFERENCES

Avi-Itzhak, H.I., Diep, T.A., Garland, H. (1995),
High accuracy optical character recognition
using neural networks with centroid dithering.
IEEE Transactions on Pattern Analysis and
Machine Intelligence Volume 17 , Issue
2 (February 1995), pages 218–224.

Chowdhury, A.A., Ahmed, E., Ahmed, S.,
Hossain, S., Rahman, C.M. (2002), Optical
character recognition of Bangla characters
using neural network: a better approach. 2nd
International Conference on Electrical
Engineering (ICEE 2002), Khulna,
Bangladesh.

Dinerstein, J., Dinerstein, N., de Garis, H. (2003),
Automatic multi-module neural network
evolution in an artificial brain. NASA/DoD
Conf. on Evolvable Hardware, Chicago,
Illinois, USA, July 9-11, 2003.

García-Pedrajas, N., Sanz-Tapia, E., Ortiz-Boyer,
D., Hervás-Martínez, C. (2001), Introducing
Multi-objective Optimization in Cooperative
Coevolution of Neural Networks.
Proceedings of the 6th International Work-
Conference on Artificial and Natural Neural
Networks: Connectionist Models of Neurons,
Learning Processes and Artificial
Intelligence-Part I Pages: 645 – 652.

Gatos, B., Karras, D., Perantonis, S. (1993),
Optical character recognition using novel
feature extraction & neural network
classification techniques. In P.J.G. Lisboa
and M. J. Taylor (eds.) Proceedings of the
Workshop on Neural Network Applications
and Tools (Liverpool, UK, 13-14 September
1993), 65-72. IEEE Computer Society Press.

Guyon, I. (1991), Applications of neural networks
to character recognition. International
Journal of Pattern Recognition and Artificial
Intelligence 5, 353-382, 1991.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D.,
Howard, R.E., Hubbard, W., Jackel, L.D.
(1990), Handwritten digit recognition with a
back-propagation network. Advances in
Neural Information Processing Systems 2
(D.S. Touretzky, ed.), pp. 598-605, San
Mateo, CA, Morgan Kaufmann, 1990.

Nolfi, S, Parisi, D. (2002), Evolution of artificial
neural networks. In Handbook of brain theory
and neural networks, MIT Press, pp. 418--
421.

Stanley, K.O., Miikkulainen, R. (2002), Efficient
evolution of neural network topologies,
Proceedings of the 2002 Congress on
Evolutionary Computation (CEC '02).
Piscataway, NJ: IEEE, 2002.

Van der Smagt, P. (1990), A comparative study of
neural network algorithms applied to optical
character recognition. Proceedings of the
third international conference on Industrial
and engineering applications of artificial
intelligence and expert systems - Volume 2.
Charleston, South Carolina, United States
Pages: 1037 – 1044.

50

