
Implementing Shortest Job First Order of Service in the
Internet

1Ron Addie, 1Zhi Li and 2Don McNickle

1USQ, Toowoomba 2Unversity of Canterbury, Christchurch, NZ. E-Mail: addie@usq.edu.au

Keywords: Differential service; Internet architectures; AQM

EXTENDED ABSTRACT

The Internet needs protocols and mechanisms to
provide guaranteed quality of service. The existing
Internet is surprisingly close to providing good
quality for a very wide range of services, probably
because the TCP protocols aim to achieve, and
come to close to achieving, fair queueing, or
processor sharing, whenever several flows
compete for limited resources. The DiffServ
architecture aims to do better than this by
providing different performance standards for
different classes of service. The obvious way to
apply DiffServ is to allocate classes in accordance
with the urgency or priority of the requests.

However, another approach is to use DiffServ to
allocate service classes according to the “size” of
the requests – smaller requests receiving generally
better service and longer requests worse.

A Pareto distribution with small shape parameter
has been used in a great deal of research, and in
this paper, to model the widely accepted heavy-
tailed nature of flow lengths. We assume that the
starting times of these flows forms a Poisson
process.

It was shown in (McNickle and Addie(2005)) by
means of a queueing model with this traffic that
serving flows in order of job size (in bytes, shorter
flows served first) leads to significantly lower
mean and standard deviation for response times,
for flows of all lengths. This paper also provided
evidence that it is unlikely that DiffServ can
achieve a significantly better result. This poses the
challenge of how to arrange for flows to be served
in the shortest-job-first (SJF) order, or as close as
possible to it.

We define a simple approach to achieving this
which can be implemented locally – in just two
routers in the simplest case. Simulations have been
used to demonstrate that some of the benefits of
the SJF discipline can, indeed, be obtained.

In this paper we propose a protocol for achieving
an approximation to the shortest job first order of
service at times of congestion. The proposed
mechanism is scalable and local in the sense that
the actions taken are confined to a small number of

routers near the site of the congestion. This
concept of a local protocol modification can be
viewed as a generalization of Active Queue
Management. Whereas AQM's are generally
formed by modifying the queueing discipline and
ensuing behavior at the congested node, in our
proposal, which we shall term local QM (LQM),
some nearby nodes also assist in managing the
congestion, with the objective of approaching as
close as possible to SJF.

SJF is sometimes not achievable to acceptable
accuracy for reasons which have nothing to do
with the treatment of packets by the nodes near
where congestion is occurring. In such situations
we cannot expect our mechanism to do the
impossible. For example, if the sending host is
unable to deliver a flow at the maximum rate of the
bottleneck link, it will not be possible to serve this
flow ahead of all others, and so SJF will not be
achievable.

Two similar LQM strategies have been tested and
compared in the context of a local premises
network connected to the Internet via a congested
link. In one of these strategies, packets are marked
at the edge router are dropped or remarked at the
gateway to the premises depending on the traffic
conditions there. In the other strategy some packets
are remarked and others have their ECN bits left in
place.

Simulation results have been able to demonstrate
that the strategy is able to produce better response
times than AQM’s of comparable complexity
located at the edge router.

2838

1. INTRODUCTION
Because the fundamental requests for service
submitted to the Internet appear to generate
demands for resources distributed with a Pareto-
like tail (see for example, Crovella, Taqqu and
Bestavros (1998)), the shortest-job-first queueing
discipline is very close to optimal for all feasible
demand profiles, i.e. even if users really wanted
their middle sized jobs to achieve the tightest delay
constraints it would still be virtually as good if
shortest jobs were uniformly served first
(McNickle and Addie(2005)).

 Identifying the underlying requests by users is
very difficult, perhaps impossible, however since
we only need to identify these requests when there
is a problematic resource constraint, any scheme
which behaves in the same way at these times of
resources limitation will be equivalent to a system
in which the underlying requests have all been
tagged and are readily identified. Furthermore,
identifying problematic requests is much easier
when they happen to be causing a resource
shortage. Therefore, we do not necessarily need to
be able to identify the underlying requests, except
somewhat indirectly and under certain
circumstances, in order to achieve performance
similar to a system in which all requests have been
identified.

In this paper we propose a protocol for achieving
an approximation to the shortest job first order of
service at times of congestion. The proposed
mechanism is scalable and local in the sense that
the actions taken are confined to a small number of
routers near the site of the congestion. This
concept of a local protocol modification can be
viewed as a generalization of Active Queue
Management. Whereas AQM's are generally
formed by modifying the queueing discipline and
ensuing behavior at the congested node, in our

proposal, which we shall term local QM (LQM),
some nearby nodes also assist in managing the
congestion, with the objective of approaching as
close as possible to SJF.

SJF is sometimes not achievable to acceptable
accuracy for reasons which have nothing to do
with the treatment of packets by the nodes near
where congestion is occurring. In such situations
we cannot expect our mechanism to do the
impossible. For example, if the sending host is
unable to deliver a flow at the maximum rate of the
bottleneck link, it will not be possible to serve this
flow ahead of all others, and so SJF will not be
achievable.

In Section 2 of this paper the real-world problem
of performance degradation caused by congestion
in bandwidth constrained links is described and
existing work on this problem is reviewed. In
Section 3, a queueing model of the problem, and
the conclusion that Shortest Job First should be a
very effective queue management strategy in
routers, are presented. In Section 4, an approach to
implementing the shortest job first queue
management strategy is presented, and in Section 5
a simulation experiment which tests this
implementation and compares it to the queueing
results are given. Conclusions are drawn in
Section 6.

2. BOTTLENECK BEHAVIOUR
The performance of services using the Internet will
be affected significantly by the way in which
congestion is handled at all of the routers along the
end-to-end path traversed by packets used to
provide the service.

Broadly speaking, we can distinguish between the
links on this path which form a bottleneck and
those that do not. It is expected that the majority of
links will not form a bottleneck, simply because

Figure 1. A premises in need of performance protection

2839

the likelihood of the capacity at two links forming
such a constraint seems low. We expect the
proportion of links running near to capacity in the
Internet to be low and because of TCP's congestion
avoidance mechanism; even a congested link will
not constrain our flow unless it happens to be the
most severe constraint on the path.

However, even if a small proportion of links form
bottlenecks, it is the bottlenecks which ultimately
determine the performance of the whole network
and there will usually be a bottleneck because TCP
will normally increase the rate at which it delivers
packets until congestion is encountered. We
therefore need to model these bottleneck links, and
that is what we have set out to do in this paper.

Because of the way the TCP protocol senses
congestion in the Internet and causes sources to
reduce their sending rate, requests for service are
effectively held in a virtual queue, the physical
implementation of which is at the sources. In order
to evaluate strategies for managing congestion, it is
this virtual queue we need to model.

Some natural strategies for managing this queue
include: Processor Sharing, which corresponds to
fair queueing, First-in-first out, which we can
readily see is a poor strategy, priority queueing,
where priorities are allocated according to class of
service, and shortest-job-first (SJF), which has the
advantage of minimizing mean and standard
deviation of waiting time.

In McNickle and Addie (2005) it was shown, by
means of a queueing model, that the benefits in
overall reduction of waiting times (for all classes
of traffic) afforded by the SJF protocol are so
great, and the marginal advantages (for some
classes of traffic) afforded by a priority queue
strategy are so small, that the ideal queueing
discipline to adopt at a congested link is SJF.

How can SJF be implemented at the virtual queue?
This paper is concerned with showing how an
approximation to the shortest job first discipline
can be implemented and that this approximation
achieves a significant proportion of the benefits of
the SJF discipline.

First of all, observe that almost all the benefits of
the SJF queueing discipline can be obtained so
long as the queueing discipline we adopt is close,
in some appropriate sense, to SJF. For example, a
queueing discipline which is identical to SJF when
buffers are heavily loaded and not identical when
they are not, will still achieve most of the benefits
of SJF, since it is only when buffers are nearly full
that the queueing discipline is important.

Secondly, observe that congestion occurs in the
Internet primarily in the access networks. At a
rough guess, assuming the core part of the Internet

is well designed, congestion is most likely to occur
in the 3-4 hops closest to the source or the
destination of a flow.

We need to distinguish two forms of congestion in
an access network – congestion occurring at or
near the source and congestion occurring at or near
the destination. We restrict our attention to the
more important of these, namely congestion at or
near the destination (See Figure 1). The same
techniques that apply here probably apply to the
other case as well. In some respects the case of
congestion near the source appears to be somewhat
easier since the necessary congestion management
actions can be taken in the premises where the
traffic is emerging. However, we shall restrict our
attention to the case which is of wider interest,
namely the one where congestion is occurring at or
near the entrance to an access network.

So, given this, let us propose a simple scheme for
achieving close to the SJF discipline, which can be
achieved by means not greatly different from that
used in an AQM such as RED or ARED. Packets
at a congested router should be marked using the
Explicit Congestion Notification mechanism in
basically the same manner as in the RED or ARED
AQM. Instead of relying on this mechanism to
achieve benefits such as better link utilization and
lower queueing delay all by itself, by interacting
with the TCP congestion avoidance algorithm at
the source, packets with ECN bits set will be
treated in a special manner at subsequent routers
on the way to their destination. Packets will be
differentiated on the basis of the size of their
containing flow. Packets in short flows with ECN
bits set will have these bits reset, whereas packets
in long flows will be dropped.

It is clear that this mechanism will disadvantage
flows which show up as unusually long or high in
rate according to the token buckets in routers in the
access network. It is not obvious that this should
result in a discipline similar to SJF for serving the
virtual queue of flows sharing access through a
bottleneck link. We shall present an argument that
this should be the case in Section 4.3.

3. A SIMPLE QUEUE MODEL
For a theoretical model of Internet performance we
consider a conventional M/G/1 queue, with
unlimited storage, and where the service-time
distribution is given by a Pareto distribution of the
form:

0,1)(>�
�

�
�
�

�

+
−= t

t

t
tB

γ

δ
.

�
 is the scale parameter and � is the shape

parameter. We will take 1 < � ≤ 2, thus ensuring

2840

heavy-tailed behaviour, and select the scale
parameter so that the mean service time is one.

In general the mean and variance of the service
time are

�
/(� -1) and

�
 � 2/((� -1)2(� -2)), for � > 1

and 2 respectively. For � ≤ 2 the variance, and all
higher moments, are infinite. We take the traffic
intensity to be 0.9. While this may seem
unrealistic, it is worth considering because real
systems stray into high occupancy rates for long
periods, due to the long-range-dependent rather
than Poisson nature of internet traffic.

We apply this queueing model to the virtual queue
which exists among the sources competing for the
resources of a bottleneck link which lies nearby, in
the local access network.

3.1. Service Disciplines

We consider three service disciplines, FIFO (first-
in first-out), PS (processor sharing) and SJF
(shortest-job first.) We consider the expected
response time (sojourn time) T(x) of a job with a
service requirement of x (Of course it is well
known (Schrage (1968)) that the shortest-
remaining-processing-time is optimal for M/G/1
with respect to average response time, but this
appears impractical for Internet applications,
although Harchol-Balter, Crovella and Park (1998)
make a persuasive argument for it).

FIFO: Because the variance of the service time is
infinite it immediately follows from the Pollaczek-
Khinchine formula (Gross and Harris (1998)
p.212) that T(x) will be infinite regardless of the
service requirement. Even if the service-time
distribution is truncated at, say, 100, then T(x) =
6.68 + x for a traffic intensity of ½ and � = 1.5.
This is in spite of the fact that the mean service
time is one, and that 50% of the jobs are not
delayed. Thus FIFO is a very unsatisfactory and
unfair discipline.

PS: A well-known, but still surprising result is that
T(x) = x/(1-�) where � is the traffic intensity. That
is, processor sharing gives linear discrimination in
response time regardless of the service time
distribution. Processor-sharing type disciplines
have long been proposed as suitable “fair” models
for Internet traffic (see, for example Parekh and
Gallager, (1993)). Generalized Processor Sharing,
where the rate for each job is a function of the
number in the system, has been shown to
accurately describe the flow-level characteristics
of traffic on Internet access lines (Beckers,
Hendrawan, Kooij and van der Mei, (2001))

SJF: We consider a preemptive-resume discipline.
That is, when a job with shorter processing time
arrives it interrupts the job in process. After the
higher priority job is finished the interrupted job

needs only to complete the balance of its service
time.

3.2. Comparing SJF and PS for the queue
model

Our objective here is to show that SJF is very hard
to beat, and in fact is uniformly superior to PS for
very heavy-tailed traffic. Taking the limit of the
expressions given in Takagi (p.346) for the

preemptive-resume M/G/1 priority queue gives:

��

�

−
+

�
�
��

�
� −

=
xx

x

SJF

ttdB

x

ttdB

tdBt

xT

0

2

0

0

2

)(1)(12

)(

)(
λλ

λ

A similar but more complicated expression follows
for the variance of the response times

With the assistance of Maple we can plot the mean
response times for a particular service requirement.
In Figure 2 these are compared with the mean
response times for processor sharing for shape
parameters � = 2, 1.5, and 1.1.

The basic conclusion is that the smaller the shape
parameter (i.e. the more heavy-tailed the job
distribution) the greater the advantage of shortest
job first over processor sharing. For values of the
shape parameter below 1.687 the expected
response times for SJF are uniformly smaller than
those for PS.

So SJF offers a substantial advantage over PS for
almost all jobs, with the advantage increasing with
the degree of heavy-tailedness of job lengths. In
fact for � = 1.1 the expected wait for the SJF
discipline is lower than that for PS even when a
“design margin” of two standard deviations is
included in the SJF values. This is graphed in
Figure 2 as the dotted line labelled “1.1+2 s.d.’s”.
The advantage of SJF over PS also increases with
traffic intensity.

0 200 400 600 800 10001000
0

200

400

600

800

1000

job length

re
sp

o
n

se
 t

im
e

processor sharing

2

1.5

1.1

1.1 + 2 s.d.’s

Figure 2. Processor Sharing vs SJF for � = 2,
1.5, 1.1

2841

An interesting feature of the DiffServ proposal
(Blake et al (1998)) is the ability to give
preferential service to one class over all others, for
example to delay-sensitive traffic. We have
investigated the M/G/1 model under a variety of
other priority disciplines. These all suggest that
any discipline other than SJF results in serious
deterioration of service for the short jobs, which
constitute the majority of Internet traffic. The gain
in performance for longer jobs cannot compensate
for this.

4. IMPLEMENTATION
We would like to demonstrate that mechanisms for
implementing an approximation to the shortest-
job-first (SJF) queueing discipline are feasible.
Since we will not attempt to implement SJF
exactly, we need to argue that the protocol we
implement is sufficiently close to SJF that it gains
a significant proportion of the benefits of SJF.
Simulation, using Network Simulator Version 2
(Fall and Varadhan (1997), McCanne and Floyd.
(2005)), will be used to demonstrate this.

Since the objective of this work is to develop a
strategy which achieves as much or more than a
change of Internet architecture, like DiffServ, by
means of relatively minor adjustments to the
behaviour of routers, we have attempted to
implement an approximation to SJF in a purely
local manner. This protocol will be referred to as
ECN with Dropping (ECND). The other variation
relies on hosts implementing a protocol stack
which responds to ECN. It is known as ECN with
Censorship (ECNC).

4.1. ECN with Censorship (ECNC)

The ECNC protocol works as follows. Consider
the network depicted in Figure 1. The hosts in the
premises on the left suffer poor performance

because the link between the premises and the
Internet is congested. This congestion is caused by
communication between one process, P4, at host
H2. The fact that this particular flow is causing
congestion can be identified at the gateway (GW),
but action needs to be take at the Edge Router
(ER). We assume ER has implemented RED with
random marking of packets by ECN bits whenever
the buffer level exceeds a certain level. These ECN
bits are then reset at GW if they are not in the
problem flow. Thus, in the end, the task of
marking packets to indicated congestion to sending
hosts is carried out jointly by ER and GW.

4.2. ECN with Dropping (ECND)

ECN with dropping is not necessarily better than
ECNC, but it does not rely on sources responding
to congestion indication bits, and it is safer than
ECNC in that packets in problem flows are
dropped by one of the routers in the path of the
flow and near the congestion. The desired effect of
ECNC can be bypassed by hosts which fail to
implement an appropriate TCP/IP stack, but
ECND cannot be bypassed because packets in the
problem flow are dropped.

Instead of packets being dropped at ER, which is
what would happen with today’s Internet
protocols, we assume that ER implements RED
with ECN marking and the packets which are
marked in this way are dropped at GW. The
dropping at GW occurs only for packets in the
problem flow. In this way, the two locations where
the existence of the problem and the identity of the
problem flow can be identified join forces to take
action. Two locations might not be sufficient to
identify the problem flow(s). However, the idea of
resetting ECN bits in non-problem flows, or
dropping them in problem flows, is still valid if a
larger number of routers are involved.

Figure 3. The experimental setup.

2842

4.3. Why ECNC and ECND are similar to
SJF

If these protocols are able to maintain a short
buffer at ER and ensure that hosts generating short
flows receive no packets with congestion
indicated, and no packets are dropped at ER or
GW, then the total delay experienced by packets in
these flows will be close to the minimum possible
by any strategy only effected at these nodes. The
fact that no packet losses are generated ensures
that the flow is achieving the greatest rate
sustainable, given all other network conditions.
The fact that the buffer at ER is kept at a low level
ensures that competition for resources with other
flows does not impact significantly on this flow.

It is to be expected that the boundary between
short and long flows will fluctuate over time,
depending upon the total level of traffic, and the
traffic mix. Precisely how to distinguish between
long flows and short flows has not yet been
established.

5. A SIMULATION EXPERIMENT
A series of experiments have been carried out with
the objective of testing the feasibility of the
hypothesis that a satisfactory approximation to SJF
can be achieved by means of Local Queue
Management.

5.1. A Simulation Experiment

In the simulations, the task of distinguishing
between short and long flows was achieved by
foreknowledge – cheating. The experimental setup

is shown in Figure 3 (which is a snapshot from an
NS2 simulation).

Congestion is occurring in the middle link. This
can be addressed in a variety of ways – by
dropping packets at the node at the head of this
link, by marking packets so that they can be
dropped later, and so on. Instead of dealing with
this problem purely at Node 3, we intend to deal
with it at Node 3 and Node 4 – a local subnetwork.

This has been achieved in this test network by
using RED with marking at Node 3 and at Node 4,
we take one of three actions: (i) leave the packet as
is (which will cause a congestion indication flag to
be sent to the source) (ii) drop the packet (which
will cause TCP to back off from what it perceives
as congestion); or (iii) reset the marking on the
packet (allowing the source to continue at full
rate).

5.2. Results

The simulations were monitored in a variety of
ways. The statistic of most importance in the
present case is response time, i.e. the delay
between a flow starting, at the host, and being fully
received, at the destination. A plot of response
times using various different approaches is shown
in Figure 4. It is clear that the proposed approach,
in its two forms, ECNC and ECND, is able to
deliver better response times than RED with or
without the use of Explicit Congestion Notification
(ECN) bits.

Figure 4. Mean Response Time for Droptail (DT), RED, RED with ECN (REDE),
ECNC and ECND.

2843

In this experiment, a subset of flows sufficient to
load the link to 50% of its capacity was selected
for favourable treatment. These flows were of
length from 1 to 2000 packets. When the ECNC
protocol was in use, any packets in the favoured
flows tagged with an ECN flag were un-flagged.
Other ECN packets were allowed to pass in the
usual way. When ECND was in use, the favoured
flows were treated in the same way, but packets in
the other flows would be dropped at the GW node
(node 4).

In a “proper” implementation of ECNC or ECND
it would be necessary to identify which flows
should be favoured dynamically. The desired
proportion of favoured flows might need to change
dynamically, and also the scheme by means of
which flows are distinguished (the flow rate and
depth of a leaky bucket). In the present instance,
the purpose of the experiment is to identify if it is
feasible to achieve the gains potentially offered by
SJF order of service.

The simulations required to obtain the results
shown in Figure 4 required a considerable amount
of computation time on a high performance
computer, even though we have not attempted to
generate confidence intervals at this stage. The
improvement in response time shown in Figure 4
is significant, but not as dramatic as predicted from
the queueing theory. Before further simulations are
undertaken it is necessary to develop a theory
which can predict more precisely how much
response time can be improved, under a variety of
circumstances, a which can provide guidance
concerning how to set the parameters for the queue
management method.

6. CONCLUSIONS
We have demonstrated on the basis of both
simulation and queueing models that the Shortest
Job First queueing discipline among competing
flows offers considerable advantages over simple
Processor Sharing for the kinds of traffic that can
be expected to be encountered in the Internet and
that if traffic continues to become even more
heavy-tailed, this advantage will increase. We
have, furthermore, investigated how something
approximating SJF can be implemented.

On the other hand it appears that priority queue
strategies are risky, in that the marginal advantages
gained by those jobs that benefit from the priority
scheme are very small, and the majority of jobs
can expect to receive worse service. This suggests
that not only is it the case that a more global
architecture for differential service is difficult, but
also there is a significant risk that the cost in
reduced performance for subsets of traffic is not
warranted.

7. REFERENCES
Beckers, J.,I. Hendrawan, R. Kooij, R. van der

Mei, (2001) Generalized processor sharing
models for Internet access lines, 9th IFIP
Conference on Performance Modelling and
Evaluation of ATM and IP Networks,
Budapest.

Blake, S, D. Black, M. Carlson, E. Davies, Z.
Wang and W. Weiss, (1998) An architecture
for differentiated services, IETF, RFC 2475.

Crovella, M., M, Taqqu and A. Bestavros (1998).
Heavy-tailed probability distributions in the
World Wide Web. Robert J. Adler, Raisa E.
Feldman, Murad S. Taqqu (eds.), A Practical
Guide To Heavy Tails. 1, 3--26. Chapman and
Hall, New York.

Fall, K. and Varadhan, K. (1997) ns Notes and
Documentation. Technical report, UC
Berkeley, LBL, USC/ISI, and Xerox PARC.

Gross, D. and C. Harris (1998) Fundamentals of
Queueing Theory, 3rd ed. John Wiley, New
York.

Harchol-Balter, M., M. Crovella and S. Park
(1998) The case for SRPT scheduling in web
servers. Technical Report No.. MIT-LCS-TR-
767, MIT Lab for Computer Science.

S. McCanne and S. Floyd. (2005) ns Network
Simulator. [Online]. Available:
http://www.isi.edu/nsnam/ns/.

McNickle, D. and Addie, R. G. (2005) Comparing
Protocols for Differential Service in the
Internet, IEEE TENCON, Melbourne.

Parekh, A. and G. Gallager (1993) A generalized
processor sharing approach to flow control in
integrated services networks: the single node
case. IEEE/ACM Trans. on Networking, 2,
137-150.

Schrage, L (1968) A proof of the optimality of the
shortest remaining processing time discipline
Operations Research, 16, 678-690.

Takagi, H. (1991) Queueing Analysis: A
Foundation of Performance Evaluation, Vol 1,
Vacation and Priority Systems Part 1, North
Holland.

2844

