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EXTENDED ABSTRACT 
 
The Interim Biogeographic Regionalisation of 
Australia (IBRA; Environment Australia, 2000) is 
a planning framework defining land areas 
comprised of interacting ecosystems repeated 
across the landscape. In many states these 
bioregions are currently arrived at by consensus of 
an expert panel (Neldner et al. 2004) and well 
accepted as a spatial unit for planning and 
environmental management. This work was 
motivated by the need to define these regions in a 
scientifically defensible way to justify any 
decisions made on the basis that they are 
representative of broad environmental assets.  
 
The present bioregional boundaries of Queensland 
version 4.3 are shown in Figure 1. The case study 
is situated in North Eastern Queensland in an area 
where a boundary change was proposed. This 
research investigates at the meso-scale the success 
of broad climate and soil variables in identifying 
patterns and processes. We report results based on 
three bioclimate and soil variables, suggested 
through exploratory analysis and model sensitivity: 
temperature seasonality (bc04); annual 
precipitation (bc12); and B horizon available water 
holding capacity (baw). 
 
This paper compares a range of statistical methods 
for bioregion classification, within a continuum of 
data-driven to expert-driven, including Bayesian 
methods. Model-based clustering moves away 
from traditional methods which delineate 
boundaries, instead assessing similarity between 
and within geographic regions and environmental 
envelopes. Bayesian statistical modelling enables 
explicit input of expert prior knowledge during 
development of bioregions. We assessed two 
alternative prior knowledge bases: vegetation 
communities or existing bioregion boundaries. In 
data poor areas expert defined boundaries are 

feasible, but subjective. Vegetation-based priors 
can be considered more objective, although they 
require subjective identification of communities, 
and are a useful alternative to expert boundaries.  
 
This study confirmed that experts contribute 
knowledge beyond what is currently mapped on 
bioclimate and soils. The Bayesian model-based 
approach has significant benefits in assessing 
impact of different types of expert knowledge for 
bioregions—either mapped communities or 
boundaries—as well as for quantifying precision 
of modelled regions.  
 
Practically we found that the Frequentist model-
based approach was useful in initial stages of 
modelling. The distance-metric based approaches 
to clustering though relatively simple to implement 
provide qualitatively different boundaries, and 
require an unwieldy process for obtaining 
predictions, for which no assessment of 
uncertainty is available. 
 
For bioregionalisation of new areas, expert-defined 
boundaries may still play a role, although this has 
now been demonstrated to be more useful when 
combined with bioclimate and soils datasets in a 
Bayesian framework. In data-rich areas, the 
Frequentist model-based approach may suffice.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Queensland bioregions and study area.  
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1. INTRODUCTION 

The bioregions of Queensland provide a 
framework for conservation assessment and 
protection. They support a systematic approach to 
conservation, essential if biodiversity is to be 
effectively protected (Sattler and Williams, 1999). 
To this end a two level biodiversity hierarchy of 
protection is required, at landscape scale via 
bioregional and subregional protection strategies, 
and finer scale ecosystems, species and genotype 
protection via Regional Ecosystems and land types 
protection. Bioregional and subregional mapping 
also provides a natural reporting and decision-
making framework for land and vegetation 
management statewide. It supports application of 
the Vegetation Management Act (VMA), 1999, 
which assigns vegetation communities and 
regional ecosystems (REs) a vegetation 
management status according to the percent of the 
pre-clearing extent which remains within 
bioregions.  
 
The subregions considered in this study are at the 
centre of a proposed boundary change and include 
the Daintree-Bloomfield, Hodgkinson Basin and 
Starcke Coastal Lowlands. These subregions form 
the bioregion boundaries between the Wet Tropics 
(WET), Einasleigh Uplands (EIU) and Cape York 
Peninsula (CYP) bioregions of North Queensland 
(Fig. 2).  
 
This paper applies a new model-based approach 
(Rochester et al. 2004; Low Choy et al. 2005; 
Pullar et al. 2005) including both data and expert 
knowledge in a Bayesian statistical model to 
describe and assess regional boundaries. By 
focusing on this current issue of redefining a 
bioregional boundary in the case study, we may 
compare a range of statistical methods for 
bioregion and subregion classification, within a 
continuum of data-driven to expert-driven 
methods.  

2. METHODS 

2.1 Ecological framework and the Expert 
approach 

The ecological model proposes that subregions are 
shaped by their broad landforms, climate and 
vegetation. This hypothesis is to be tested in this 
study. The ecological model (Table 1) refined in 
consultation with experts (Neldner et al. 2004) 
illustrates the complexity of the study area, and 
highlights that the current bioregional boundaries 
are positioned in a location of steep environmental 
gradients, which reflect reduction in elevation and 
rainfall, and a shift from close rainforest through 

 
 
 

 

 

 

 

 
 
Figure 2. A. Daintree-Bloomfield, WET;  
B. Hodgkinson Basin, EIU; C. Starcke Coastal 
Lowlands and D. Battle Camp Sandstone, CYP. 
 
woodlands to low woodlands.  The subregions in 
the area reflect a large amount of within subregion 
variability regarding landforms and as a result, 
diverse types of vegetation species and 
communities. 
 
Botanists advised that the current Einasleigh-Cape 
York boundary should be reviewed. Their advice 
was that the proposed boundary should be 
amended to reflect the distribution of vegetation 
communities containing key species Corymbia 
nesophila on metamorphics and Eucalyptus 
tardecidens (map units 82  and 142  respectively 
Neldner and Clarkson, 1995; Fig. 3; Pers. Comm. 
Addiccott, 2005).  This information assisted the 
experts in splitting the Hodgkinson Basin 
subregion EIU into two areas B and B* (Fig. 2). 
This prompted a proposal to the Bioregions expert 
panel to assign the northeastern area (B*) to the 
Starcke Coastal Lowlands subregion CYP.  

Table 1. The ecological conceptual model. 

Name Elevation Rainfall Vegetation 
Daintree-
Bloomfield of 
the Wet Tropics 
(WET) 

> 1000m > 3000mm in 
Carbine and 
Thornton- 
1600mm in 
Windsor 

Rainforests , 
vine thickets  
and Sclerophyll 
woodland and 
forest .  

Battle Camp 
Sandstone of 
the Cape York 
Peninsula 
(CYP) 

Mean 
elevation 
above 200m 
with max 
elevation 
below 600m 

> 1600mm 
rapidly 
decreasing to 
less than 
1000mm in 
the west 

Woodlands  

Hodgkinson 
Basin of the 
Einasleigh 
Uplands (EIU)

Upper 
catchment of 
the Mitchell 
and Gilbert 
Rivers 

Rain shadow  
< 1500mm 

Low woodlands 
on loamy 
lithosols 

Starcke Coastal 
Lowlands of 
the Cape York 
Peninsula 
(CYP) 

Lowland areas 
below 100m 
with peaks 
reaching 500m

> 1400mm Woodlands, low 
open woodlands 
and Heathlands 

 

 

(D) 

 
(C) 

 
(B*) 

 
(A) 

 (B) 
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Figure 3. The ecologists’ use of vegetation 
community distributions as a means to 
propose a new bioregion boundary. 
  
2.2 The Data Model 
The data model (Austin, 2002) consists of the 
statistical design decisions made regarding how 
the data are collected and measured. The data 
model in the study area operates on 1ha square 
grid cells. This scale was considered appropriate 
for reflecting subregional differences in this study 
area and did not overstate the spatial accuracy of 
the datasets. The design for subsampling from the 
spatially extensive datasets was vital for ensuring 
representativeness and eliminating pseudo-
replication arising from sampling sites too close 
together. A stratified random sampling process 
was applied to spatially subsample variables at a 
set of 2000 locations, stratified by vegetation types 
to ensure that environmental variation relevant to 
subregions was represented. Correlograms (Fig. 4) 
confirmed that this sample size avoided pseudo-
replication. 
 

Based on the ecological model, the data model 
addresses three themes considered to be the drivers 
of environmental variation in the study area, 
namely geomorphological, bioclimatic and soil 
properties. Recently available information 
provided over 100 spatial datasets that could be 
indicators of differences between the four 
subregions. Initial selection of variables was 
achieved using exploratory data analysis 
techniques including univariate and multivariate 
assessments: maps to view spatial pattern, 
histograms to suggest transformations; MANOVA 
to summarize within and between subregion 
variation of variables; k-means clustering, Factor 
analysis and correlation matrices annotated with 
hierarchical agglomerative clustering helped select 
variables from correlated groups.  After 
transformation all variables were scaled by 
subtracting the mean and dividing by the standard 
deviation to help in comparisons between variables 
in later diagnostics. The ecological model was 
used at each stage to ensure that variables selected 
were ecologically justified.  

 
 
 
 
 
 
 
 
 
 
 
Figure 4. Correlogram comparing spatial auto-
correlation in some competing and correlated soils 
attributes identified after dimension reduction. (For 
variables assessed see Rochester et al. 2004). 

Statistical distributions of variables were compared 
across subregions (Fig. 5) via boxplots. This 
highlighted variables which differ greatly in 
distribution (eg bc04 temperature seasonality, bc12 
annual precipitation) across subregions or do not 
discriminate between subregions (eg aspect). 
Whilst some variables may explain differences 
between subregions, their selection should also 
depend on the required scale.  For example the soil 
B horizon available water holding capacity (baw) 
was selected over the A horizon (aaw) counterpart 
as baw was changing slower than aaw over spatial 
distances and as a result will explain differences 
between rather than within subregions, and thus 
provide less fragmented clustering (Fig. 4). 

2.3 Statistical techniques 

Statistical modelling involves specification of the 
statistical technique, including assumed 
distributions, together with the decision-making 
framework, such as hypothesis tests (Austin, 2002; 
Gelman et al. 2005). We consider two main types 
of statistical techniques: heuristics, namely 
distance-metric based multivariate techniques; as 
well as model-based approaches based on finite 
mixtures of distributions (eg Gelman et al. 2005). 
Heuristic approaches (Hartigan, 1975) focus on 
allocating sites to regions which minimize a cost 
function for dissimilarity between regions. 
Modelling approaches describe a multivariate 
distribution of environmental attributes that are 
useful predictors for the unknown allocation of 
sites to subregions, in this case the four subregions 
on the boundaries between the WET, EIU and 
CYP bioregions. Both Frequentist and Bayesian 
implementations of the finite mixture model are 
investigated. Traditional bioregional boundary 
mapping uses similar data—geological maps, 
climate information, image interpretation and site 
data information (Neldner et al. 2004)—within a 
qualitative approach addressing the same 

1328



 

T
kkkkk DADλ=∑

ecological model, but integrated conceptually by 
experts in that they describe boundaries which 
indirectly reflect the distribution of attributes in 
each region. 
 

 

 
 
 
 
 
 
 
 
 
 
Figure 5. Statistical distribution of attributes in 
subregions WET (Blue), EIU (Yellow), WCYP 
(Aqua), ECYP (Green).  
 
Here the heuristic approaches represent the purely 
data-driven or data mining approaches (Hastie et 
al. 2001).  Frequentist model-based clustering 
using finite mixtures provide a data-driven 
approach based on expert-defined hypotheses, and 
can be extended to the Bayesian context via prior 
models for parameters. These prior models provide 
a mechanism for explicitly balancing input from 
both experts and data, from the outset. The Expert-
driven approach based on Delphic consultation of 
panels of experts (Neldner et al. 2004) refers to 
data but relies on more subjective integration of 
this information. 

Distance-Metric Based Cluster Analysis  
Cluster analysis was the simplest method 
considered to group sites and, for a specific 
distance metric, measures dissimilarity between 
sites (Hartigan, 1975). For example agglomerative 
clustering continues to aggregate groups together 
according to increasing dissimilarity until there is 
just one group. The number of groups was selected 
posthoc (Hastie et al. 2001). Heuristic approaches 
require imputation of a simplistic model in order to 
extrapolate predicted site allocation across the 
whole region. We found classification trees using 
recursive partitioning (CART in RPart package in 
S-PLUS, Venables and Ripley, 1994) to work well 
although other methods such as linear or quadratic 
discriminant analysis could also have been used. 
Limitations are the arbitrary algorithm settings 
(distance metric, stopping criterion), and no model 
basis for prediction and hypothesis testing. 

Model-based clustering  
First consider the unrealistic problem where we 
already know allocation of sites to subregions. 
Then environmental variables X in each subregion 
k can be modelled as following a multivariate 
Normal (MVN) distribution. 
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This can be addressed through a straightforward 
discriminant analysis. For bioregionalisation 
however site allocation is unknown. Define zi = k 
if the ith site is allocated to kth subregion and let 
Pr(zi = k) = wk, where wk is  the overall weights of 
the kth subregion.  Thus the overall likelihood 
model is a finite mixture of MVN distributions: 
 

k i i k k1
p(X,z| , )= w p(X |z =k, , ) (2)n

i
μ μ

=
Σ Σ∏  

 
Of key interest, esp. for bioregionalisation is 
prediction of site allocations z. Clusters or 
environmental envelopes (sites with similar 
variables X) can be mapped to subregions in 
geographical space (sites located close together), 
with clusters/subregions having environmental 
variables centred at means μk. Covariance matrices 
Σk have eigenvalue decomposition 
 

(3) 
 

where for each cluster k, Dk is the orientation of 
the environmental envelope with respect to the 
variable axes, defining principal components 
(PCs), Ak is proportional to the eigenvalues of Σk 
and determines the shape of the environmental 
envelope which reflects impact of each PC and 
therefore of variables, while λk is a scalar that 
determines the envelope’s volume and reflects the 
subregion’s overall environmental variation. 
Allowing the orientation (PCs), shape (variable 
impact) and volume (heterogeneity) to be the 
identity, equal or vary across clusters (subregions) 
leads to variance models of differing complexity 
(Bensmail et al. 1997; Low Choy et al. 2005).  

Frequentist approach 
The Mclust package for S-PLUS (Fraley and 
Raftery, 2002) implements Frequentist estimation 
for this finite mixture of multivariate Normal (FM 
MVN) distributions, via the EM, (Expectation-
Maximization) algorithm. The calculation of 
uncertainty associated with site allocation z for this 
model is easily estimated from model coefficients 
(Low Choy et al. 2005). Resampling is required to 
assess precision of estimated means and 
covariances. Best performance, ie number of 
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subregions or variance parameters, corresponds to 
maximum BIC (Fraley & Raftery, 2002). 
 
Bayesian approach  
With the Bayesian approach we derive a prior 
model for all parameters, {zi, μk, Σk, wk}, is then 
combined with the data model (1)-(3), to obtain 
updated (posterior) estimates of parameters.  
 
 Posterior ∝ Prior × Likelihood      (4) 
 
Here priors are based on initial estimates of 
subregional boundaries. We use conjugate 
dependent priors: Dirichlet for cluster weights w, 
inverse Wishart for covariances Σk and MVN for 
the mean given the variance μk|Σk.  For expert-
defined subregions (developed from viewing 
different data), the mean and covariance matrices 
for modelled variables can be estimated from 
sample estimates within each subregion. Prior 
knowledge was strong in the highly informative 
situation where expert knowledge is assigned high 
precision, to weak for the nearly non-informative 
situation where it has low precision (for details see 
Low Choy et al. 2005). 
 
Two different sources of prior knowledge are 
investigated. One is the existing set of subregional 
boundaries, an integrated set of expert-defined 
boundaries where various environmental attributes 
may have been used to define different boundaries. 
The other is the spatial distribution of vegetation 
communities in different areas that was thought to 
be indicative of the separation between lower and 
upper Hodgkinson Basin EIU (Fig. 3). These two 
sources are quite different. Vegetation 
communities result from expert selection of 
communities from knowledge applied at a finer 
scale, via delineation of each vegetation polygon. 
Expert-defined subregion boundaries require 
experts to integrate knowledge at a broader scale 
across several attributes.  

 
Model Evaluation 
Explanatory ability could only be assessed for a 
model-based approach, where we seek accuracy in 
estimating parameters namely subregional extent 
wk, means μk and covariances Σk. This could only 
be achieved posthoc using resampling techniques 
for the Frequentist approach so instead we use a 
Bayesian approach to estimate direct uncertainty 
via credibility intervals. Internal model fit to the 
data was assessed for models via Schwarz’s BIC to 
check trade-off between covariance 
parameterization and number of subregions. Note 
that weaker prior based on expert knowledge will 
automatically show closer fit to data using BIC. 
Predictive ability in site allocation was assessed 
via visual inspection of mapped predictions or 

equivalent concordance statistic, and by using 
MANOVA. Predictive uncertainty can be 
estimated by the probability that the site was 
allocated to any other subregion given the model. 
See Low Choy et al. (2005) for details. 

3. RESULTS 

3.1. Site allocation maps 

Cluster Analysis 
The results of applying hierarchical clustering, 
with Euclidean distance metric and Ward’s 
linkage, extrapolated to region via classification 
trees, illustrate that a very narrow area of the West 
WET Bioregion resembles EIU and CYP (Fig. 6). 
Similarly the two CYP subregions are found to be 
quite similar with an area in Starcke Coastal 
Lowlands CYP resembling the Hodgkinson Basin 
EIU. Some small areas in the results are shown as 
outliers of other subregions. These areas may have 
been too small or too far to form a subregional 
outlier when the experts considered the delineation 
of the subregions. 

Frequentist Model-based clustering 
Predicted site allocation (Fig. 7a) using the 
Frequentist model have uncertainty (Fig. 7b) 
which is highest on the boundary between CYP 
and EIU bioregions. This confirms the source of 
current debate regarding the boundary. High 
uncertainty also occurs for some disjunct outliers, 
also identified using agglomerative clustering, that 
share soil and bioclimate profile in common with 
geographically distant areas. Since small, they can 
be merged with their surrounds for most purposes. 
Similar to agglomerative clustering a narrow area 
of the Western WET resembles EIU and CYP. A 
narrow strip of the northern EIU resembles the 
Starcke Coastal Lowlands CYP. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. (A) Results from agglomerative 
clustering (BIC not applicable).  (B) Extrapolation 
via CART. 

Bayesian Model-based clustering  
With moderate emphasis on a vegetation 
community prior, subregions site allocation are 

A B 
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most certain where the two key communities do 
not occur, and most uncertain in northern EIU (B* 
in Fig. 2). Similar to the Frequentist model, a 
boundary in WET is delineated which joins Battle 
Camp Sandstone CYP with northern Hodgkinson 
Basin EIU (Fig. 8). Not surprisingly the Bayesian 
model, with strong emphasis on current expert-
derived boundaries, obtains the closest match to 
them (Fig. 9a). The largest difference is assigning 
Hodgkinson Basin to the Starcke Coastal 
Lowlands CYP, which is uncertain. All boundaries 
show high uncertainty (Fig. 9b). 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.  (A) Results from Frequentist model, 
(BIC = -12,764). (B) Site allocation uncertainty.  
 

 
 
 
 

 
 
 
 
Figure 8.  (A) Results from Bayesian model with a 
moderate vegetation prior, (BIC = –22,719).  
(B) Site allocation uncertainty. 

3.2 Model parameter assessment 
 
Comparing distribution of annual precipitation 
(bc12) for each set of modelled subregions (Fig. 
10), we see that WET has a much tighter range via 
agglomerative clustering and a higher and wide 
range via Frequentist modelling. Bayesian 
modelling with existing subregion prior shows 
tighter modelled rainfall distribution in all regions 
apart from WET. WET has the highest range of 
rainfall for all models apart from the Bayesian 
model with vegetation prior. Models disagree 
which of the CYP subregions (east and west) have 
lowest rainfall: agglomerative clustering suggests 
west is lower; in contrast Bayesian with vegetation 
prior suggests east is lower, and other three models 
suggesting some overlap. Bayesian modelling with 

both priors shows precise estimates of mean 
rainfall (tiny “waistband”) in all regions. 
Waistbands on boxplots (Venables & Ripley, 
1994) for Bayesian results indicate precision of 
quantiles of fitted distributions. 
 
3.3. Model fit to data 
 
Not surprisingly data-driven Frequentist results 
show much closer fit to data, as BIC is almost 
twice that of Bayesian models employing expert 
knowledge as priors. However of the two Bayesian 
models, strong weight on an expert-defined 
subregion boundary prior results in a marginally 
closer fit to data. 
 
 
 
 
 
 

 
 
 
 
Figure 9.  (A) Results from Bayesian model with 
strong prior based on existing subregions (BIC = 
 –21,188).  (B) Site allocation uncertainty. 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Annual precipitation (bc12) compared 
across models:  A. Current expert boundary;  
B. Agglomerative; C. Frequentist; D. Bayesian, 
strong bioregion prior; E. Bayesian, moderate 
vegetation prior.  Subregion are WET (Blue), EIU 
(Yellow), WCYP (Aqua), ECYP (Green).   

4. DISCUSSION 

The modelled distribution of annual precipitation 
(Fig. 10) demonstrates credible differences 
between subregions, supporting the initial 
ecological hypothesis. Since bioregions are an 
abstract concept there is no gold standard for 
assessing predictions. Nevertheless mapped site 
allocations (Figs. 6-9) show more support for 
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existing boundaries for Frequentist or Bayesian 
expert boundary prior models, but more support 
for the proposed boundary (Fig. 2) under the 
Bayesian vegetation prior. The heuristic suggests a 
boundary approx. halfway between. Also, when 
we vary the precision given to priors in Bayesian 
models gradually, we find that expert-defined 
boundaries only have a strong influence on results 
when upweighted ten times. Moreover expert 
knowledge in most cases tightens modelled 
distributions of bioclimate and soil.  

5. CONCLUSIONS 

This study confirmed that experts contribute 
knowledge beyond what is currently mapped for 
bioclimate and soils. Further study and mapping 
will be required before we may determine exactly 
what this extra knowledge represents. The 
Bayesian model-based approach has significant 
benefits in assessing impact of different sources of 
prior knowledge for bioregions as well as for 
quantifying precision. The Bayesian results from 
two different priors suggests that future research 
may integarte expert prior knowladge from 
different sources and scales, eg. integate the expert 
panel derived landscape subregional boundaries 
with the finer scale vegetation communities. Other 
extensions to be explored include variables 
selection and the number of subregions. 
 
Practically we found that the Frequentist model 
based approach was useful in initial stages of 
modelling, with faster assessment of model 
sensitivity to variables and number of subregions. 
Heuristic approaches to clustering though 
relatively simple to implement provide 
qualitatively different boundaries, and require an 
unwieldy process for obtaining predictions, for 
which no assessment of uncertainty is available. 
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