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EXTENDED ABSTRACT 
Parameter calibration and prediction uncertainty of 
a model are intimately related. Although much 
literature is devoted to calibration and uncertainty 
analysis in hydrologic modelling, a clear definition 
of when a model is calibrated is generally lacking. 
In recent years, inverse modelling has become a 
popular alternative to direct parameter 
measurement. However, in contrast to obtaining 
model outputs (model variables) from model 
inputs (model parameters), which is unique, 
obtaining model parameters from model variables 
is non-unique by nature. Inversely obtained 
hydrologic parameters, therefore, are always 
uncertain (non-unique) because of parameter 
correlations, errors associated with the 
measurements, and Level of details and 
simplifications in the models, among other factors. 
Quantification of the uncertainty in a calibrated 
model is vital for a meaningful application of the 
model. Optimization of a goal (objective) function 
in a problem with many parameters is often 
difficult because of the complexities in the 
structure of the goal function. One complexity is 
the large number of local minima associated with 
any given goal function. To draw an analogy, the 
space of the goal function, g, could be likened to a 
block of “Swiss cheese” (if simplified to two 
parameters only) (Fig. 1) with many holes. Each 
hole represents a local minimum, with the size of 
the hole in any direction representing the range of 
uncertainty.  

 

 

Figure 2 shows the “Swiss cheese” effect in the 
response surface of a goal function. In this Figure, 
for a better visualization, the goal function was 
inverted so that the minima are represented as 
peaks. It shows that for any given goal function, 
there exits many parameter sets for which the goal 
functions are not significantly different from each 
other, i.e., there are many potential solutions based 
on quite different parameter sets. Recently, 

emphasis is being placed on identifying all such 
solutions. This is referred to as uncertainty 
analysis. As there are many potential solutions, 
each parameter optimization routine finds one such 
minimum for a given goal function. Hence, the 
search for one absolute global minimum in 
hydrologic problems, where the parameters are 
generally lumped, is not very meaningful. As the 
problem of parameter optimization is not unique, it 
is important that we define when a model is 
calibrated and what the magnitude of the 
prediction uncertainty is.  

 
Figure 2. Response surface for an inverted goal 
function. Local minima are represented as peaks. 

In the combined parameter estimation-uncertainty 
analysis routine, SUFI-2 (Sequential Uncertainty 
FItting, ver. 2), we define model calibration as 
follows: A model is considered calibrated if 1) 
upon propagation of parameter uncertainties the 
95% prediction uncertainty (95PPU) between the 
2.5th and 97.5th percentiles covers more than x% of 
the measured data (i.e., (100-x)% of the data is 
treated as outliers), and 2) the average distance 
between the 2.5th and 97.5th prediction percentiles 
is less than the standard deviation of the measured 
data. If, the above two criteria are reached and a 
significant R2 (and or Nash-Sutcliff coefficient) 
exists between the best simulation and the 
measured data for a calibration and a test data set, 
then the model can be considered calibrated. The 
parameter uncertainties are obtained by first 
assuming large uncertainty intervals and then 
iterating until the above conditions are reached. 
This requires a parameter updating procedure that 
is explained in this paper. If calibration cannot be 
attained with the above criteria, then the invoked 
conceptual model(s) should be re-examined. 

Figure 1. A block of 
Swiss cheese. g 
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1. INTRODUCTION 

Inverse modeling has brought new opportunities, 
but also new challenges for model calibration. 
Some of the advantages are savings in time and 
cost of laboratory and/or field experiments 
generally needed to obtain the unknown 
parameters, and attainment of a better fit with 
available data. Another advantage is the usefulness 
of inverse modeling in the analysis of model 
structure (the invoked conceptual model), 
boundary conditions, and prevailing subsurface 
flow and contaminant transport processes. One of 
the limitations of inverse modeling is that the fitted 
parameters are conditioned on the experimental 
setup and the set of measured variables, which is 
usually limited in both time and space. Other 
conditioning factors include the choice of the 
parameter estimation routine, the form of objective 
function, and the weights associated with the 
different components of the objective function.  

Another problem with inverse modeling is the non-
uniqueness of the estimated parameters. While 
direct modeling with known parameters results in 
unique model variables, using the variables to 
obtain model parameters is by nature non-unique 
and results in uncertain parameters. Quantification 
of this uncertainty in model parameters has 
received special attention in recent years (Yapo et 
al., 1998; Beven, et al., 1992; Duan, et al., 2003; 
Abbaspour et al., 2004).  

Our investigations of many time series hydrologic 
data showed that there may exist a very large 
number of parameter combinations that can 
produce acceptable model outputs. We also found 
that as the number of variables in a goal function 
increases, the number of acceptable simulations 
decreases. Furthermore, as a goal function is 
subjected to constraints, the number of acceptable 
simulations also decreases. Therefore, a very 
restrictive definition of the goal function can help 
to decrease the non-uniqueness problem. This, 
however, requires that a large number of variables 
are measured. 

The objective of this paper is to describe a 
procedure for a combined parameter estimation 
and uncertainty analysis algorithm refereed to as 
SUFI-2 (Sequential uncertainty fitting, ver. 2). 
SUFI-2 identifies a range for each parameter in 
such a way that upon propagation: 1) the 95% 
prediction uncertainty (95PPU) between the 2.5th 
and 97.5th percentiles contains (brackets) a 
predefined percentage of the measured data, and 2) 
the average distance between the 2.5th and 97.5th 
prediction percentiles is less than the standard 
deviation of the measured data. If, the above two 
criteria are reached and a significant R2 exists 
between the best simulation and the measured data 

for a calibration and a test (validation) data set, 
then the model can be considered calibrated, and 
the parameter range is defined as the parameter 
uncertainty.  

SUFI-2 was used for the calibration of several 
hydrologic problems including two bottom ash 
landfills using the program MACRO (Jarvis, 
1994), transport of Cd from an agricultural field 
using HYDRUS-1D (Simunek, et al., 1998), and 
watershed modeling using the program SWAT 
(Arnold et al., 1998). SUFI-2 performs a combined 
optimization and uncertainty analysis using a 
global search procedure, and can deal with a large 
number of parameters through Latin Hypercube 
Sampling. This paper explains the above concepts 
using an example in which two municipal solid 
waste incinerator bottom ash monofills were 
successfully calibrated and tested for flow, and one 
monofill also for transport; and an example were a 
1700 km2 watershed in Switzeland, the Thur 
watershed, was calibrated and tested for discharge, 
sediment, phosphate, and nitrate loads at the outlet 
of the watershed.  

2. THEORY 

The concept behind the algorithm of SUFI-2 is 
presented graphically in Figure 3. If a model is 
provided with a single parameter value then a 
single simulation results (3a). If the parameter is 
uncertain, and this uncertainty is expressed as a 
distribution, then propagating this uncertainty 
results in range of possible problem solutions. One 
way of expressing the model result is through the 
95% prediction uncertainty (95PPU) measured 
between the 2.5th and 97.5th percentiles. If the 
parameter uncertainty is small, then the 95PPU has 
a narrow band (3b), and if the parameter 
uncertainty is large then the 95PPU has a wide 
band as shown in Figure 3c. 
 

 
Figure 3. The relationship between parameter 
uncertainty and prediction uncertainty. 

Parameter                  95% prediction uncertainty 
Representation                    (95PPU) 

a 

b 

c 
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Therefore, a procedure for parameter calibration 
(optimization) would be to start with a wide 
parameter uncertainty and then narrow this 
uncertainty in steps until a satisfactory 95PPU is 
reached. Note that if the initial parameter 
uncertainty distribution is set as wide as it is 
physically meaningful, then propagation of this 
distribution results in two possibilities. First, the 
measured data falls outside the 95PPU (Fig. 4a), 
and second, the measured data is inside the 95PPU 
(Fig. 4b). In the first case, we can conclude that the 
problem is not one of parameter calibration but 
rather one of conceptual model problem. In this 
case the model or the boundary conditions must be 
re-examined. In the second case, however, the 
initial parameter uncertainties can be calibrated to 
a narrower distribution, hence, a smaller 95PPU 
(Fig. 4c). During the calibration, however, some of 
the measurements will fall out of the 95PPU and 
hence, are not respected by the uncertainty in the 
parameters. Therefore, a balance must be reached 
by the size of the parameter uncertainty (and 
consequently the 95PPU) and the amount of data 
bracketed (respected) by the 95PPU. To obtain this 
balance we propose two conditions. 1) The 95PPU 
should bracket x% of the data, where x would 
depend on the nature of the project and the 
measured data. Normally, x should be around 80-
90%. 2) To ensure that we have the narrowest 
95PPU (and hence parameter uncertainty) we 
require that the ratio of the average distance 
between the upper and the lower 95PPU bonds and 
the standard deviation of the measured data should 
be less than 1.  

Upon reaching the above criteria, if there exits a 
significant R2 and/or Nash-Sutcliff coefficient 
between the best simulation and the measured data 
for a calibration and a test (validation) data set, 
then the model can be considered calibrated. 

 
Figure 4. Relationship between measured data 
(red line) and the 95PPU. If parameter(s) 
distribution is set to the maximum physical limit, 
then a) is not a parameter calibration problem, b) 
calibration can obtain smaller uncertainty 
distribution, c) it can be expected that some 
measured data can fall outside the 95PPU. 

2.1 Calibration Procedure 

The calibration proceeds as follows: 

1. Absolute, physically meaningful parameter 
distributions are assigned to each parameter. 

2. Smaller initial uncertainty ranges are assigned to 
each parameter. 

3. The number of simulations n is chosen and 
Latin Hypercube sampling is used to sample from 
the initial parameter distribution. 

4. An objective function is formulated based on the 
types of measured data. 

5. Model simulations are performed and the 
objective function is calculated for each of the n 
simulations. The following measures are then 
calculated: 

- Jacobian matrix: 

- Hessian                    and covariance                      

- Standard deviation of parameter bj: 

- 95% confidence interval of parameter bj: 

                                      and  

- Parameter sensitivity  

- Parameter correlation   

- Updated parameter uncertainties (assumed here 
to have uniform distributions) are calculated from: 

 

 

In the above equations b is a parameter value, b* is 
the best value (smallest goal function) in an 
iteration,  and if the updated parameters go beyond 
the absolute values set in step 1, then they are 
adjusted back to the absolute values. This updating 
is centred on the best value in each iteration and 
the range is always smaller that the previous 
iteration. Also, if a region of the parameter space 
goes out of calculation in an iteration, it may come 
back again in a subsequent iteration. 

- And finally, the 95PPU is calculated as the 2.5th 
and 97.5th percentiles of the cumulative 
distributions of every simulated point. If the 
condition of Figure 4b exits, then the parameters 
are updated and the procedure repeated from step 5 
above. 
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When the two criteria mentioned above are 
reached, the R2 and or other required statistics are 
calculated. If these statistics are significant then it 
can be concluded that the model is calibrated. A 
similar procedure with a validation data test can 
validate the model.  

The final parameter distribution calculated as such 
are considered to be the parameter uncertainties 
and the final 95PPU the model simulation 
uncertainty. This concept of uncertainty, in 
author’s view, is more physically based and more 
meaningful than what is normally calculated 
through linear regression analysis, which is often 
too small.   

3. APPLICATION OF SUFI-2 TO TWO 
BOTTOM ASH LANDFILLS 

Bottom ash landfills are typically composed of 
equal amounts of fine ash material and melted 
components of which half have crystallised, and 
small quantities of metallic components, ceramics 
and stones (Kirby and Rimstidt, 1993). The 
Lostorf landfill, a municipal solid waste 
incinerator (MSWI) bottom ash monofill in 
Switzerland, was studied in detail by Johnson et al. 
(1999). Chemical analyses of leachate from this 
landfill at discrete intervals between 1994 and 
1996 determined average total concentrations of 
Na, Cl, K, Mg, Ca, and SO4 to be 44.5, 47.1, 11.8, 
0.63, 8.2, and 12.4 mM, respectively. A host of 
other metals such as Cu, Zn, Sb and Cr, Cd, Mo, 
V, Mn and Pb were also detected. While the 
leachate composition was found to be relatively 
constant during dry periods, considerable dilution 
occurred during rain events. The relatively good 
reproducibility of the experimental observations in 
response to rain events made us believe that 
transport modelling would be possible. Since the 
MSWI bottom ash contains high concentrations of 
heavy metal, monitoring and modelling of such 
landfills is important from an environmental point 
of view.  

Different models have been used to simulate flow 
through MSWI bottom ash landfills (Guyonnet et 
al., 1998; Hartmann et al., 2001; Johnson et al., 
2001). In the study of Johnson et al. (2001), flow 
through the Lostorf landfill was modelled using 
several approaches. They found that flow was 
dominated by preferential paths, reason why the 
variably-saturated dual-permeability model 
MACRO of Jarvis (1994) yielded the best 
simulation results.  

In this study we extend the work of Johnson et al. 
(2001) and apply inverse modelling to study water 
flow in the Lostorf and Seckenberg landfills, both 
located in Switzerland. Solute transport modelling, 
through simulation of the electrical conductivity 

(EC), was performed only for the Lostorf landfill. 
To perform these analyses, we linked SUFI-2 with 
MACRO. Our objectives were to calibrate the 
model using hourly discharge, and its EC, from the 
landfills, and to test the calibrated models. 

To formulate the objective function in this project, 
the time series of discharge was divided into four 
sections representing base-flow, recession, 
intermediate flows and peak flows. In this manner 
the calibration was forced to find equally good 
solutions to all sections of the flow as shown in 
Figure 5. The objective function was formulated as  

∑
=

=
I

1i
ii RMSEwg , where  

i
iw

avg(RMSE)
avg(RMSE)1=  

where I = 4 if only discharge is considered and =8 
if both discharge and EC are considered. In the 
above equations  

RMSE= ( )∑
=

−
k

j
j

so qq
k 1

21 , where q is a measured 

variable, k is the number of observations in the ith 
section, and superscripts o and s refer to observed 
and simulated, respectively. 

 

 

 

In Figure 6 the calibration of EC and discharge for 
the Lostorf landfill is shown. The outer (blue) lines 
are the 95PPU, the red line is the measured 
discharge and the green line is the best simulation. 
The 95PPU contained 90% of the measured 
discharge and EC data, while the ratio of the 
average difference between the upper and the 
lower 95PPU over the standard deviation of the 
measured data was less than 1 for both discharge 
and EC. With R2 values between the best 
simulation and the observed data of 0.86 and 0.88, 
respectively, for discharge and EC all calibration 
requirements were met for Lostorf. 

Figure 5. An example showing the division of a 
response signal into different regions. The weights 
are calculated such that each region contributes 
equally to the objective function. 

2452



 

 
 

 

The validation results for Lostorf landfill are 
shown in Figure 7. The 95PPU contained more 
than 90% of the measured discharge and EC data, 
while the ratio of the average difference between 
the upper and the lower 95PPU over the standard 
deviation of the measured data was about 1 for 
discharge and 1.7 for EC. With R2 values of 0.85 
and 0.82, respectively, for discharge and EC all 
except the ratio requirement for EC were again 
met. As it is discussed in more detail in Abbaspour 
et al. (2004), this indicates that the calibrated 
parameter ranges had produced a large number of 
relatively poor simulations for EC.  

 

 

Figure 8 presents the calibration and test results for 
flow through the Seckenberg landfill. The plots 
show both the best simulation results and the 
95PPU. The 95PPU contained 93% and 90% of the 
measured discharge data for the calibration and 
validation data sets, respectively. The ratios of the 
average difference between the upper and the 
lower 95PPU over the standard deviation of the 
measured data were much less than one for both 

calibration and validation data sets. The R2 
requirement was also met with highly significant 
values of 0.94 and 0.88 for calibration and 
validation data, respectively. One reason for the 
better calibration results for the Seckenberg case is 
the fact that the objective function contained only 
the discharge data. For more detail see Abbaspour 
et al. (2004). 

 
 

 

4.  APPLICATION OF SUFI-2 TO THUR 
WATERSHED 

In a national effort, since 1972, the Swiss 
Government started the “National Long-term 
Monitoring of Swiss Rivers” (NADUF) program 
aimed at evaluating the chemical and physical 
states of major rivers leaving Swiss political 
boundaries. The established monitoring network of 
19 sampling stations included locations on all 
major rivers of Switzerland. This study 
complements the monitoring program and aims to 
model one of the program’s catchments – Thur 
River basin (area 1,700 km2), which is located in 
the north-east of Switzerland and is a direct 
tributary to the Rhine.  

We used the program SWAT (Soil and Water 
Assessment Tool) (Arnold et al., 1998) to simulate 
all related processes affecting water quantity, 
sediment, and nutrient loads in the catchment. 
Manual calibration was performed, in the first step, 
based on observations at the catchment outlet. As 
this calibration produced unacceptable loads from 
various landuses, a second calibration was 
performed with SUFI-2 based on the knowledge of 
loads from landuses as well as the observations at 
the catchment outlet. The estimates of loads from 
different landuses were available from literature 
and expert judgement. The second calibration 
produced much more reasonable calibration and 
validation results as there were good agreements 
between simulated and observed bi-weekly 

Figure 6. Calibration results for Landfill Lostorf. 

Figure 7. Validation results for landfill Lostorf. 

Figure 8. Calibration (upper) and validation 
(lower) results for landfill Seckenberg. 
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discharge, total suspended sediment, and nutrient 
loads. Agricultural areas delivered the largest 
sediment and nutrient loads to the streams. This 
was the case especially after high rainfall events. 
The present study demonstrates the overall 
effectiveness of the adopted integrated spatially-
distributed modelling approach in investigating the 
holistic relationships between natural system and 
landuse.  

The objective function formulated for the 
optimization is referred to as a “constraint 
objective function”. Its formulation is as follows: 

( ) ( )

( ) ( )∑ ∑

∑∑

−+−

+−+−=

3 4

21

2
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)(
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where q is discharge, S is sediment load, NO3 is 
nitrate load, and P is the phosphate load in the 
river at the watershed outlet. w’s are the weights 
chosen such that each component has equal 
contribution to the objective function, and n’s are 
the number of measurement. Sload(j) is the sediment 
load from landuse j, NO3,load(j) is the nitrate load 
from the landuse j, and Pload(j) is the phosphate 
load from landuse j. subscripts min and max are 
the lower and upper range of loads from the 
landuses determined from previous studies and 
expert judgement, and L is the number of landuses. 
In this study there were six landuses: forest, 
summer pasture, wheat, alpine pasture, barren 
land, urban, and orchards. Optimization of the 
above objective function resulted in parameters 
that produced the best simulations and at the same 
time respecting proper loads from various landuses 
within the watershed. This type of constraint 
multi-component objective functions helps to 
decrease the range of solutions dramatically and is 
a practical solution to the non-uniqueness problem. 
A downside, however, is that various 
measurements and constraining conditions must be 
available. This is usually not the case for most 
watersheds. 

The calibration result for discharge is shown in 
Figure 9. Shaded region shows the 95PPU while 
observed discharge is shown in red and best 
simulation result is shown in green. The R2 value is 

0.91 and about 80% of the measured data is 
bracketed by the 95PPU. 
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Figure 10 shows the calibration result for sediment 
load. Figure explanation is similar to discharge. 
The R2 value is 0.55 and around 75% of the 
measured data is bracketed by the 95PPU. For 
most times, the simulated sediment under-
estimates the measured data. In view of a local 
expert who was involved in sediment 
measurement, the measuring devices were 
erroneously located in areas with high local 
turbulence, and hence, the measurements are 
overestimated.  
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The calibration result for phosphate is shown in 
Figure 11. Shaded region shows the 95PPU while 
observed discharge is shown in red and best 
simulation result in shown in green. The R2 value 
is 0.53 and about 70% of the measured data is 
bracketed by the 95PPU. 

Figure 9. Calibration result for discharge at the 
outlet of Thur watershed. 

Figure 10. Calibration result for sediment at the 
outlet of Thur watershed. 
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Figure 12 shows the calibration results for nitrate. 
Explanation of the Figure is as before. The R2 
value is 0.80 and about 90% of the measured data 
is bracketed by the 95PPU. 
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The above calibration results for a watershed of 
1700-km2 area is quite acceptable, especially, 
when nutrient and sediments loads from each 
landuse is within acceptable limits. 

 

5. CONCLUSIONS 

The SUFI-2 algorithm for a combined parameter 
optimization-uncertainty analysis was developed to 
handle a large number of parameters and was 
applied to two different situations. In both cases 
quite good calibration and validation results were 
obtained. Parameter uncertainties and prediction 
uncertainties were calculated and statistics such as 
%measured data in the 95PPU and R2 gave a good 
measure of the strength of calibration results. 
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