Econometric Analysis of Global Climate Change

David L Stern! and Robert K. Kaufmann?
| Centre for Resource and Environmenial Studies, Australian National University, Canberra ACT 0200, Australia. E-
mail: dstern@cres.anu.edu.an
2 Center for Energy and Environmestal Studies, Boston University, 675 Commonwealth Avenue, Boston MA 02215,
1JS A, E-mail: kaufmann@bu.edu

Abstract This paper reports on our research on applying econometric time series methods to the analysis of
global climate change. The air of this research has been to test hypotheses about the causes of the observed historical
rise in global emperatures. Longer term applications include policy analysis and use of the model 2s a module n
integrated assessment. Research to date has comprised three phases. In the first (published) phase we used the concept
of Granger causality and differences between the temperature record in the northern and southern hemispheres to
investigate the causes of temperature increase. In the second phase we use a single equation comtegration analysis of
first order integrated variables to examine the causes of giobal temperature change. Both these analyses indicate that
increases in greenbouse gases and solar krradiance, modulated by sulphate aerosol concentrations, are respoasible for
the observed changes in temperature. In the third, current, stage of research we are examining the possibilities of
modelling climate change as a second-order cointegrated sysiem. This approach may be able to address anomalies

raised by our earlier ressarch.

. INTRODUCTION

1t has been argued that "Empirical siudies of
relationships between smoothed forcing factors and the
statistically non-stationary historical temperature secard
cannot. alone, resolve the relative contributions of the
different forcing factors ... rigorous statistical tools do
not exist to show whether relationships between
statistically non-stationary daia of this kind are wuly
statistically significant” (Folland ef al., 1992, pl63).
This is no longer true, The inability to detect relations
among uonstationary variables also presented
considerable problems for macroeconomists. Vector
avtoregression (Sims. 1980} and cointegration
techniques were developed (Engle and Granger, 1987,
Johansen, 1988) to detect and quanify relations among
macrocconomic variables such as GDP and aggregate
price levels that are non-stationary trencing variables
that may have possibly common long run trends.
Cointegration analysis bas a similar aim to spectral
analysis but looks for common stochastic trends in
nonstationary varizbles rather than common cycles in
stationary variables and estimation is generally carried
out in the tme domain rather than the frequeacy
domain.

This paper reports on owr research on applying
economelric tme series methods to the analysis of
global climate change. Very few researchers have
previously used time domain econometrics methods 1n
this context. Apart from ourselves (Kawfmann and
Stern, 1997; Stern and Kavfmann, 1997) only Tol and
de Yos {1993} and Tol {1994) have explicutly argued
that they use econometric time serigs methods in
investigating the causes of climae change. though
Schoawiese {1994) uses ap economeiric type modsl
with lagged independent variables. We bave, however,
ssed a cousistenr methodelogy and techniques
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developed in econometrics in the last couple of decades
which have not previously been applied to this problem.
Other statisiical studies have applied frequency domaia
methods (e.g. Kuo et al.. 1990; Thomson, 1995) and
simple regression models (e.g. Lean et al., 1995).

QOur research to date has proceeded through three stages.
Initially we used a simple vector autoregression model
10 analyse causes of changes in northern and southern
hemisphere temperatures (Kaufmann and Stern, 1997).
In the second, completed (but so far unpublished), phase
we examined the tme series properties of global change
variables and estimated a small cointegration model
(Stern and Kaufmann, 1597). In the third, current, phase
we are employing various approaches aimed at clearing
up anomalies raised by the first two phases of research
and paving the way for 2 more complete and
sophisticated model,

Most of our research 1o date has tested hypotheses about
the causes of climate change and to a lesser degree
quantified the contributions of various forcing factors 1o
the observed change in global temperature. In
subsequent phases we aim to concentrate more on
quantifying these relative contributions and proceeding
1o develop a smatl econometric model of climate change
that could be used as a module in integrated assessment
exercises.

2. GRANGER CAUSALITY AND
HEMISPHERIC TEMPERATURE
RELATIONS

The first phase of our research exploits the differences
between the northern and southern hemispheres in terms
of anthropogenic variables and their possible effects on
ciimate. While greenhouse gases such as carbon



dioxide, CFCs, nitrous oxide, and, io a lesser degree,
methane are relatively well mixed between the
hemispheres, sulphate serosols that reduce radiative
forcing are short-lived and have their major effect fairly
close to the source region. Most of the tropospheric
sulphate aercsol is emitted from northern hemisphere
economies. Therefore if the build-up of gresnhouse
gases in the atmosphere has already increased
temperatures the signal should be more apparent in
southern hemisphere temperatures which would be less
“contaminated” by the "noise” due to sulphate aerosols.

The main tool we use is the Granger causality test
(Granger, 1969). Granger causality tests are based on
the notion of predictability, If past values of X improve
forecasts of Y given all relevant past information on Y
including its own lagged values, X Granger causes Y.
This implies that Y is the dependent variable and X an
independent variable. The test is carried out by jointly
restricting the coefficients of the lagged values of X to
zero in the equation explaining Y in a vector
autoregression (VAR) model. A VAR model can be
represented by:

Vo T Vg o AL T FHH+BL g

where y is a vector of variables. the A, are matrices of
regression coefficients and ¢ is a vector of white noise
Processes.

The detection of Granger causality does not necessarily
imply the presence of a physical causal mechagism
between the two variables. Furthermore, the detection
of Granger causality depends on the information set of
conditioning varizbles. The coefficient estimates may
be biased by the omission of relevant variables that are
in fact the causal variables.

specifically, we test whether southern hemisphere
temperatures Granger cause snorthern hemisphere
temperatures and vice versa in the presence of different
seis of conditioning variables. We use the temperature
series developed by Jones et al. (1994) for the period
1865-19%4,

The resulis in Table 1 show that there is south to north
causality in simple models which inciude no
conditioning variables or only changes in solas
irradiance (Lean st al., 1995), stratospheric sulphates
(Sato et al., 1993}, and tropospheric sulphates.
However, when greenhouse gas concentrations are
introduced into the model the Granger causality
disappears. Al these variables are transformed to reflect
their contribution to radiative forcing {Kattenberg o al.,
199¢). A sumber of sensitivity tests and other
investigations indicate the robustness of this result
(Kavfmann and Stern, 1997),

We interpret this result to indicate tha: southern
hemisphere temperatures act as a proxy variable for the
greenhouse gases (and changes in solar irradiance),
They therefore explain changes in the northern
hemisphere which are also partly driven by the increase
in greenhouse gases. However, sulphate agrosols have a
strong effect on nerthern hemisphere emperatures but
not on southern hemisphere temperatures, Therefore,

northern hemisphere temperatures are not useful in
predicting southern hemispbere temperatures. This
interpretation is supported by cointegration modelling
cwrrently in progress.

Table 1 Significance Levels of Granger
Causality Tests

Model 1 (Temperatare Only)
North Causes South 0.79
South Causes North 0.015

Madal 2 (Model | +Natural Variables)
Morth Causes South 057
South Causes North 0.013

Model 3 (Model 2 + Greeahouse Gases)
North Causes South 0.90
Scuth Causes North 0.081

Model 4 (Model 2 + Tropospheric Sulphates)

North Causes South 0.70
South Causes North 0.010
Model 5 (Model 2 + GG's + TS's)
MNorth Causes South (.83
South Causes North 0.12
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The south to north causal order appears to have
strengthened over time - another possible sign of an
anthropogenic cause. Figure | shows the significance
level of the south-north Granger causality test as the
sampie period is incrementally increased by one year.
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Figure 1 Change in significance level with sample size



Tests show that this is not simply due to the larger
sample. The recent data is more informative and it
seems that this can be explained by changss in the
forcing variables (Kaufmann and Stern, 1997).

T'o further test our methodology we applied the Graager
causality test to the output from the Hadley Centre
GOM (Mitchell ef af.. 1995), We found south to north
Granger causality in the output from a simulation of the
historic atmosphere but not in control simulations or im
forecasis of future conditions (when sulphur emissions
shift southward).

3. A MORE DIRECT APPROACH

In this phase of our research we investigate the tme
series properties of a group of global change variables
and estimate 2 simple cointegration model for global
temperature. This colntegration approach is a more
direct test of the effect of radiative forcing variables on
temperature than the approach we used in the first
phase,

Classical regression models asspme thai the variables
are siationary ie. that two sub samples of the sample
wsed have the same distribution, One possible way for a
variable 1o be nonsiationary is for it to contain a
stochastic trend or unit root process. For example, in the
case of a first order muoregressive proocess (AR(1)) if
the autoregressive coefficient is unity then the process
hecomes a random walk i, it has 2 stochastic rend.

Z, = Gz + Bt+ o+ oE

£, is a white noise process and t is a deterministic time
trend. i o = 1 then z, ~ K1} - it is integrated of order
one ie. itis arandom walk Ko< L thenz ~ I(0) - itis

integrated of order zero. I in the latter case i = O the
process is said to be levels stadonary, whilt f 5> 0 itis
said 1o be rend stationary.

Tabie 2 Tests for Stochastic Trends
Variable Dickey-  Phillips-  Schmidt-
Fuller Perron Phillips

Temp - nhem gy 0 K
Temp - shem D) LK) i
Temp - global 1) 10) 10)
COs K2 (i) EEY
{'Ha i) h iy
{FCL L) 2 2
CFC1Z H)) 2 ¢
Mo i L HD
Sun L 83 D
Stratospheric O (0! i)
Sulphates

SOx emissions D HEY i

Standard economeiric lests can be used to detect the
presence of a stochastic trend. The most prominent of
these originated with Dickey and Fuller (1979). Phillips
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and Perron (1988), and Schmidt and Phillips (1992). We
applied these tests to a number of important global
change variables. The results are summarised in Table
2. 1(2) indicates a second order integrated process. This
term is explained in the next section. Stochastic trends
are found to be present or possibly present in most of
the variables except the stratospheric sulphate series.
The temperature series are borderline. Some tests
indicate stochastic trends while others do not.

Most linear combinations of I{1} variables are also I(1).
Regressions of such varisbles will not produce
consistent parameter estimates. However, a lmear
combination of integrated variables may be stationary
if they share one or more common stochastic rends. In
the latter case, the variables are said o cointegrate
{(Fngle and Granger. 1987). A simple example is shown
in the following two equations:

C, = oo VI g
B B + B+ my

where e is a stationary but not necessarily white noise
process and T, is & white noise process. In the absence
of forcing by the random walk E, C would be a
stationary variable. In this case a regression of G, on E,
will have stationary residuals and consistent parameter
estimates. The regression acts to "zero out” the
integrated variable E,. The cointegrating vector is said
to be [1 -a -v] so that the stationary linear combination
[C, -o -+E] represents 2 long-run eguilibrium
relationship.

H]

The Granger Representation Theorem (1987) states that
if v, cointegrates then it has a vector emor correction
medlel (VECM) representation:

Ay, = T Ay + T Ay + B’ ¥ + Ot + &

where o is the adjustment coefficient(s) and P is the
cointegrating vector(s). This is a reparameterisation of
the VAR mode! above. Both the number of
cointegrating vectors and the parameters gan be
estimated by maximum likelihood using the procedure
developed by Johansen (1988).

We applied the Johansen method io estimaie z single
equation autoregressive mode! for global temperature
{Jones ef al., 1994), The estimates of o and P are
presented in Table 2. Other parametsr estimates are
given in Stern and Kaufmann (1597).

Table 3 Cointegration Medel

Coefficient Standard error
Cointegrating vecior B - Long run relation
Temperanure 1000 0
Trace gases 0458 (089
Solar rradiance  -(:458 089
Tropospheric -1.443 369
sulphates
Time trend 0,008 002
Loadine factor o- Adjustment to long run relation

-3.590 0.093




All the estimated parameters are significant. We also
tested whether temperature could be represented by a
trend stationary process. The null hypothesis was
strongly rejected. Temperature has, thersfore, a
stochastic trend and there is cointegration between
temperature and the radiative forcing variables, The
cointegration model apparently helps reveal this rend
by reducing the noise in the temperature series (c.f.
Hansen, 1993),

The negative signs on the coefficients of the radiatve
forcing variables indicate that they have a positive
effect on temperature. The climate sensitivity (long-run
temperature impact of doubling CO,) is estimated to be
2.0°C,

4. SOLVING THE PUZZLES

There are a number of ountstanding problems with the
results obtained so far:

1. In the cointegration model the time trend is
much too large {+0.08°C per decade in the absence of
greenhouse warming). The adjustment rate of
temperature 10 long-run equitibrium {59% per annum) is
much too fast,

2, We have not been able to estimats reasonable
equations for CO, and CH,. Climate feedbacks are
likely to be important but are ignored in the models
estimated so far. Also itranslating emissions into
temperatnre impacts as required in integrated
assessment requires the modelling of these gases,

3. Various other sources of evidence (inchuding
Table 2} show that some [{2) behaviour occurs and that
an I{1} cointegration model may be inappropriate.

The following equations are a simple example of an 1(2)
stochastic process:

Zy = Zep 4+ By + g

My = Hep + W

where g and 7, are both white noise processes. In this
example |, is a random walk (I(1)) and z, is a random
walk forced by another random watk (123 An 2
coiategrated system can allow more complex dynamics
and slower returns to equilibrium than are
accommodaied by I(1) cointegration models.

The problems ia 1. are we believe partly due to forcing
the model into a single global equation and alsc due to
assurming that all variables are I(1).

As a first step we are currently estimating a
cointegration version of the model developed in the first
phase with separate equations for northern and southern
hemisphere temperatures. Results are similar to the
Granger causality results reported above and parameter
estimaies arg improved reladve to those in Table 3. The
time trend is insignificant and sulphates have 2

coefficient closer to those of the trace gases. However,
the adjustment coefficient is still much larger than
expected. Preliminary I(2) cointegration models that we
have estimated show that dropping the I{1) assumption
leads to muck lower estimates of the adjustment
coefficient. It also may allow estimation of reasonable
equations for CO; and CH,.

Thers is ong problem with the interpretation that the
system is an I(2) cointegrated system. While the
evidence that, for example, CO, concentrations are 1(2)
is pretty good there is no firm evidence in the above that
temperature is an 1(2) process. The standard unit root
tests have difficulty in determining that temperature is
integrated at ail. A physicaily meaningful model in
which CO2 drove temperature would imply ¢hat at least
in the southern hemisphere temperature was an I(2)
process. In the northern hemisphere it is possible that
there is cointegration between sulphate aerosols (if they
are zlso H(2) and trace gases so that the net radiative
forcing is I(1). Some results from preliminary [(2)
cointegration models suggest that temperature could be
a noisy 1(2) process but these are not very clear cut as
yet.
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Figure 2 Southern hemisphere temperatures and fitted
stochastic trend

As an alternative we propose to use signal extraction
methods to model the stochastic trend present in the
ternperature series. In this approach a structural time
series ARIMA (p. 2, q) model is fitted to the series
using the Kalman filter to evaluate the likelihood
function and predict the stochastic trend (see Harvey,
1989

T, = He + g
o = B, + A+ T
Mat = A+



where T, is the temperature series, 2, 1S a stationary
ARMA process and 1, and v, are white noise errors with
uncorrelated variances o?(ny and 6%{v). A test of the
aull hypothesis o*(v) = 0 is a test of the hypothesis that

T~ 1) as opposed to the aliemative that T~ [(2)

Initial results are promising, Figure 2 presents a trend
fitted to the southern bemisphere temperanue series. We
have not yet determined whether this 1s the maximum
likelihood estimate. The trend shown is I[(2) and shows
some similarity 1o the stochastic trends in carbon
dioxide and other wace gases, Preliminary tesis show
that if may cointegrare with these gases to an HD)

diseguilibrium.

5. CONCLUDING COMMENTS

Se far we have gained a number of important insights
from our research. First, we have shown that
econometric methods are useful in the study of climate
change when applied rigorousiy and consistently.
Somewhat surprisingly, the available dats do appear
adeguate for the purpose. However, we have learned
that the time series properties of the data are quite
complex and may require the use of {2} cointegration
modeliing as opposed to the simpler I{1} approach. We
have also learned that i is necessary and useful o meat
the two hemispheres separately. On the substantive side
our research appears o indicate that people have
already altered the climate and possibly that this signal
is sgengthening. Other variables such as changes in
solar irradiance may also play a role in the observed
warming.

However, we are still some way from achieving all the
goals of our research which include quantifving the
contributions of different variables to historic climate
change and developing a structural model that could be
used for integrated assessment. Development of an K2)
cointegration model will hopefully aid in the
achievement of these aims.
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