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Abstraet The systems analysis and modelling of agricultural enterprises remains z developing discipline, with many real-

world applications.

Different methodologies and approaches are available, with each having advantages and better

performance when applied to particular types of problems, These are outlined with examples. For the optimization of
higher-dimensicnal general models, studies show that only the more recent methods of evolutionary algorithms (such as
genetic algorithms) and simulated annealing (including its extension to simulated quenching) can be recommended. An
gconomic case study using @ lfarge and difficult beef herd dyramics model, over a ten-year horizon, reveals that the
superior searching capabilities of genetic algorithms generally resulted in this method identifying better soluttons than
simulated annealing, and achieving these using less computing time.

I INTRODUCTION

The application of systems methodology and simufation
modelling to agricultural areas is a growing discipline.
Typicaily, an agricultural system (ranging, for example,
from natiopal industry systems down to whole or sub-
farm enterprises) is modelled mathematically to arrive at
a valid representation of the system under study. This
model can then be investigated far more thoroughly,
efficient and guickly than can the original system. In
particular, the effects of the various input parameters of
the system {such as a farm’s management options) on
relevant outputs {eg, economic gross margin) can be
rialed, and the model used to identify the best strategies
[Thornton and McGregor [9881  As the size and
complexity of the modelled enterprise grows, the task of
identifying the system’s economic optimum becomes
increasingly more difficult.  Even 20 years age, the
literature in this area of agricultural modelling was "so
vast as o preciude a comprehensive survey’ [Day 1977],
and since this time numerous textbooks and journals
such as Agricuftural Svstems have continued reporting
such studies.

Faced with this depth and diversity of applications, this
paper focuses on the more difficult field of optimizing
higher-dimensional models of these systems. The “curse
of dimensionality’ causes most probleras here - as the
complexity and number of dimensions of these systems
increase, so to a greater extent does the problem of
finding the global optimum [Meadows and Robinson
1985]. These real-world problems typically present
difficulties not evident in case studies on mathematical
test  functions. A simulation medel cannot be
differentiaied to estimate the slope and curvature of the
response surface. Also, these surfaces can range from
smooth through to  discontinuous, with the latter
occurring when the system is over-utilized to the point
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where it ‘crashes’ {both biologically and economically).
One freguent problem is the existence of multiple optima
- highy low, or intermediate levels of management can ail
produce economie outcomes which may be locally
optimal, but may or may not be comparable with each
other. A successful optimization method needs to be
able fo search across the full range of sll available
options.

The following section outlines Hterature studies in the
arca of model optimization, identifying the more
promising technigues. Sections 3 and 4 respectively
introduce and solve the challenging case study of a herd
dynamics model, and in section 5 general conclusions
comparing methods are drawn.

2. OPTIMIZING MODELS OF AGRICULTURAL
SYSTEMS

Applications of simulation modelling o agricultural
systems can be divided into two main types. The first
covers the broad field of mathematical programming,
including  linear, integer, quadratic and nonfinear
programming  methods. Here, the system under
investigation is represented by a framework of
mathematical equations and constraints which are
conducive to solution, by a range of mathematical
methods.  These have been used for large-scale
allocation studies {Pratt et al. 1986], the scheduling of
irrigation applications {Botes et al 1996], and the
optimization of spatial and temporal harvesting
schedutes in forestry systems [Roise 1990], {Lockwood
and Moore 19931 However, the complex and
heterogenous nature of many real-world systems can
require more modelling detail than allowed by these
metheds [Fu 1994], and they have trouble dealing with
nonlinear behaviour and interactions between variables



[Gabbert et al. 1991]. A horticultural allocation problem
using linear and dynamic programming [Annevelink
19927 was found to be too computationally intensive for
practical use, and a genetic algorithm was prefarrad.
Mathematical programming methods are also prone to
converging to locai optima (rather than the targeted
global optimum}, as found with nonlinear programming
of groundwater remediation strategies [Kuo et al, 1992],
and sequential quadratic programming of chemical
engineering processes [Messine et al. 19961,

The second ciass of optimization methods involves the
separate steps of system simulation, followed by model
optimization. For many systems, this ‘simulate and
search’ process is more flexible and realistic than
mathematical programming [Botes et al. 1996]. The
simulation phase allows the development and refinement
of the model until a realistic fit with the real world is
achieved, and enhancements may be incorporated as
necessary. When finished, the simulation model
becomes an optimization problem. For simpler models,
complete evaluation or factorial designs can be used to
identify the optimum [Mayer et al. 1994], however this
becomes  infeasible  with  even  moderately-sized
problems. Given that many management decisions {eg.,
irrigation, fertilizer, supplements) may be requived to
within the nearest 2% of their full range, a small 6-
dimensional problem can have a total of around 10"
discrete combinations of management options.  This
defines the search-space of the problem. Given its likely
size, targeted and efficient optimization routines are
required.
description, and perform poorly by comparison [Corona
et al. 1987], [Syswerda 1991}, The more modern and
efficient algorithms are rapidly gaining acceptance. For
example, of the 21 papers in the ‘Metaheuristics in
Combinatorial Optimization’ issue of the Amnals of
Operations Research [Laporte and Osman 1997], tabu
search was used on 8, 0 applied simulated annealing, and
5 used genetic algorithms. The general methods used
the practical optimization of models include -

Gradient-type Methods - These include hill-climbing,
conjugate-gradient, quasi-Newton, and a range of other
algorithin types. In general, they operate by estimating
the gradient and curvature of the response surface at the
current point, and then jumping to the estimated location
of the optimum for the next iteration [Fietcher 1987].
Originally developed to track the optimum of smooth,
unimodal functions, these methods have serious
shortcomings when applied to real-world systems. They
do not adapt well to variable, fractal, or discontinuous
surfaces [Polyak 1987]. However, a major problem is
their inability to escape from the basins of attraction
around local optima. Once in such a region, these
methods tend to converge to the local optimum, rather
than searching more widely and finding the global
optimum. ©n a dairy farm model with 14 interacting
dimensions, the quasi-Newton algerithin  repeatedly
converged to  local optima, often far inferior
(economically} to the best solution found [Mayer et al.

Random search techniques do not £it this

1110

1991]. In the optimization of forestry schemes, Powell’s
method of conjugate directions was used successfully on
problems with up to 200 separate stands {Roise 1990],
and this was suggested as the approximate maximum
size solvabie by this method,

Direct Search Methods -  These somewhat dated
methods use only the model values in a geometric search
pattern. Direct search algorithms include the simplex
[Nelder and Mead 1963] and its extensions {such as the
complex algorithm), and some more recent adaptations
[Torczon 1991). Generally viewed as inferior to other
methods [Fletcher 1987}, in practice they have proved
valuable in the solution of real-world engineering
systems {Karr 1991]. On a dairying model, the simplex
performed better than a2 gradient method [Mayer et al.
1991], although it was subsequently found to be inferior
to the more modern optimization algorithms [Mayer et
al. 1996]. The simplex was also used to optimize
irrigation scheduling for a crop growth model [Botes et
al. 1996}, in preference to linear programming.

Evolutionary Algorithms - This field of methods
includes genetic algorithms [Davis 1961] which were
developed throughout the 1[980s, the more recent
evolutionary strategies [Bick and Schwefel 1993] and
evolutionary  programming, and their combined
developments and hybrids, such as the breeder genetic
algorithm [Mihienbein and Schlierkamp-Voosen 1994],
All these methods are based on the processes of natural
selection, with the input options of the modelled system
mathernatically defined as ‘genes’ [Davis 1991]. The
*fittest” (most profitable} trial solutions are selected for
cross-breeding and mutation, to eventually produce the
optimal combination of traits. Genetic algorithms tend
to use a binary representation of genes, and inciude
crossover as one of the key operations, On the other
hand, evolutionary  sitategies  use  real-number
representation, and rely primarily on mutation strategies
to produce better “offspring’. Keane [1996] conducied a
comparative study of these two classes using difficult
test functions, having high dimensionality, multiple
optima, and discontinuities. Results indicated similar
performance between the evolutionary algorithms tested,
with all being superior to simulated annealing, which
was also tested.  Evolutionary algorithms have been
applied to a wide range of real-world problems [South et
al. 1993}, A genetic algorithm was used to solve a
horticultural  allocation problem  which had proved
intractable under  mathematical programming
[Annevelink 1992]. it was also successful in the
calibration of catchment runoff parameters [Wang
1991], where the more traditional methods (gradient and
direct search} falled. On a dairy farming model, genetic
algorithms converged to the global optimum in 10 % of
the runs, with an overall average performance of 99.7 %
of the global optimum [Mayer et al. 1996].

Simulated Anneafing - This slgorithm models the
annealing {cooling) process in metailurgy, where metals
gradually settle into a minimal-energy state [Kirkpatrick



et al. 1983]. By allowing steps to less successful
sglutions in the search space, # has the important
property of being able to escape from regions around
local optima. Whilst there is no guarantee that the global
optimum will ultimately be identified [Ingber (993}
simulated annealing usually achieves this by searching
slowly and thoroughly,

A number of improvements have been made to the
original method [Ingber 19897, [Ingber 1996b1 with a
view to improving the rate of convergence. Its ‘greedy’
extension to simulated gquenching [ingber [19%6b],
whereby the rate of cooling is increased, has in some
practical appiications proved successful, but is vet to be
widely tested. Simulated annealing identified the global
optimum of a groundwater model, whilst gradient
methods repeatedly converged to local optima [Kuo et
al. 19921, In medels of forestry scheduling, systems
with up to 27,500 stands of irees were solved by
simulated annealing [Lockwood and Moore 1993],
which is far larger than the limit suggested in gradient
method studies above. On a dairy farming model,
simulated annealing identified the global optimum in all
runs [Mayer et al. 1996], whilst the direct-search and
hili-climbing methods performing poorly.

Tabu Search - This method is more a metasirategy
which can he used with other optimization methods
iCvijovic and Klinowski 1995]. This approach marks
previously-visited locations of the search-space as being
‘tabu’, and thus forces the search away and into new
regions [Glover et al, 1993], This generally allows the
method to escape from areas around local optima. Tabu
search has seen wide use in the field of combinatorial
optimization, including spatial and temporal scheduling,
sequencing, patterning, and planning studies. Usually
combined with hill-climbing methods, tabu search has
also been used with simulated annealing [Fox 19933,
{Osman 19931 and genctic algorithms [Fox 1993}
However, whilst these types of problems may have large
numbers of nodes or items to allocate, they typically
only have a low degree of dimensionality. Given
simulation models with a higher number of independent
dimensions, it is too easy for the search method to “slide’
into alternate dimensions and stay near a local minima.
The curse of dimensionality again applies - to foree the
method away from even small basins of atiraction,
excessively long tabu lists must be maintained. For this
reason, tabu search has rarely been used on higher-
dimensional models. It was shown to be unsuccesstul
when used in combination with simulated guenching
{Mayer et al. 1993], actually resulting in an increase in
time to convergence,

Comparative  Performance - On mathematical test
functions, which tend to be smooth and of lower
dimensionality (less than 103, are varied -
examples are reported where each of the above classes
of methods appear superior to others. The more recent
techniques of genetic algorithms, simulated acnealing
and simulated guenching tend to ouwtperform the others

results
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in models of real-world systems, including agricultural
models [Mayer et al. 1995], [Mayer et al. 1996}, For
simuiation models with up to 10 dimensions, simulated
annealing appears superior 1o genetic algorithms
[Bramlette and Cusic 1989}, [Bramlette and Bouchard
1991]. At 16 dimensions they perform similarly [Mayer
ef al. 1995], [Mayer et al. 19961, with still a slight edge
to simufated annealing. In models with 20 to 30
dimensions, genetic algorithms appear more successful
[Powell et al. 1991], [Syswerda 1991], with this resujt
aiso holding on a test function of 30 dimensions [Ingber
and Rosen 1992].

3. HERD DYNAMICS PROBLEM

The model used to test simulated annealing and genetic
algorithms was DYNAMA, a PC-based commercial herd
dynamics package [Holmes 1995]. This simulates the
outcomes of decisions made by beef property managers -
in particular, the effects over time of changes in calving
rates, purchasing decisions, selling ages and rates, and
culling policies. Under the full set, there are 40
independent options to be trialed, resuliing in a 40-
dimensional search-space. A ‘restricted’ problem can
alsc be formulated, where half these are set to
supposedly near-optimal values, giving 20 dimensions.
in practice these management decisions tend to be highly
dependent on each other, resuiting in a high degree of
interaction in the outcomes. Thus, this is a challenging
problem for optimization methods, in terms of both size
and complexity of the response surface.

“The single-property nature of DYNAMA was extended

spatially by translating its definitions and relationships
into a Fortran-77 version on  networked Sun
workstations, and test runs verified against the original
package. For each of the 14 regions defined in the
Northermn Australian Beef Producers’ Survey {O’Rourke
et al. 1992], typical farm structures {in terms of size,
variable and fixed costs, animal prices, age and sex
balances of the animals, and mortality and conception
rates) were estimated to best match the survey and other
available data. The Brigalow region, which had the
largest number of survey respondents (619), was used as
the test case, taking the ‘average farm set-up’ from this
region. The outcome value to be optimized was taken as
the discounted before-tax net income over a 10-vear
horizon. To correctly evaluate the effect of herd
improvements, the discounted closing value of the herd
was added to this, and the opening value subtracted. Al
input parameters being optimized were constrained to
biologically-determined Hmits, eg., annual sales of each
cohort of animals must be between 0 and 100 %
inclusive. To remove any scale-dependencies amongst
the variables [Fletcher 1987}, all input parameters were
then re-scaled in the range 0-1, and the outcome value
scaled to around one at the global optimum. The
overall stocking pressure and annual nwanagement
options were set to be constant over time, hence only the
best ‘steady-state’ solution was estimated. Simulations



Table 1. Average performance (% of global optimum) of genetic algorithm gvaluations

Selection Criteria
Mutation Rate 0.001

Score-based

Ranks-based
0.01 0.001 0.01

Average optimum identified {%0) 09.969

99.948 99.752 96339

Table 2. Average performarnce {% of global optimum) of simulated annealing optimizations

Annealing (Quenching Factor

Temperature 0.5 1 {= anneaiing) 2 5
le-3 96.60 98.61 99.94 99.78
le-7 99.72 99.63 99,98 96.34

of the best strategies for dynamic problems, such as
going into, or coming out of, a drought remain to be
investigated.

A rtange of ‘free-ware’ optimization algorithms are
available on the Internet. The two C-codes we down-
loaded were selected because of their authors’
reputations in the scientific literature. Version 13.8 of
Adaptive Simulated Annealing [Ingber 1996a], and
version 5.0 of GENESIS, a genetic algorithm
[Grefenstette 1990] were cross-compiled with the object
code of the herd dynamics routine.  These were
subjected to repeated runs using different random
starting valugs, These runs previded both replicates for
these stochastic methods, and tests of alternate values to
the defaults for some of their operational parameters.
The correct implementation of these programs was
verified by checking the reported optimum against the
original version.

4. RESULTS AND DISCUSSION

Restricted model ¢20 dimensions) - This problem had a
search-space in practical terms of the order of 10™. This
is a daunting task, when one considers that even a
mitlion years of processing on cur currently fastest Sun
workstation would only result in around 10" model
evaluations. To effectively search this space, each
method was allowed runs of up to twoe million individual
mode! evaluations, which in some cases ran for two
days. For the genetic algerithm, previous studies [South
et al, 1993], [Mayer et al. 1996] suggested best results
from use of floating-point representation, Grey coding,
elitism, non-overlapping generations, and a cross-cver
rate of (.6, these aiso being the defaults in GENESIS
[Grefensteite 1998],  For the remaining three key
operational parameters, a factorial structure (with
different random starting values) was tested - 2
population sizes (30 and 50) by 2 mutation rates (0.001
and $.01) by 2 selection criteria (rank-based and score-
based). Based on these results, a double-precision
genetic algorithm was run for twice as long, which
identified an optimum of only (.001 % better
Expressing all results as a percentage of this best value
{now taken as the giobal optimum), these were subjected
te factorial analysis of variance. This showed
population size to have no effect, and Table 1 lists the
average performance for combinations of the other
factors.

Most of these genetic algorithm runs converged to the
identified optimum comparatively early, at an average of
143 thousand model evaluations. This indicates that at
this stage, most of the individuals in the populations are
genetically similar, so no further progress can be made
by cross-breeding. Advances are only possible via the
random nature of mutation. Whilst the higher mutation
rate (0.01} increased this probability, it also appeared to
interfere with the efficiency of breeding, amriving at
lower optima whilst taking 52 % longer to get there.

With simujated annealing, the enhancements and
operationat parameters suggested for large preblems
[Ingber 1996a] were adopted. Simulated quenching is
also recommended for such systems, despite 1ts
increased probability of failure [Ingber 1996b]. In
practice, quenching has proved successfui [Mayer et al.
19957, with the best resuits achieved at quenching levels
o around half the problem’s dimensicnality. However,
initial runs on this problem using quenching factors of
20, 15 and 10 produced notably inferior resuits. From
this, it was decided that slow, thorough annealing was
required for this difficulr problem, including also
gquenching al 0.5 to provide even slower cooling than
true annealing (which occurs at a quenching factor of
one). Annealing temperature is also a key parameter in
coniroliing the coolmﬂ schedule, so in addatmn to the
ASA default of 107, a lower value (107 ™y was also
trialed. For each cembmatzon of these parameters, three
random replicates were run, with their average
performance {as previously defined) listed in Tab]e 2.
The best individual run {at a temperature of 197 and
quenching factor of one) did converge to the global
optimum, but most resuits fell short of rh;s Three
optimizations using a higher temperature {107 averaged
only 94 % of the this best value, s these ranges were
discarded from further consideration.

Overall, the simulated annealing optimizations were
stower to converge to their respective optima, with an
average of 341 thousand model evaluations. This was
related to the degree of quenching, with jower vaiues
averaging up to 607 thousand evaluations per
optimization.  Also notable was the overall low
acceptance rate of 0.5 %, meaning the majority of
mode! evaluations were rejected by the method.

Full model (40 dimensions) - By doubling the number
of dimensions, the difficulty is increased enormously -
the methods are now faced with a search-space of the



Table 3. Optimizations of 40-dimensional herd dynamics model

Method Operational parameters Optimum identified Model evaluations at
{$A ,000) optimum (,000)

Simulated temperature = 107, annealing 116.i9 594

annealing temperature = 107, quenching (2) 130.89 363
temperature = 107, annealing i41.37 945
temperature = 107, quenching (2} 146.10 817

Genetic score-based, mutation rate = 0.001 152.28 222

algorithm score-based, mutation rate = 0.01 152.25 934
ranks-based, mutation rate = §.001 152.20 1,996
ranks-based, mutation rate = 0.01 152.07 1,934

order of 10", Week-long optimization runs using up to
& million model evaluations per run are required, and
even these could be insufficient in that better values may
have been found if longer runs were used. Results of
single optimizations for the genetic algorithm, and the
average of two random replicates for simulated
annealing, are listed in Table 3.

It is evident from these tables that genetic algorithms are
superior to simulated anpealing on this problem, both in
terms of optima found and speed of convergence,
Whilst simulated annealing is therough and safe on
lower-dimensional problems, it does not appear to be
able to adequately search the full space of larger models,
and repeatedly converges to local optima as the
temperature  approaches  ‘freezing point’  at  the
termination of each optimization. In conirast, the cross-
mixing and searching nature of genetic algorithms
consistently gives better results, especially when using
score-based selection.

5. CONCLUSIONS

Whilst a range of methods exist for the optimization of
muki-dimensional models, many will only work well in
limited situations. For the more difficult real-world
oroblems, a range of practical applications indicate the
eeneral superiority of genetic algorithms and simulated
annealing or quenching over other methods.  Between
the former, genetic algorithms perform comparatively
better as the number of dimensions of the problem
increases.
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