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Abstract

This paper describes how chaotic level fluctuations have been observed in the closed loop feedback level control

of a single tank system. The tank system is being studied because of its application to the process industries. The approach
makes use of differential 2guations in the simulations used and compares this to models that use difference eguations. A
difference equation mode! indicated the presence of pericd doubling bifurcations. The differential equation approach with a
sitaple gain cloment as the valve model showed chaotic behaviour at high gains.

1. INTRODUCTION

Chaos has emerged as a new phenomena wherein a
system: that is described by completely deterministic
equations generates output that appears (0 be stochastic,
i.e. bounded vet with the appearance of randomness,
Baker and Gollub [1590]. An example of this is the
seemningly random changes in the water level in a filling
tank,

The pioneering work in chaos theory was that of Lorenz
(19631 and was based on a set of set of simplified non-
linear differcntial equations, which modelled weatheron a
compuier,  Lovenz discovered the solutions to his
equations led o apparenily random trajectories bounded
in a fized region of staie space; the structure would be
named the Lorenz attractor. Many reports of chaotic
phenomena have appeared since.

This paper investigates the appearance of chaotic
dynamics in the level control of a single water tank
Chang and Lee [1994] have taken a difference equation
approach and we repeat part of that modelling. Like
Lorenz, the paper then looks at how the control system
might be modelled with differential equations and
whether or not chaotic dynamics can be predicted throngh
simulation and through testing.

The long term aim of this study iS not necessarily 10
design a better tank level control sysiem, but rather to be
able to generaliss results for other applications,
particularly in the process indusiries e.g. exothermic
reactors, Elnnashaie er af,, [1993],

pA EXPERIMENTAL

The tank system under investigation consisted of a
vertically mounted tank equipped with a 4-20 mA
differcntial pressure evel transmitter, z ceatrifugal pump,
rotameter, an /P converter, a modulating valve, return
tank and a PID controlier. The general layout is shown in
Figure 1, and is described in more detail in Fuller [19931.
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Figure 1. General Arrangement

At certain values of the PID controlier parameters, smali
fluctuations in the level were observed which did not
seem to follow any recognisable pattern. Figure 2 shows
the overall level magnitudes and Figure 3 the same
changes in rmore detail Examination of this
experimentally determined tme series seems to indicate
the existence of chaos.

Figure 2. Moise-like Level Changes {Chart recording)
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Figure 3. (lose up view of Level Changes.

3. DIFFERENCE EQUATIONS

From chaos theory it is known that if the system model
can be represented by 8 mapping x,.=fx.), then it can
display chaos in one dimension, May [1976].

The eguations that describe the dynamics of the level may
be derived from 2 mass balance as described in Ogata
[1990]:

dh
pA =pdvp Q-p Qou
1)
where g is the fluid density, A is the cross sectignal area
of the tank, £ is the level in the tank, ¢ is time, 4 is the

disturbance flow, @ is the input flow rate, and (. is the
output flow rate.

The normalised equation becomes, as shown by Chang
and Lee [1994]:

du

B4+ e -ku @)
where u is the normalised ank level, WA, O s
dimension-less  time, Gho 4 is the normalised
disturbance, darQ..

g(ry 1s the normalised flow difference from the steady staie
operating point; and k is the dimensionless control valve
characteristic or dimensioniass Cv.

Under the action of & proportional controller, the flow
would depend on the error between the actual level and
the desired setpoint, sp. Making use of first differences,
equation (2) may be coaverted into the difference
equation:

s = iy + A0 (d+ {1+ gl - u3 - 2y (3)

This may be coded into 8 MATLAB m-file, Etter [1993],
and solutions found, with the dimensionless gain, g, as
the varving parameter. The result for our tank sysiem is
the bifurcation diagram of Figure 4, which is in general
agreemeni with Chang and Lee [1994].
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Figure 4. Bifurcation Diagram

4. DIFFERENTIAL EQUATIONS

The success of the difference equation approach 10
modelling this chaotic type behaviour raised the question
of whether it is possible to derive a similar result using
ordinary differential equations. If so, it might then be
possibie to identify a three dimensional structure in an
attemnpt to find a “strange atiractor”. A strange attractor
is essentially defined as the asymptotic limit set to which
trajectories tend as time increases, Gulick [1992],

In particular for a continuous model, a dissipative system
must consist of at least three autonomous ordinary
differeniial equations in order to exhibit chaos, Sparrow
[1981} and Brockeit, {1982].

4.1 Valve Modelling Effects

In particular the way the modulating valve is modelled
may be particuiarly pertinent o the possible solutions that
result. The valve may be modelled as a constant gain, a
first order lag or a second order system, Weber {1992],
depending on the circumstances. Our tank system is
shown in Figure 5 with a P only controller and a second
order valve model. Note that the non-linearity comes
from the delimited relationship between the valve input
current to valve [ift or stem position (which is not shown
in the Figure).
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Figure 3. System with a Second Order Valve Model

We have so far modetled the valve as a gain only element.
This approach resulied in the following equations
describing the tank system:

%"; = .0.033x + 165/
dh
Sr= 0021k + 44.44(Q + &) )

0 = 7.456x10%exp{0.0181x)

where x is the valve lift (stem position) and / is the
current signal to the valve I/P converter/positioner.,



This is a set of two differential equations and one
algebraic equation. Yet, even this simplification of the
valve dynamics showed some promise for identifying the
onset of chaos. Signs of an approach to chaotic behaviour
were seen in the simulated system response, however the
response settled out to a stable fixed point for typical
(small) values of controller gain. Figure & shows thess
simulated responses, and Figure 7 the point atiractor.

Signs oif Chaotic Behaviour
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Figure 7. Fixed Point Attractor

It was interesting to note that for atypical (very high)
controller gain values the response appeared to exhibit
chaotic behaviour above the saturation limit of the /P
converier,  Figure @ shows these “chaotic”-like level
fluctuations.

0.56

o
4

Halght, m

0.82

450

;. L L i
1c0 150 200 250
Tume in s8¢

) s L s
0 50 B0 350 400 500

Figure 8. “Chaotic™like Level Fluctuations

it is then possible to go further and construct a three
dimensional plot of level, flow, and valve lift which
results in a diagram that locks very much like a strange
attractor. However, even though it is not our aim io look
at the quality of the conirol, the task of constructing a
strange attractor scems rather fruitless given the atypical
high values of the controller gains.

Indead, what this result may indicate is that the chaoctic
type fluctuations observed in the real tank arise from as
yet unmodelled dynamics, and a higher order valve model
should be investigated. Other evidence for higher order
models being more applicable is an additional non-
linearity comsisting of an observable hysteresis in the
dynamic behaviour of the valve,

5 CONCLUSIONS AND RECOMMENDATIONS

This paper investigated the appearance of chaotic
dynamics in the level control of a single water tank.

The difference equation approach taken by Chang and
Lee [1994] was applied 1w the sysiem to successfully
model these fluctnations.

The use of the differential equations approachk similar 1o
that of Lorenz {1963} did not yield the same result with
the control element modelled by a classical gain element,
unless the gain values were atypically very high.

However, the saturation behaviour of the moedel indicated
that a further investigation into the use of higher order
valve models, ¢.g. second order, is warranted.
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