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Abstract Based on the linear wave theory and Morison’s equation, the probability density of the random wave force
acting on an isolated pile is derived and a new linearized Morison equation is proposed. In contrast to the linearized
model proposed by Borgman, the new model predicts the random wave force with a larger value. A subsequent
analysis shows that the proposed new linearized equation is more accurate in calculating random wave forces

corresponding to small exceedences acting on an isolated pile.

1. INTRODUCTION

Determination of random wave forces acting on
marine structures is essential in  ocean engineering
design. Over the last few decades, many atiempts
have been made to develop formufae for the
calculation of random wave forces. For structures
comprised of slender piles, the generally accepted
formula is due to Morison and his colleagues (see,
Sarpkaya and Isaacson, 1981). In Morisonr's model,
the horizontal random wave force f acting on per unit
length of a pile is assumed to consist of two parts, a
flvid drag force and an inertia force, namely

f=f+. (1

where fp and f; are respectively the drag force and the
mertia force acting on per unit length of the pile and
are respectively related 1o the horizontal velocity u
and the horizontat acceleration a of the fluid particle

by,

fo = Kyujuf, @
fr=Ka, (3)

where
K, = % poDC,;, K = %npDZCm . (4)

in which 0 is the density of water, I represents the
diameter of the pile section, €, and ¢, denote
respectively the drag coefficient and the inertia
coefficient.

Although Morison’s mode! provides a good estimate
of the random wave force acting on slender piles, the
mode} is non-linear in velocity and thus it is difficult
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to develop efficient response analysis methods for
dynamically sensitive structures subjected to random
drag forces. Today, the only practical way to carry out
a stochastic dynamic analysis of a drag-dominated
structure without linearizing the drag force is to apply
the technique of time domain Monte Carlo simulation.
However, the computational burden involved in
application of this procedure for the estimation of ,
for example, long-term fatigue is almost prohibitive at
preseat for a detailed analysis. Therefore, it is
practically important to establish simplified models
for engineering design analysis. The importance of
developing a simplified model is also in that with
such a model one can derive analytical solutions for
the dynamic behaviour of certain structures and
accordingly provides not only a good understanding
of the dynamic behaviour of the structures but also a
means for validating numerical methods. The most
extensively used representation of drag forces om
structures is obtained by linearization of the Morison
equation. Borgman (1967), based on the analysis of
wave force spectrum, proposed a linearized Morison
equation and the equation has been widely used in
calculating random wave forces and the response
analysis of structures. However, it has been reported
(Tickell 1977) that the distribution of the drag force,
derived by Borgman’s equation and the linear wave
theory, significanily underestimates the drag force
correspoending (o smail exceedences. Hence, further
analysis is needed to modify Borgman's model.

In this paper, we derive a new linearized Morison
model based on the lincar wave theory and the
Morison formula. Firstly, we assume that the
linearized Morison model takes the form of

?zAw&K,-a .



with A independent of w. Then, the coefficient A is
such chosen that the variance of the probability

distribution of ? is the same as that of £ Hence, this

paper is organized as follows. In section two, we
present the form of # and a and then derive the joint
probability distribution of 1 and a and consequently
the distribution of f In section there, we derive the
variance of f and 7 and then determine the coefficient

A by matching these two variances.

2. PROBABILITY DENSITY OF RANDOM
WAVE FORCES

Let 1 denote the displacement of a random wave
surface at a spatially fixed point as shown in Fig.1.
From the lincar random wave theory, 177 can be

expressed as (see, e.g., Longuet-Higgins 1957}

=Y a,cosy,
n={

, t = time, g, = amplitude of the

(6

where ¥, =, i +£,
nth wave component, @, = frequency, and &, denotes
independent random phase uniformly distributed over
the interval (0, 277 ). From (6) one can determine, by
solving the waler wave equations {Borgman 1972;
Sarpkaya and Isaacson 1981), the horizontal velocity
u(z) and acceleration a(z) of a water particle, namely

o= "4(4,',{}
=k, g cosh(k,z)
povy Dad T oA/ : ’ 7
;;:? w, sinh(k,d) a, COSY, 7
o= a(z’ f}
co CDSh(k”z) ]
- ot 2 Sinhlk, d) : ne g
Z; e Si“h(k”a’) a, sy 3)

where o is the still water depth; g = gravity constant
and @, = k,g-tanh(k,d}. It can be shown from the

Lyapunov theorem that both » and a are random
variables with Gaussian distribution, namely

£(u] 1 ex w
] = - 5
“ 2no, P 202

i ox a’
rno, P 20’§ |

where £, and P, arc respectively the probability
and o> denote

respectively the variances of random variables # and a
and are given by,

9)

(10}

Pla)=

a

. . . " a9
distributions of « and a, o}

»? cosh” (kz)
= —ame——— & {e0)d 0, {1
f sinh* (kd) ml®)
ol =0.(z)
o cosh* {kz)
= —e—— 8 {0)dw (123
j smh kd) Tm( )
in which S, {w) represents the wave surface

spectruim.

From (7) and (8, it is further noted that the correlation
coefficient of 4 and @ i8 zero. Thus u and g are
independent rtandom variables and their joint
probability density is given by

i w? a’
P (u,a) = ————gxp] g — s . i3
walina) Ine o, p( Zoﬁ 20(21] (13)

The probability densities of the drag force, the inestia
force and the total random wave force can then be
determined from above equations, which is presented
as follows.

2.1 Probability Density of the Drag Force

As fp is directly related to the horizontal velocity u

iy (2), the probability density of the drag force fp can
thus be determined from the probability distribution
of u given by (9), thus

ol

P sgn
ol fo}= ) Kd|f91fu %, (o)
- ! . ( /o] J
= expi — =1,
20, /27K 4| fp| 2K ,0,
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Figure 1. Definition Sketch



where sgn(x) is the sign function given by

! {x>0)
sen{x)=<0  {x=0) (15)
-1 {(x<0)

Hence, the drag force obeys a symmetric distribution
with zero mean and the variance given by

0%, = [ iiPy(ip)dfp =305k (6)

2.2 Prebability Density of the Ineriia Force

As the inertia force is directly related to the horizontal
acceleration via (3), the probability density of £, can
thus be determined [rom the distribution of the
horizontal acceleration (10), namely

L h
P(f!)“Ki fa[Kj}

i £
= exp] — . {17
Koy T 2K} 0"

which is a Gaussian distribution with zero mean and
a variance given by

o7 =fjffP,(f;)df,=Kﬁa§_ (18)

2.3 Joint Probability Density of the Drag
Foree and Inertia Force

As i and ¢ are independent random variables, and the
arag force fp and the inertia force f; are respectively
functions of « and a, f, and £ are also independent

and thus their joint probability density P(fp, f;} can

be determined by

P(fD’fi):PD(fD)PI(fI)' 19

Z4&  Probability Density of the Total Random:
Wave Force
As the total random force fis the sum of f5 and f;, the

probability density of the total random wave force per
unit fength is given by

P(F)= [Py ()P, (£ -
- c_{;w w\/-%—cxp(—dl ,u){eXp(—dz (7 -u)? )
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2
+oxp(=da(F + 1) Jdu 20y
where
_ i
4rno oK. K,
1 1
dy = . 21
Fokel T agls! @1
Since

we have

P(f)= %exp{—dzfz).

.i@i@(ﬁ)kr(zk %J (23)

o (2k)! d}

where T'(x) is the so-called T"—function, H,{x) is
the nth degree Hermite polynomial. The probability
distribution (23} of the total wave force is non-
(aussian, although it is symmetric with zero mean.

3. A LINEARIZED MORISON EQUATION

From (20), (16) and (18), we can determine the
variance of the total random wave force
corresponding to the Morison equation (1), namely

o% = [ F2P(r)r
= J:oj:fzpn ()P (f ~ pyedudf

= [T 3 Py ()P, )y

=3K o8 + K102, (24)
On the other hand, the total random wave force given
by the linearized mode! (5) obeys the Gaussian
distribution with variance

0% = A%} + Kiol . (25)

By requiring the variance unchanged in  the

linearization, we have



A=3K,0,. (26)
Thus, we obtain a new Hnearized Morison equation
which has the form of

f=B3K,0u+Ka. 27

In contrast to Borgman’s (Borgman 1967) equation,

f= inG“u«i-KI-a, (28)
T

our model predicts the drag force with a higher value.
As it has been reported that Borgman’s model
underestimates the drag force, our model can thus be
expected to provide a more accurate approximation.
This argument is Turther supported by noting that the
probabitity densities of the drag force per unit length
corresponding to the proposed model and Borgman’s
are respectively given by

| 7o
‘D}(f[)): JEEK 0‘2 exp(“ 63('5 4}, 29)
d™ i dVu

. i
Pyfo)= =T

) ]

xp| — T |- (30)
du [ 16Kdgu
In contrast to the probability density of the drag force
corresponding to the Morison equation as given by
(14), the probability densities given by (29) and (30}
approach zero much faster as fp —> oo Thus, as
reported by Tickell (1977), the Gaussian distributions
derived by linearized approximations significantly
underestimate the drag force corresponding to small

ii4

given exceedences. The drag force calculated from
our model (27) is about 1.08 times that calculated
from Borgman's model (28), which further
demonstrates that the proposed linearized Morison
equation (27) is more accurate than (28) in calculating
the random wave forces corresponding to small given
exceedences on an isolated pile.

4. CONCLUSIONS

By analysing the probability distribution and
variances of random wave force, a new linearized
Morison equation has been derived based on the
linear wave theory. In contrast to DBorgman's
linearized mode!, our model predict the random wave
forces acting on piles with a higher value, which has
been shown to be a2 more reliahle estimation.
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