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EXTENDED ABSTRACT

Diabetes is a metabolic disorder where the body is no
longer able to properly regulate the use and storage of
glucose in the blood. The current medical treatment
of diabetes primarily involves insulin medication
coupled with strict dietary control. Insulin regulation
is achieved by means of discrete insulin injections
or premeditated insulin infusions via mechanical
pumps. Discrete insulin injections are therapeutically
suboptimal as insulin control is essentially open-
looped. Insulin infusion through a programmable
pump, on the other hand, offers the potential for
closed-loop regulation of the diabetic blood glucose
level due to the controllable insulin infusion rate.

The fundamental objective of a therapeutically
optimal closed-loop glucose regulatory system is to
artificially recreate and replicate the healthy insulin
profiles in a diabetic patient in response to metabolic
disturbances such as food intakes and exercises. How-
ever, current closed-loop glucose regulatory systems
generally employ static mathematical models of the
human glucose metabolic process to autonomously
derive the amount of insulin required by a diabetic
patient. These metabolic models often require re-
tuning to address the metabolic biodiversity in a
diabetic population as well as the intra and inter-day
metabolic variability of each individual patient.

In this paper, the functional principles of the human
cerebellum are harnessed to dynamically model
the biological autonomic regulation of insulin in a
healthy subject. This approach is motivated by
the cerebellums pivotal role in facilitating many
of the sub-conscious but precise cognitive and
human behavioral manifestations. The efficiency
and accuracy of the computation of the human
cerebellum have led to the development of various
cerebellar-inspired systems that are suitable for the
modeling and control of complex and non-linear
processes. A classical model of the human cerebellum
is the Cerebellar Model Articulation Controller
(CMAC) (Albus 1975) neural network. As a
computational model of the human cerebellum, the
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CMAC network manifests as an associative memory
network. The CMAC structure comprises of a multi-
dimensional array of storage cells that are uniformly
partitioned to cover the entire network’s input space.
The CMAC computation maps an input vector to
a set of memory cells; and the network output
corresponding to the input vector is computed as
the aggregate of the memory content of the selected
network cells. This table-lookup operating principle
of the CMAC network allows for advantages such
as localized generalization and rapid algorithmic
computation. However, the CMAC network’s
highly regularized computing structure often leads
to: (1) a suboptimal modeling accuracy; (2) poor
memory utilization; and (3) the generalization—
accuracy dilemma.

This paper proposes the use of a novel cerebellar-
inspired computational model named Pseudo Self-
Evolving Cerebellar Model Articulation Controller
(PSECMAC) (Teddyet al. 2007) to functionally
model the circulating plasma insulin concentration
in response to serum glucose fluctuations after food
ingestions in a healthy subject. The PSECMAC
network extends from the classical CMAC network by
employing a data-driven adaptive memory allocation
scheme to non-uniformly quantize the memory cells
in the input space. The non-uniform quantization
process of the PSECMAC network improves the
memory utilization rate while at the same time
increases the generalization ability and the output
accuracy of the resultant cerebellar model (Teetly
al. 2007). The modeling capability of PSECMAC has
been evaluated with the glucose metabolic data of a
healthy person. Due to the lack of real-life patient
data and the logistical difficulties and ethical issues
involving the collection of such data, a well-known
web-based simulator known &ucoSim(Glucosim)

is employed to simulate a person subject to generate
the metabolic data that is needed for the construction
of the healthy model. Simulation results have
shown that a Pearson correlation exceediog was
achieved by the PSECMAC-based insulin model. The
results are encouraging.
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1 INTRODUCTION

Diabetes Mellitus is a chronic disease where the
body is unable to properly and efficiently regulate
the use and storage of glucose in the blood, leading
to prolonged periods of high (hyperglycemia) or
low (hypoglycemia) plasma glucose concentration.
Chronic hyperglycemia causes severe damage to the
eyes, kidneys, nerves, heart and blood vessels of the
diabetic patients (Rubiret al. 1992) while severe
hypoglycemia can deprive the human body of its
primary energy source and cause a patient to lose
consciousness, which may be life threatening (Cryer
1992). Many of the diabetes related medical
complications, fortunately, can be prevented through
the tight control of the diabetic blood glucose
levels (DCCT 1995). The current standard treatment
of diabetes primarily involves insulin medication
coupled with strict dietary control. The insulin
hormone can be administered through discrete insulin
injections or continuous insulin delivery via an
insulin pump. The key component to the successful
management of diabetes, however, is essentially to
develop the ability to maintain a long-term near-
normoglycaemia state of the patient (Rosenstock
2001). Hence, discrete insulin injections are not
therapeutically ideal for the treatment of diabetes as
the regulation of the insulin hormone is an open-
loop process. Continuous insulin infusion through a
programmable insulin pump, on the other hand, offers
an effective approach to normalize the diabetic blood
glucose level due to the controllable insulin infusion
rate (Fletcheet al.2001).

Generally, the programmable insulin pumps are
algorithmically driven and an avalanche of regulatory

glucose regulatory systems are developed with fixed
insulin regimes and require strict patient compliance
to function properly.

This paper proposes the use of the PSECMAC
network as a novel brain-inspired approach to model
the healthy insulin response to external disturbances
such as food intake. The human cerebellum
is responsible for many sub-conscious but precise
cognitive and behavioral manifestations (Kane¢l

al. 2000). Therefore, the functional principles
of the human cerebellum can be harnessed in a
computational framework (i.e. PSECMAC) to model
the biological autonomic decision processes of the
pancreatic secretion of insulin to replicate the healthy
insulin profile for the treatment of diabetes. In
this paper, the PSECMAC network is employed as
a computational beta-cell to functionally model the
biological decision process of insulin secretion in
response to serum glucose fluctuations due to food
ingestion. The proposed approach has a distinct
advantage. The PSECMAC insulin model can be
easily adapted and customized to capture the intra-
and inter-day variability of the glucose metabolic
process among the different individuals in the diverse
population.

The rest of this paper is organized as follows.
Section[2 briefly describe the architecture of the
PSECMAC network and highlights the cerebellar-
inspired memory formation and knowledge acqui-
sition process of the network. In Sectipfp 3, the
patient profile and the dietary models employed in
the study are first described. Subsequently, Seflion 4
presents the proposed PSECMAC modeling of the
healthy insulin response of the specified patient
profile. The experimental results and analysis of

techniques of these insulin pumps have been proposed the performances of the proposed PSECMAC insulin

for diabetes treatment (Hovorka 2005; Carson and
Cobelli 2001). The fundamental objective of these
insulin pumps and their closed-loop systems is to
artificially re-create (via variable insulin delivery) the

healthy insulin profiles in a diabetic patient so as
to regulate the diabetic blood glucose level within
the homeostatic range of 60-110 mg/dl. Therefore,

model are presented in Section 5. Finally, Secfibn 6
concludes this paper.

2 THE PSECMAC NETWORK

The cerebellum constitutes a part of the human brain

the performances of such pumps to manage diabetes that is important for motor control and cognitive

correlate to their capability in replicating the insulin
response of a healthy person. However, the majority
of these insulin pumps currently employ static
mathematical models of the human glucose metabolic
process (obtained from data fitting of patient records,
compartmentalized differential/difference equations,
statistical or machine learning approaches) to compute
the amount of insulin required by a diabetic patient.
These models, however, often require manual tuning
to cater for the metabolic biodiversity of the diabetic
patients, as well as the intra and inter-day variability
in the glucose metabolic rates of each specific
patient (Makroglou 2006; Bellazgt al. 2001; Parker

et al. 2001). Consequently, these closed-loop blood
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functions (Middleton and Strick 1998), including
motor learning and memory. The human cerebellum
is postulated to function as a movement calibrator,
which is involved in the detection of movement error
and the subsequent coordination of the appropriate
skeletal responses to reduce the error. It functions by
performing associative mappingbetween the input
sensory information and the cerebellar output required
for the production of temporal-dependent precise
behaviors (Kandett al. 2000).

This paper proposes the use of a brain-inspired
cerebellar-based learning memory model named
PSECMAC as a generic functional model of
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Figure 1. Comparison of CMAC and PSECMAC
memory quantization for 2D input problem

the human cerebellum for solving approximation,
modeling, control and classification problems. This
architecture differs from the CMAC network imvo
aspects. Firstly, the PSECMAC network employs
one layer of network cells, but maintained the
computational principles of the layered-based CMAC
network by adopting a neighborhood activation of its
computing cells to facilitate: (1) smoothing of the
computed output; (2) distributed learning paradigm;
and (3) activation of highly correlated computing cells
in the input space. Secondly, instead of uniform
partitioning of the memory cells, the PSECMAC
network employs the PSEC clustering technique (Ang
and Quek 2005) to form an experience-driven adaptive
memory quantization mechanism of its network cells.
Figure[] illustrates this fundamental architectural
distinction.

The adaptive quantization process of the PSECMAC
network is performed in per dimension basis. The
non-uniform quantization of the PSECMAC memory
structure is inspired by the neurophysiological
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properties of the brain development, where the precise
wiring in the adult brain is a result of experience-
dependent refinement of initial architecture through
repeated exposures to external stimuli. This
experience-dependent plasticity is also observed in
the human cerebellum (Federmeddral. 2002), and

is incorporated to the PSECMAC network through
the PSEC clustering algorithm. Each training data
point is a learning episode to the network. In each
input dimension, the PSEC clustering algorithm is
used to compute clusters of data density, and the
memory axes in each dimension are allocated based
on the observed density profile of the training data.
Thus, more memory cells are allocated to the densely
populated regions of the input space. The details
on the adaptive quantization algorithm is reported
in (Teddyet al. 2007).

The PSECMAC network employs \Weighted Gaus-
sian Neighborhood OutpufWGNO) computational
process, where a set of neighborhood-bounded
computing cells is activated to derive an output
response to the input stimulus. For each input stimulus
X, the computed output is derived as follows:

1. Step 1: Determine the region of activation
Each input stimuluX activates a neighborhood
of PSECMAC computing cells. The neigh-
borhood size is governed by the neighborhood
constant parameterN, and the activated
neighborhood is centered at the input stimulus

(see Fig 1(\)).

2. Step 2: Compute the Gaussian weights
Each activated cell has a varied degree of
activation that is inversely proportional to its
distance from the input stimulus. These degrees
of activation functioned as weighting factors to
the memory contents of the active cells.

3. Step 3: Retrieve the PSECMAC output
The output is the weighted sum of the memory
contents of the active cells.

Following this, the PSECMAC network adopts a
modified Widrow-Hoff learning rule (Widrow and
Stearns 1985) to implement Weighted Gaussian
Neighborhood UpdatgWGNU) learning process.
The network update process is briefly described as
follows:

1. Step 1: Computation of the network output
The output of the network corresponding to the
input stimulusX is computed based on the
WGNO process.

2. Step 2: Computation of learning error
The learning error is defined as the difference
between the expected output and the current
output of the network.



Table 1. The profile of Subject A

Attribute Value

Sex Male

Age 40 years old

Race Asian

Weight 67 kg (147.71 Ibs)

Height  1.70 m (5ft 7in)

BMI 23 (Recommended for Asian)

Lifestyle Typical office worker with moderate phys-

ical activities such as walking briskly,
leisure cycling and swimming.

3. Step 3: Update of active cells
The learning error is subsequently distributed
to all of the activated cells based on their
respective weighting factors.

3 THE SUBJECT PROFILE

The first step into the modeling of the healthy insulin
response is to determine the subject profile to be
employed in the study. Due to the lack of real-
life patient data, the GlucoSim simulator (GlucoSim)
from the lllinois Institute of Technology is employed
to simulate a person subject to generate the blood
glucose and insulin data that is needed for the
construction of the healthy person model. For this
purpose, a human profile for the simulated subject
(Subject A) is created and described in TgHle 1. The
simulated person, Subject A, is a typical middle-
aged Asian male. His body mass index (BMI) is
23.0 and within the recommended range for Asian.
Based on the profile of Subject A, his recommended
daily allowance (RDA) of carbohydrate intake from
meals is computed using an applet from the website of
the Health Promotion Board of Singapore (HPBSQ).
According to his sex, age, weight and lifestyle, the
recommended daily carbohydrate intake for Subject A
is approximately346.9g per day.

4 THE PSECMAC INSULIN MODEL

It has been established that plasma glucose is the
most effective physiological nutrient stimulus of
the pancreatic insulin secretion (Matschinsky 1996).
Therefore, in this study, the PSECMAC network is
employed to capture the plasma insulin response of
Subject A to prior food ingestion based on the current
and past plasma glucose information. LB )
denotes the insulin profile of the healthy Subject
A. The insulin relationship to be modelled by the
PSECMAC network is formalized as eff] (1),

Inat+1) = F({Zum®)}) 1)
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where fH(A)(t + 1) is the predicted blood insulin
concentration at time + 1; {Zpy4)(t)} denotes
the information set that characterizes the glucose
metabolic process of the healthy Subject A due to a
normal diet at timeg; and3(-) is a nonlinear function
that implements the insulin model mapping from the
input metabolic variable§ Z 4)(t)} to the desired
output, that is, the blood insulin concentration at the
next sampling instancgy 4 (t + 1).

The GlucoSim simulator is employed to generate a
total of eight days of glucose and insulin data based
on the profile of Subject A and his normal dietary
habit. The carbohydrate contents and the timings of
the daily meals are varied from day-to-day during
the data collection phase. The GlucoSim simulator
requires10 different inputs, which consists of the
body weight, the simulation period, and both the time
and carbohydrate content of each of the assumed daily
four meals, namely: breakfast, lunch, afternoon snack,
and dinner respectively. This is to account for the
inter- and intra-day variability of the eating habits of
Subject A and to ensure that the PSECMAC insulin
model is not being trained on a cyclical dataset but
elicits the inherent relationships between food intakes
and the insulin response of a healthy person. The
collected metabolic data is subsequently partitioned
into two groups: the first 4-days data is used for
training the PSECMAC network, while the remaining
4-days data is used for the evaluation of the trained
network. A sampling interval of 5 minutes is adopted
to discretize the measurements of the blood glucose
and insulin concentrations.

Based on the collected glucose metabolic data, a total
of 18 glucose variables (consisting of the current and
past blood glucose measurements and its derivatives)
are extracted as inputs to model the healthy insulin
profile of Subject A. These variables are outlined as
Table[2. Due to the large number of input features
available (18 variables), a novel feature selection
algorithm named Monte Carlo Evaluative Selection
(MCES) (Quah and Quek 2007) is employed to
identify the prominent features that best characterize
the insulin response of a healthy person. That is, given

by eq. [2),

Tray(t+1)

SR Zuay®)}) @

where R MCES denotes the MCES feature
selection process. The reduced set of inputs/features
for the normal diet is subsequently denoted by[éq (3).

{’ZI\I/{C(II;‘S)E norma(t)} = R ({ZH(A) (t)}) (3)

The MCES method has the advantages of (1) low
computational cost; (2) the ability to identify both
correlated and irrelevant features based on weight
ranking; (3) being applicable to both classification
and regression tasks; and (4) is independent of the



Table 2. The glucose variables extracted to model the healthy insulin response

Feature Definition

G(t) the current blood glucose level @t

G(t—-1) the blood glucose level at— 1

G(t—2) the blood glucose level at— 2

G(t—3) the blood glucose level at— 3

dG(t) dG(t) =G({t) -Gt —-1)

dG(t—1) dGt-1)=G(t—-1)—G(t—2)

dG(t—2) dG(t-2)=G(t—-2)—G(t—3)

ddG(t) ddG(t) = dG(t) — dG(t — 1)

ddG(t—1) ddG(t—1)=dG(t—1)—dG(t —2)

Gmag (1) the 2-point exponential moving average (EMA) of the blood glucose 16Y&)
Gwma,, (t)  the 4-point EMA of the blood glucose levél(t)
Gma (1) the 7-point EMA of the blood glucose levél(t)
dGua, ()  dGua, (t) = Guag(t) — Gua, (1)

dGua, () dGua, (1) = Guag(t) — Gua,, (1)

dGma, (1) dGua,(t) = Gua,, (1) — Guma (1)

ddGMA1 (t) ddGMA1 (t) = dGMA1 (t) — MANzg(dGMAl ()
ddGMA2 (t) ddGM,/_\2 (t) = dGM,/_\2 (t) — MANzg(dGMA2 ()
ddGMA3 (t) ddGMA3 (t) = dGM,/_\3 (t) — |\/|A1\r:3(dG|\/|A3 ()

underlying induction algorithm used to perform the
feature selection process.

The MCES algorithm is executed independently for
50 times, where in each run, 50 iterations on
the training set (first 4-days of metabolic data) is
performed. The feature ranking results for 50
independent executions of the MCES algorithm are
aggregated to determine the relevant features for the
insulin modeling task. The salient/prominent features
are identified based on their rankings and associated
weights (evaluative feedback values). The top four
features, namely: the current glucose level (G(t)),
the 4-point exponential moving average (EMA) of
the glucose level (¢a,,(t)), the delta change in
the glucose level over the last 5 minutes (dG(t)),
and the 2-point EMA of the glucose level (fx, (t))

are selected as the glucose indicators/inputs to the
PSECMAC insulin model.

5 EXPERIMENTS AND RESULTS

A PSECMAC network with a memory size &fcells
per dimension is constructed to model the insulin
profile of the healthy Subject A. A neighborhood
size (N) of 0.1 and a Gaussian width constant) (v
of 0.3 have been empirically determined to give
the optimal modeling performance. As benchmarks,
the insulin modeling task is also performed using
various well-established empirical models. The
benchmarking models studied in this work are the
basic CMAC network (Albus 1975) and a fuzzy
CMAC variant named the FCMAC-Yager (Siret

al. 2006); a well-established neuro-fuzzy system
termed the GenSoFNN-CRI (Tung and Quek 2004);
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as well as the classical machine learning models
of the Radial Basis Function (RBF) network and
the Multi-Layered Perceptron (MLP). The parameters
for the FCMAC-Yager and the GenSoFNN-CRI
systems have all been empirically optimized for best
performances. There are two network structures of
the MLP, each having one and two hidden layers
respectively. These have also been empirically
determined. The RBF network is initialized to contain
50 hidden layer nodes. In addition, the size of
the CMAC network has been defined as 8 cells per
dimension for a fair comparison with the PSECMAC
insulin model.

Table[3 lists therecall (in-sample testing) and the
generalization(out-of-sample testing) performances
of the various benchmarked insulin modelRMSE
denotes the root-mean-squared-error between the set
of computed and expected insulin levels; &lis the
Pearson correlation coefficient, a statistical measure
reflecting the goodness-of-fit between the computed
and expected insulin dynamics. peerformance index
(Ply) measure is used to combine the RMSE and the
PC values of the benchmarked networks as described

ineq. [3).

PC
Pl TTRMSE X 100 (4)
Pl, € [-100,100]

such that a higher Plvalue corresponds to a better
overall prediction performance of the insulin model.
In addition, the generalization results are also reported
in terms of themean-absolute-erro(MAE) and the
mean-squared-erro(MSE) values of the computed
insulin response. The MSE measure magnifies the
larger errors between the computed and the actual
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Figure 2. 3-days generalization performances of the
PSECMAC networks in modeling the insulin profile
of a healthy person

insulin concentrations; hence the impact of these
errors is pronounced for this measure. Together with
the MAE value, this would allow one to discern
amongst the insulin models that give consistent but
minute errors from the insulin models that provide
highly accurate predictions at most of the sampled
points but with occasional large errors. The MSE and
MAE measures are subsequently combined as shown

in eq. [6).

MSE
Pl 1+ MAE )
Pl, € [0,00]

such that a lower Blvalue implies a more consistent
prediction performance of the insulin model.

As shown in Table[]3, the PSECMAC network
achieved the best generalization performances among
all the benchmarked models. The generalization
evaluation of the PSECMAC network results in the
highest P] value and the lowest Rlvalue, which
demonstrate the accuracy and consistency in its
predicted insulin responses. The generalization results
of the PSECMAC network outperformed those of the
benchmarked cerebellar-based architectures (i.e. the
CMAC and FCMAC-Yager networks), thereby
demonstrating the effectiveness of the PSECMAC
network as a cerebellar-based insulin model. While
the uniform quantization process of the CMAC
network results in a lower accuracy of the computed
output, the FCMAC-Yager network is a Mamdani
fuzzy rule-based system that adopts trapezoidal-
shaped fuzzy sets as membership functions. This
often leads to a low output accuracy due to the coarse
granularity of the membership functions.

In addition, the PSECMAC insulin model achieved
a 26.7% higher ((19.61 — 15.48)/15.48) Pl
value and al8.9% ((6.56 — 5.32)/5.32) lower
Pl, value over the best performing benchmarked
non-cerebellar-based model (i.e. RBF) for the
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generalization evaluation. The PSECMAC network
has comprehensively outperformed the benchmarked
GenSoFNN-CRI neuro-fuzzy system and the classical
machine learning technique-based (i.e. MLP, RBF)
insulin models. The simulation results outlined
in Table [3 have also demonstrated the inability
of the MLP network in capturing the underlying
relationships between the selected glucose indicators
and the desired insulin responses. Both the 3-
layers and 4-layers MLPs reported the poorest
recall and generalization performances amongst the
benchmarked systems. Figurg 2 depicts-days
snapshot of the generalization performances of the
PSECMAC insulin models. Simulation results shown
in Figurg 2 and Tablg|3 have sufficiently demonstrated
the highly encouraging accuracy of the PSECMAC
insulin model in predicting the correct insulin
response based on the selected glucose indicators.

6 CONCLUSIONS

This paper presents a cerebellar-based approach to
the modeling of the healthy human insulin response
to food ingestion.  Motivated by the function
approximation capability of the human cerebellum,
this study proposed the use of the PSECMAC
network, which is a computational model of the
human cerebellum, to model the healthy human
insulin dynamics based on the plasma glucose
fluctuations. Such an insulin model can subsequently
be employed in a closed-loop glucose regulatory
system to control the insulin infusion rate for the
treatment of diabetes. The proposed PSECMAC-
based insulin model is applied to model the insulin
profile of a simulated healthy Subject A. The
modeling performances of the PSECMAC speaker
models are evaluated against those of the basic
CMAC, FCMAC-Yager and GenSoFNN networks as
well as the classical machine learning models of
MLP and RBF networks. The experimental results
have sufficiently demonstrated the superior modeling
accuracy of the PSECMAC insulin model to the
benchmarked systems.

As future work, the PSECMAC insulin model would
be used in the development of a closed-loop controller
for diabetes treatment. In the closed-loop control
system, the PSECMAC network is first employed to
learn a basic insulin schedule from the response of a
healthy person. Subsequently, the trained PSECMAC
insulin model forms the basic control schedule for
a diabetic patient of similar physiologic and dietary
profile. Future research in this direction includes
the verification of the PSECMAC insulin model with
the real-life patient data and the study on the online
tuning mechanism of the proposed insulin model to
adapt to the intra- and inter-day variability of the real
human subject, as well as to address the metabolic
biodiversity of the diabetic patients.



Table 3. Simulation results for the various insulin models

Recall Generalization
Network RMSE PC Ply RMSE PC Ply MAE MSE Pl 2
PSECMAC 6.3011 0.9918 13.58 4.0737 0.9948 19.61 2.1187 16.595 5.32
CMAC 4.4990 0.9958 18.11 6.6692 0.9880 12.88 4.6351 44.478 7.89
FCMAC-Yager 6.7013 0.9929 12.89 6.8474 09899 12.61 6.0575 46.887 6.64
GenSoFNN-CRI 6.6710 0.9944  12.96 5.8942  0.9953 14.44 4.7014  34.742 6.09
MLP (4-120-1) 26.337  0.8861 3.24 24.291  0.8552 3.38 20.666  590.05 27.23
MLP (4-20-4-1) 23.450 0.8908 3.64 21.757  0.8607 3.78 18.637  473.37 24.11
RBF 6.4141 0.9915 13.37 5.3977 0.9906 15.48 3.4419 29.135 6.56
7 REFERENCES Kandel, E.R., Schwartz, J.H., and T.M. Jessell

Albus, J.S. (1975), A new approach to manipulator
control: The cerebellar model articulation con-
troller (CMAC), Journal of Dynamic Systems,
Measurement, and Control. Transactions ASME
220-227.

Ang, K.K., and C. Quek (2005), Stock Trading using
PSEC and RSPOP: A novel evolving rough set-
based neuro-fuzzy approadtroceedings of IEEE
Congress on Evolutionary Computaticdh),1032—
1039.

Bellazzi, R., Nucci, G., and C. Cobelli (2001), The
Subcutaneous Route to Insulin-Dependent Dia-
betes TherapyEEE Engineering in Medicine and
Biology,20(1), 54—-64.

Carson, E.R., and C. Cobelli (2001Modelling
Methodology for Physiology and Medicin&an
Diego: Academic Press.

Cryer, P.E. (1992), latrogenic hypoglycemia as a
cause of hypoglycemia associated autonomic fail-
ure in IDDM: A vicious cycle Diabetes41, 255—
260.

DCCT (1995), The effect of intensive treatment of di-
abetes in the development and progression of long-
term complications in insulin-dependent diabetes
mellitus, Diabetes Carel8, 1468-1478.

Federmeier, K.D., Kleim, J.A., and W.T. Greenough
(2002), Learning-induces multiple synapse forma-
tion in rat cerebellar corteeuroscience Letters,
332,180-184.

Fletcher L., Hraban, G., Huang, P., Srinivasan, B.,
and R. Venook (2001), Feasibility of an implanted,
closed-loop, blood-glucose control devicbn-
munology230.

GlucoSim: A Web-Based Educational Simula-
tion Package for Glucose-Insulin Levels in the
Human Body, lllinois Institute of Technology,
http://216.47.139.198/glucosim/gsimul.html.

Hovorka, R. (2005), Management of diabetes using
adaptive contralnternational Journal on Adaptive
Control and Signal Processing9, 309-325.

HPBSg, Health Promotion
http://www.hpb.gov.sg.

Board Singapore,

399

(2000), Principles of Neural Science, 4th Edition,
McGraw-Hill, Health Professions Division.

Makroglou, A., Li, J., and Y. Kuang (2006),
Mathematical models and software tools for the
glucose-insulin regulatory system and diabetes:
An overviewApplied Numerical Mathematicsg,
559-573.

Matschinsky, F.M. (1996), A lesson in metabolic reg-
ulation inspired by the glucokinase glucose sensor
paradigmDiabetes45, 223-241.

Middleton F.A., and P. L. Strick (1998), Cerebellar
output: Motor and cognitive channel$rends in
Cognitive Science&7(9), 348-354.

Parker R.S., Doyle Ill, F.J., and N.A. Peppas (2001),
The Intravenous Route to Insulin-Dependent Dia-
betes TherapyEEE Engineering in Medicine and
Biology,20(1), 65—73.

Quah, K.H., and C. Quek (2007), MCES: A novel
Monte Carlo Evaluative Selection approach for
objective feature selectionEE Transactions on
Neural Networks18(2), 431-448.

Rosenstock, J. (2001), Insulin therapy: Optimizing
control in the type-1 and type-2 diabet&3inical
Cornerstone4, 50-64.

Rubin, R.J., Altman, W.M. and D.N. Mendelson
(1992), Health Care Expenditures for People with
Diabetes MellitusJournal of Clinical Endocrinol-
ogy and Metabolisni/8, 809A-809F.

Sim, J., Tung, W.L., and C. Quek (2006), FCMAC-
Yager: A Novel Yager Inference Scheme based
Fuzzy CMAC,IEEE Transactions on Neural Net-
works,17(6), 1394-1410.

Teddy, S.D., Quek, C., and E.M-K. Lai (2007), PSEC-
MAC: A Novel Self-Organizing Multi Resolution
Associative Memory Architecturé=EE Transac-
tions on Neural Networks, in press.

Tung, W.L., Quek, C., and Cheng, P.Y.K. (2004),
GenSo-EWS: A Novel Neural-Fuzzy based Early
Warning System for Predicting Bank Failures,
Neural Networks17(4), 567-587.

Widrow, B., and S.D. Stearns (198%)daptive Signal
Processing, New Jersey: Prentice-Hall inc.



	Introduction
	The PSECMAC Network
	The Subject Profile
	The PSECMAC Insulin Model
	Experiments and Results
	Conclusions
	REFERENCES



