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EXTENDED ABSTRACT

Mixture models have experienced a huge resurgence
of interest and appeal over the last two decades
(Böhning & Seidel, 2003). To date the development
of mixture based models, for time series data,
has mostly concentrated on modelling continuous
data as mixtures of normals or as mixtures of
ARMA and ARCH models (Bollerslev et al., 1992).
Little work has been done, however, which adapts
mixture methodology to a discrete time series context
(Dalrymple, 2004). In the present paper five related
regression models, based on mixtures of distributions
and Poisson processes, are presented with adaptations
to account for discrete counts time series data. A
preliminary paper gave some suggestions for three
of the five models in the context of a discrete series
of SIDS counts and a subset of climatic predictors
(Dalrymple et al., 2003). Mooney et al. (2003), in the
only paper to date using mixtures to discrete counts
time series, fitted mixtures of von Mises distributions
to a case study of UK SIDS rates (1983–1998), with
monthly rates analysed separately for each year and
covariates not explicitly incorporated.

Only recently have mixture-based models been
extended to accommodate serial correlation in
longitudinal studies. Booth et al. (2003) extended
the negative binomial model to the case of dependent
(repeated measures) counts. Min & Agresti (2005)
recently developed a random effects model for
repeated measures of zero-inflated count data. Dobbie
& Welsh (2001) extended the hurdle model to
incorporate serial correlation arising from repeated
measures count data via construction of generalised
estimating equations for each model component;
Toscas & Faddy (2003) used transition methods to
model correlated longitudinal data using the extended
Poisson process (EPP) approach of Faddy (1997a).
Note also a recent application of EPP models to
study the dependence between the number of trials
and success probabilities in binary trials by Faddy &
Smith (2005).

The five models discussed here are the negative
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Figure 1. SIDS counts per month, Canterbury, NZ,
1968–2000.

binomial (NB), finite mixture (FM), zero-inflated
Poisson (ZIP), hurdle and Extended Poisson Process
(EPP), based on mixtures of distributions, gamma,
multinomial and binomial, and Poisson processes;
developed so as to take into account possible serial
dependence in time series data. This is achieved,
in part, by the inclusion of an autoregressive based
variable. All models accommodate for potential
overdispersion and the EPP model allows also for
underdispersion. The mixture models are illustrated
with analyses of the effect of climate on sudden
infant deaths (SIDS) rates, based on a unique total
ascertainment study of SIDS incidence in Canterbury,
NZ for the period 1968-2000 (Figure 1) (Dalrymple,
2004). This is the first study to examine dewpoint,
wind direction and wind chill as possible SIDS risk
factors.

For the SIDS data the ZIP and FM models performed
best. The analysis suggested that the incidence
of SIDS was associated with humidity and wind
speed. This is not surprising, as variations in these
factors may modify parental care practices. The
methods presented in this paper are applicable to
any study examining the relationship between discrete
counts time series and multiple time series profiles of
predictors.
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1 INTRODUCTION

SIDS is still the most predominant cause of death
in infants under one year of age, and currently
accounts for between 10-20% of all infant deaths
in developed countries (Malloy & Freeman, 2000).
Epidemiological research has, for a long time,
looked at climatic variables as contributors to
SIDS risk. Many studies have related SIDS
to various meteorological measures, yet the only
consistently found relationship is between SIDS and
seasonality, with more SIDS deaths occurring in
winter (Dalrymple, 2004). Even though the SIDS-
climate relationship has been examined extensively
in terms of seasonal effects and also long/short term
ambient temperature, there have only been a small
number of studies relating SIDS to meteorological
variables other than temperature (Macey et al., 2000).
See also Dalrymple (2004).

Recently Dalrymple et al. (2003) used three mixture
models (finite mixture, zero-inflated Poisson and
the hurdle) to examine the relationship between
SIDS incidence in Canterbury, NZ, with humidity
and temperature for a seventeen year period (1973–
1989). There have however, only been two
other studies to date, that have examined SIDS
incidence in relation to a more comprehensive set of
meteorological variables, namely that of Auliciems
& Barnes (1987) and Knöbel et al. (1995). This
present study aims to undertake a most comprehensive
analysis of SIDS incidence in relation to multiple
meteorological measures in Canterbury, NZ. Unlike
Auliciems & Barnes (1987), who examine climatic
conditions centred around the day of death, this
present study applies Poisson mixture methods to
examine the monthly profile of Canterbury SIDS data
to determine a profile of at-risk SIDS months. This
study also investigates a more comprehensive set of
climatic variables than studied to date, examining
eleven climatic variables (with corresponding variable
names) as follows; Temperature (◦C) (Temp); Wind
Direction (WindD); Wind Speed (knots) (WindS);
Wind Velocity (knots) (WindV); Wind Chill (◦C)
(WindC); Humidity (%) (Humid); Pressure (Hpa)
(Pres); Rainfall (mm/hr) (Rain); Sunshine (hrs) (Sun);
Solar Radiation (Mj/m2) (Rad); and Dewpoint (◦C)
(Dew). Lagged variants of the latter were also
investigated. No study to date has included dewpoint,
humidity, wind direction nor wind chill as possible
SIDS risk factors (Dalrymple, 2004).

This current paper formulates five Poisson mixture
(observation driven) models which incorporate a state-
dependent structure. An overview of the negative
binomial, finite mixture, zero-inflated Poisson,
hurdle and extended Poisson process models is
given. The advantages of the class of mixture-
based, generalized Poisson models, suggested here,

include, their accommodation of potential serial
dependence in discrete count(s) time series data,
the provision of additional insights into underlying
dependencies relating to the outcome variable of
interest, and allowance for possible overdispersion or
underdispersion in contrast to the Poisson distribution.
The five models are applied to an investigation of
possible climatic impacts on a unique series of sudden
infant death syndrome counts.

2 POISSON MIXTURE MODELS

The five formulations, presented in this paper are
generalisations of the Poisson distribution. A
summary of these models is presented in Table 1,
which highlights the mixing formulation, distribution
and peculiarities of each model. Table 2 presents
details of the theoretical aspects of each model
including the probability density function (pdf),
mean, variance and log-likelihood, alongside the
computational estimation procedures implemented. A
summary of the notation, rationale for and comparison
of models follows.

Notation for the model formulations in the subsequent
section is defined as: Let yi denote the response
variable (the number of SIDS in month i), i =
1, . . . , n; y is then the vector of (monthly) SIDS
counts. Let X denote the matrix of (monthly)
covariates with xi = [1, x1i, . . . , xgi]

′, with a total
of g covariates. Also let Z denote the matrix of
(monthly) covariates such that zi = [1, z1i, . . . , zgi]

′

giving a total of g covariates. The covariates in X

and Z are associated with the non-zero and zero-
SIDS components respectively and are not restricted
to being the same.

A common alternative to the Poisson log-linear
model, when the requirement of equality of the
conditional mean and variance is unrealistic, is the
negative binomial (NB) model. The NB model allows
for overdispersion through flexible modelling of the
variance. The formulation of the NB model as a
mixture of Poisson and gamma distributions can be
found in Greene (2000) (See Tables 1-2.).

Finite mixture (FM) models have been extensively
discussed in the literature and applied to a wide
range of data (McLachlan & Peel, 2000). The
FM formulation as given in Table 2 follows that
of Wang et al. (1998). This FM model assumes
an underlying partition of the population into k

homogeneous components. Each component having
a different SIDS risk level λj(xi), dependent on
possibly different covariates. The FM model is a
general model, which allows mixing with respect
to both zeros and positives, with Z representing
the covariates in the mixing proportions, and X the
covariates in the Poisson rates (Table 2). In this study3025



Model Mixing Distribution Particular cases for
formulation certain parameter values

Negative binomial Poisson + yi ∼ negative binomial • reduces to Poisson
Gamma

Finite mixture Poisson + yi ∼ Poisson(λj) • reduces to ZIP
Multinomial with probability pj • reduces to Poisson

j = 1, . . . , k, where
k = number of components

Zero-inflated Poisson + yi = 0, with prob (1 − p) • reduces to Poisson
Poisson Binomial yi ∼ Poisson(λ), with prob p

Hurdle Truncated Poisson + yi = 0, with prob (1 − p)
Binomial yi ∼ truncated Poisson, with prob p

Extended Poisson Poisson Y (t) = prob distn of SIDS counts • reduces to Poisson
Process process • reduces to NB

Table 1. Overview of mixture models.

estimation of model parameters for the FM models
was achieved by an adaptation of Wang’s algorithm
(Wang et al., 1998).

For the ZIP model the response variable is modelled
as a mixture of a Bernoulli distribution and a Poisson
distribution (Table 2). Only relatively recently did
Lambert (1992) provide the general formulation for
ZIP regression models incorporating covariates.

The hurdle specification for a truncated-at-zero
Poisson distribution as presented in Table 2 follows
the formulation of Welsh et al. (1996) and is a two
component mixture approach to modelling count data,
via a bivariate model. This hurdle model formulation
increases the probability of the zero outcomes and
scales the remaining probabilities to add to one.

The EPP model given here provides a time series
extension of the EPP model of Faddy (1997a)
developed recently by Dalrymple (2004). Other
applications of the EPP model are due to Faddy
(1997b). Note that recently Podlich et al. (2004)
derived semi-parametric EPP models for (non-time
series) counts, where the transition rates depend
nonparametrically on the number of events, but
parametrically on covariates The full EPP time series
formulation is given in detail in Dalrymple (2004).

3 MODEL ADAPTATIONS

Testing for a significant serial dependence is typically
a first step in discrete time series analysis. In the
SIDS counts application, this was performed using the
simple runs test for serial dependence, as discussed
by Jung & Tremayne (2003). In the presence
of a significant correlation, however, the following
modification to model formulation and testing is
implemented. Autoregressive covariates, (yi−k) to lag
k∗, k = 1, 2, 3, . . . , k∗ based on past observations,
are added to the model formulations to describe
a possible state dependence. The autocorrelation
function of the residuals of the model (without the

AR regressor) is examined and the appropriate AR
structure determined sequentially. The additional lag
term(s) (up to order k∗) are then incorporated into the
model, giving an exponential conditional mean of the
following form:

E[yi|xi, yi−1, yi−2, . . . , yi−k] = exp(xiβ + ρyi−k),
(1)

where yi−k = [yi−1, yi−2, . . . , yi−k]′.

The conditional means and variances in Table 2 are
then easily modified, via equation 1, to incorporate the
addition of lagged dependent regressors. For example,
in the NB case, the exponential conditional mean is

E[yi|yi−k∗ ,xi] = λ(yi−k∗ ,xi) = exp(βxi +
ρyi−k∗) and variance V ar[yi|yi−k∗ ,xi] =

λ(yi−k∗ ,xi)+
λ(yi−k∗ ,xi)

2

θ
= exp(βxi +ρyi−k∗)+

exp(βxi+ρyi−k∗ )2

θ
(θ > 0) (See Dalrymple (2004)).

Testing for the order k and the influence of
higher order lags, up to k∗ was achieved fol-
lowing an extension based on Raftery’s mixture
transition distribution model. See Raftery &
Tavare (1994), where the conditional distribution of
P (yi|yi−1, yi−2, . . . , yi−G) for some G > 1 can
be approximated by a weighted combination of G

conditional distributions,

P (yi|yi−1, yi−2, . . . , yi−G) =
G
∑

g=1

πgP (yi|yi−g)

(2)
where

∑G

g=1 πg = 1 and πg > 0, g = 1, . . . , G.

4 APPLICATION: SIDS AND CLIMATE

4.1 Diagnostic Accuracy & Change points

The SIDS counts derive from a unique retrospective,
complete ascertainment study of SIDS incidence in
Canterbury, which was completed by the Christchurch
Community Paediatric Unit and provided daily SIDS
counts (1968 to 2000).
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Table 2. Theoretical overview of aspects of each of the five mixture model formulations.
Negative Binomial (NB) Finite Mixture (FM) Extended Poisson Process (EPP)

Distribution ym
i ∼ NB(θ, λ(xm

i )) ym
i ∼ Poisson(λj(x

m
i )) with probability j(z

m
i )

PDF P (ym
i = q|xm

i ) =
Γ(θ+q)

Γ(q+1)Γ(θ)
r

q
i (1 − ri)

θ P (ym
i = q|xm

i , zm
i ) =

∑k
j=1

pj(zm
i ) exp(−λj(xm

i ))λj(xm
i )q

q!

ri =
λ(xm

i )

λ(xm
i

)+θ
q = 0, 1, 2, . . . q = 0, 1, 2, . . .

Link log-linear pj(zi) logit (j = 1, . . . , k) λi = a(i + b)c

λj(xi) log-linear a > 0, b > 0, c 6 1

Mean E[ym
i |xm

i ] = λ(xm
i ) E[ym

i |xm
i , zm

i ] =
∑k

j=1 pj(z
m
i )λj(x

m
i ) E[Y (1)|Xm] = b

[

(1 + r)
1

1−c − 1
]

Variance V ar[ym
i |xm

i ] = λ(xm
i ) +

λ(xm
i )2

θ
V ar[ym

i |xm
i , zm

i ] = E[ym
i |xm

i , zm
i ]
[

1 + λj(x
m
i ) V ar[Y (1)|Xm]

(θ > 0) −E[ym
i |xm

i , zm
i ]
]

= b
1−2c

(1 + r)
1

1−c

×
(

1 − (1 + r)
2c−1

1−c

)

r =
a(1−c)

b1−c =
exp(Xβ)(1−c)

b1−c

LL LNB(θ, β) =
∑n

i=1

(

[
∑ym

i −1
j=0 log(j − θ)

]

− log ym
i ! LFM (α, β) =

∑n
i=1

∑k
j=1 Zji log[pj(z

m
i )×

−(ym
i + θ) log(1 + 1

θ
exp(xm

i β)) + yi log θ + yix
m
i β

)

Poisson(λj(x
m
i )]

Estimation Maximum likelihood (ML) Wang (1998)
Procedure SAS GENMOD procedure Combination of EM and quasi-Newton

Zero-inflated Poisson (ZIP) Hurdle (H)
Distribution ym

i = 0 prob 1 − p(zm
i ) ym

i = 0 prob 1 − p(zm
i )

ym
i ∼ Poisson(λ(xm

i )) prob p(zm
i ) ym

i ∼ truncated Poisson(λ(xm
i )) prob p(zm

i )
PDF P (ym

i = 0|xm
i , zm

i ) = 1 − p(zm
i ) + p(zm

i ) exp(−λ(xm
i )) P (ym

i = 0|zm
i ) = 1 − p(zm

i )

P (ym
i = q|xm

i , zm
i ) =

p(zm
i ) exp(−λ(xm

i ))λ(xm
i )q

q!
P (ym

i = q|xm
i , zm

i ) =
p(zm

i ) exp(−λ(xm
i ))λ(xm

i )q

q!(1−exp(−λ(xm
i

)))

q = 1, 2, . . . q = 1, 2, . . .

Link pj(zi) logit pj(zi) logit
λj(xi) log-linear λj(xi) log-linear

Mean E[ym
i |xm

i , zm
i ] = p(zm

i )λ(xm
i ) E[ym

i |xm
i , zm

i ] =
p(zm

i )λ(xm
i )

1−exp(−λ(xm
i

))

Variance V ar[ym
i |xm

i , zm
i ] = E[ym

i |xm
i , zm

i ]
[

1 + λ(xm
i ) V ar[ym

i |xm
i , zm

i ] =
λ(xm

i )

1−exp(−λ(xm
i

))

[

1 − exp(−λ(xm
i ))E[ym

i |xm
i , zm

i ]
]

−E[ym
i |xm

i , zm
i ]
]

LL LZIP (α, β) =
∑

ym
i

=0 log(exp(zm
i α) LHurdle(α, β) =

∑

ym
i

=0 log
(

1
1+exp(zm

i
α)

)

+
∑

ym
i

>0 log
(

exp(zm
i α)

1+exp(zm
i

α)

)

+exp(− exp(xm
i β)))

+
∑

ym
i

>0(y
m
i x

m
i β − exp(xm

i β)) +
∑

ym
i

>0

(

ym
i x

m
i β − exp(xm

i β) − log(1 − exp(− exp(xm
i β))) − log(ym

i !)
)

−
∑n

i=1 log(1 + exp(zm
i α)) −

∑

ym
i

>0 log(ym
i !) = LHurdle(α) + LHurdle(β)

Estimation Proc. Maximum likelihood Maximum likelihood
STATA ZIP function LHurdle(α) SAS LOGISTIC procedure

LHurdle(β) maximised via Nelder-Mead algorithm
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Problems caused by changing diagnostic policy were
eliminated by collecting information retrospectively
from pathology and autopsy reports. Full details
of the SIDS data are given in Dalrymple (2004).
Figure 1 shows the monthly SIDS series for the 32
years. The Canterbury climate data analysed in this
study was obtained from NIWA, Taihoro Nukurangi
[http://www.niwa.co.nz/]. This data is unusual in the
field of SIDS-climate research, as SIDS deaths were
localised around the site of the meteorological data
collection.

It is widely known that there are annual trends in birth
numbers and also changes in birth numbers over time.
The logarithm of the number of infants at risk (NAR)
of SIDS each month was defined to account for
underlying population changes (Table 3). A change
point analysis of the SIDS/1000 live births profile over
the 32 years of the study, which implements a novel
block bootstrap method (Dalrymple et al., 2001),
found two significant change points; at December
1972 and May 1990. These points effectively partition
the series into three epochs or periods: Period 1
(1968–1972), Period 2 (1973–1989) and Period 3
(1990–2000), and are illustrated by vertical (dashed)
lines on Figure 1. For brevity only period 2 (1973–
1989) results are reported here.

4.2 Climate Models: Period 2

The k=2 component FM model was found to be the
best candidate FM model to fit the Period 2 SIDS-
climate series. All best climatic models for each
of five methods are presented in Table 3 (where
Xmean(std)(i) is the mean over month i of the
daily standard deviation of X and Xmin(min)(i) the
minimum over month i of X; for X any one of the
eleven climate variables (Section 1)). All models
are constructed similarly, with WindSmean(std) the
only significant climate variable in the Poisson rate
component, over and above a full baseline model
(intercept term, seasonal sinusoid and NAR) for
four of the five models. Covariate coefficients
of significant climate factors are comparable across
λ(X) for all five models. The NB model contained
only seasonality and WindSmean(std), while the
second component of the FM model comprised
only the seasonal sinusoid (Table 3). The FM,
ZIP and hurdle models exhibit some differences in
their covariate structure of the probability component
p(Z). The covariate found to best fit the mixing
proportions for the FM model was the seasonal
sinusoid. The best covariate combination for both
the ZIP and hurdle model contained the climate
variables, Humidmin(min) and WindSmean(std)

respectively, in addition to the seasonal sinusoid.
These three models which contain p(Z) also exhibited
differing covariates. It is interesting to note that
the climate-EPP model (containing WindSmean(std))

has an index c is −0.044, which indicates slight
underdispersion. Both the EPP model and NB
models perform poorly in comparison to the FM, ZIP
and hurdle models. Both the FM and ZIP models
performed well in terms of model fit and residual
diagnostics and their overall performance (Dalrymple,
2004). The FM model and ZIP model also performed
well with respect to goodness-of-fit statistics (Table
3), indicating sufficient evidence that the FM model,
or ZIP model, do adequately fit the monthly SIDS
data. We observe that the ZIP model is, broadly
speaking, the FM model with the additional humidity
term. For conciseness only the ZIP profile of SIDS
risk is detailed here.

The ZIP model includes two climate covariates:
WindSmean(std) in the Poisson rate component and
Humidmin(min) in the probability component. The
Poisson rate component contains a full baseline form
(intercept+sin( 2πt

12 )+cos( 2πt
12 )+NAR), in addition

to WindSmean(std) and the autoregressive covariate
yi−1. The probability component structure is defined
by the seasonal sinusoid and also humidity (Table
3). Increasing WindSmean(std) corresponds to an
increase in the risk of SIDS: the lowest estimated
risk of 0.85 SIDS per month occurs at 2.9 knots
in summer, whereas the highest estimated risk of
3.38 SIDS per month at 5.8 knots in winter. The
risk equates to a 15% increase in the SIDS rates for
every one knot increase in the monthly average of the
daily standard deviation of wind speed. Essentially
this implies that the more variable the wind speed
is, on average, the higher the estimated SIDS risk.
This same trend was evident with respect to wind
speed in the FM model. Note that humidity
appeared exclusively in the ZIP model and only
in its probability component (Table 3). Trends in
relation to humidity are as follows: an increase in
the minimum monthly humidity (Humidmin(min))
corresponds to a decrease in probability of belonging
to the ‘perfect state’ (no SIDS deaths occurring).
None of the models however, achieved the necessary
inflation of SIDS counts evident in the observed series
in winter (observed mean = 3.7 SIDS per month)
(Dalrymple, 2004). This feature and the systematic
lack of fit at extreme SIDS counts (see Dalrymple
(2004)) evident across all five methods; in addition
to the need to include AR state-dependence, may
indicate that some additional latent variable, whether
environmental (pollution), climatic or physiological
may be involved in the aetiology of SIDS.

5 DISCUSSION

Recent research has focussed on extending various
forms of mixture models to serially correlated data
arising from repeated measures studies (Hall, 2000).
This paper has developed mixture models for the
(discrete count(s)) time series context. By including3028



Table 3. Climate model parameter estimates (standard errors) for the five mixture methods, Period 2. Optimal
models are bolded.

NB FM ZIP Hurdle EPP
Comp 1 Comp 2 (log(a))

log(λ(x)) Intercept 11.23 10.40 13.63 8.89
(3.76) (3.95) (1.97) (3.98)

sin( 2πt
12

) -0.42 -0.63 -0.34 -0.35 -0.38 -0.42
(0.07) (0.18) (0.10) (0.08) (0.04) (0.07)

cos( 2πt
12

) -0.50 -0.03 -1.01 -0.48 -0.49 -0.51
(0.07) (0.02) (0.76) (0.08) (0.04) (0.07)

NAR -1.12 -1.18 -1.57 -1.00
(0.43) (0.47) (0.24) (0.48)

WindSmean(std) 0.22 0.15 0.13 0.15 0.13
(0.02) (0.07) (0.07) (0.04) (0.07)

yi−1 -0.08 -0.10 -0.10 -0.10 -0.09
(0.03) (0.03) (0.03) (0.01) (0.03)

logit(p(z)) sin( 2πt
12

) 3.76 -5.72 -1.21
(0.89) (2.45) (0.36)

cos( 2πt
12

) -14.15 -1.86 -1.26
(2.76) (1.72) (0.36)

Humidmin(min) 0.11
(0.06)

WindSmean(std) d = 0.013 0.51 b = 1.220
(0.07) c = −0.044

m 5 10 9 9 8
AIC 710.79 708.62 710.12 711.24 713.21
BIC 728.06 741.80 739.99 750.10 747.75
χ2 191.16 173.45 182.95 189.07 180.92

an autoregressive-based regressor, serial dependence
within an observed series can be successfully
accommodated. The application of mixture models
in this paper, to a discrete counts time series is
unique, and presents potential important extensions
for future research. The mixture models in this
paper are also a significant extension of the general
class of conditional linear AR(1) models (CLAR(1))
(Grunwald et al., 2000), to the case where covariates
are allowed in the conditional mean and a generalised
log link for the conditional mean is assumed.

The analysis of Canterbury SIDS counts suggested
that the incidence of SIDS is associated with humidity
and wind speed in Period 2. These relationships
are identified, after accommodating for seasonality.
The mixture methods in this paper allude to possible
causal pathways, where climate possibly acts on
changing parental care, which in turn, has an impact
on SIDS risk. For example, wind has long been
associated with ill health. Indeed the warm, dry
alpine winds, such as Canterbury’s Norwester have
been related to cardiovascular problems, migraines
and allergies (Dalrymple, 2004). It is thus of interest
to note the significant wind variants in our best
fit models. It is not surprising that variations in
wind may have an effect on SIDS, in that wind
variations, unlike air pressure changes, are easily
perceived by humans, and may modify parental care
practices. Similar hypotheses in regard to effects of
increased temperature (or decreased dewpoint) with
sustained overwrapping have recently been presented
(Dalrymple et al., 2003; Dalrymple, 2004).

SIDS remains a leading cause of infant death in
the western world, thus any comprehensive analysis
that leads to a more refined understanding of the
risk profile of a SIDS victim, may help in the
identification of the underlying aetiology and cause(s)
of this syndrome. Hudson et al. (2005) recently
showed that climatic impacts on SIDS are not
just a proxy for pollution impacts. Further NZ
research of air pollution and SIDS is still needed
to clarify the pollution-climate-SIDS interplay which
remains controversial. Future work will also involve
generalizing our methods to the Tweedie family of
distributions (Dunn & Smyth, 2005).

6 REFERENCES

Auliciems, A. & Barnes, A. (1987). Sudden
infant deaths and clear weather in a subtropical
environment. Social Science in Medicine, 24(1),
51–56.
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