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EXTENDED ABSTRACT

An interest rate swap is a contract between two par-
ties to exchange periodically fixed rate payments
for floating rate payments based on an agreed-upon
notional principal and maturity. The fixed rate is
known as theswap rateand aswap curvecan be
constructed using swap rates of different maturities.
The swap curve is widely used by financial mar-
ket participants as the benchmark for the pricing
of investment grade corporate bonds. The floating
rate is usually the Bank Bill Swap Reference Rate
(BBSW) in the Australian market.

The Australian interest rate swap market is
the most important over-the-counter (OTC) deriv-
ative market in Australia. The outstanding notional
amount at the end of June 2006 was US$815.8 bil-
lion, which was much greater than other derivative
instruments such as the forward rate agreements and
interest rate options. The swap market size is com-
parable to the stock market in Australia, which had
a market capitalisation of US$893.3 billion at the
end of June 2006.

The observed difference between the swap rate
and the government bond yield of corresponding
maturity is known as theswap spread. The swap
spread reflects the risk premium that is involved in
a swap transaction instead of holding risk-free gov-
ernment bonds. It is primarily composed of the liq-

uidity risk premium and the credit risk premium. In
recent years there has been growing interest in mod-
elling swap spreads because the swap spread is the
key pricing variable for the swap rate.

In this paper we apply the class of mixture au-
toregressive conditional heteroscedastic (MARCH)
models to three (3-year, 5-year and 10-year) swap
spread series in Australia. The MARCH model is
able to capture both of the stylised characteristics
of the observed changes of the swap spread series:
volatility persistence and the dependence of volatil-
ity on the level of the data. The proposed MARCH
model also allows for regime switches in the swap
spreads.

A MARCH (2; 3,0; 1,0) model is consistently
identified for the three observed series. The fit-
ted MARCH models can be interpreted as AR(3)–
ARCH(1) processes mixed with small portions (5%
to 10%) of independent shocks/breaks. In addition,
we use the ex ante conditional probabilities as a tool
for detecting possible shocks in the swap spread
data. Around 50 observations of the 5-year swap
spread series are identified as likely to come from
the shock component. These detected shocks are
mainly from the fourth quarter of 2001 (after ter-
rorist attacks in the United States on 11 September
2001) and the summer of 2003 (retreat of mortgage-
backed securities convexity hedging in the United
States).
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1. INTRODUCTION

An interest rate swap is a contract between two par-
ties to exchange periodically fixed rate payments
for floating rate payments based on an agreed-upon
notional principal and maturity. The fixed rate is
known as theswap rateand aswap curvecan be
constructed using swap rates of different maturities.
The swap curve is widely used by financial mar-
ket participants as the benchmark for the pricing of
investment grade corporate bonds (e.g., see Schu-
macher, 1998). The floating rate is usually the three-
or six-month London Interbank Offer Rate (LIBOR)
or the Bank Bill Swap Reference Rate (BBSW) in
the Australian market.

The observed difference between the swap rate
and the government bond yield of corresponding
maturity is known as theswap spread. The swap
spread reflects the risk premium that is involved in
a swap transaction instead of holding risk-free gov-
ernment bonds. It is primarily composed of the liq-
uidity risk premium and the credit risk premium.
In recent years there has been growing interest in
modelling swap spreads because the swap spread
is the key pricing variable for the swap rate. See,
for example, Duffie and Singleton (1997), Grinblatt
(2001), Liuet al. (2006) and Johannes and Sundare-
san (2007).

The Australian interest rate swap market is
the most important over-the-counter (OTC) deriva-
tive market in Australia. The outstanding notional
amount at the end of June 2006 was US$815.8
billion (Bank for International Settlements, 2007),
which was much greater than other derivative in-
struments such as the forward rate agreements and
interest rate options. The swap market size is com-
parable to the stock market in Australia, which had
a market capitalisation of US$893.3 billion at the
end of June 2006 (Australian Securities Exchange,
2007).

Previous studies of the Australian swap mar-
ket focus on searching for the determinants of swap
spreads and the linkage between the US dollar and
Australian dollar swap markets. See, for example,
Brown et al. (2002), Fang and Muljono (2003)
and Inet al. (2004). Observed swap spreads com-
monly vary over time (i.e., they are volatile) and
the Australian market is not an exception. Given
that the swap spread is in effect the current swap
price, changes in the swap spread can significantly
affect the value of an on-going swap position for
both the market maker and the corporate end-users
of the agreement. In this paper we apply the class of
mixture autoregressive conditional heteroscedastic
(MARCH) models to three (3-year, 5-year and 10-
year) swap spread series in Australia. The MARCH
model is able to capture both of the stylised charac-
teristics of the observed changes of the swap spread

series: volatility persistence and the dependence of
volatility on the level of the data. Lekkos and Mi-
las (2004) find that the dynamics of the US and
UK swap spreads are best described by a regime-
switching model. Our proposed MARCH model
also allows for regime switches in the Australian
swap spread data.

The paper proceeds as follows. Section 2 pro-
vides a brief review of MARCH modelling. Section
3 presents the data and empirical results. The dis-
cussion and conclusion follow in the final section.

2. THE MARCH MODEL

2.1 Model Specification

Wong and Li (2001) introduce the class of
mixture autoregressive conditional heteroscedastic
(MARCH) models. A time seriesYt is said to fol-
low a MARCH (K; p1, p2, . . . , pK ; q1, q2, . . . , qK)
model if

F (yt|Ft−1) =
K∑

k=1

αkG

(
ek,t√
hk,t

)
, (1)

ek,t = yt − µk,t,

µk,t = φk0 + φk1yt−1 + . . . + φkpk
yt−pk

,

hk,t = βk0 + βk1e
2
k,t−1 + . . . + βkqk

e2
k,t−qk

.

Here,F (yt|Ft−1) is the conditional cumulative dis-
tribution function ofYt given the past information,
evaluated atyt; Ft is the information set up to time
t; G(·) is the cumulative distribution function of
the standard normal distribution and mixing pro-
portionsα1 + · · · + αK = 1 with αk > 0, for
k = 1, . . . ,K. This model consists of a mixture
of K autoregressive components with autoregres-
sive conditional heteroscedasticity, that is, the con-
ditional mean ofyt follows an AR process while the
conditional variance ofyt follows an ARCH process
(Engle, 1982). To avoid the possibility of zero or
negative conditional variance, the following condi-
tions for βkis must be imposed:βk0 > 0 (k =
1, . . . ,K), βki ≥ 0 (i = 1, . . . , qk; k = 1, . . . ,K).

One important feature of the MARCH model
is its flexibility in the modelling of changing con-
ditional variance. The conditional variance ofyt is
given by

Var(yt|Ft−1) =
K∑

k=1

αkhk,t +
K∑

k=1

αkµ2
k,t

−

(
K∑

k=1

αkµk,t

)2

. (2)

3018



The first term allows the modelling of the depen-
dence of the conditional variance on the past “er-
rors”. The second and third terms model the change
of the conditional variance due to the difference in
the conditional means of the components.

The squared autocorrelations of the time series
that are generated by a MARCH model are simi-
lar to those that are generated by an ARCH model.
As an example, for a MARCH(K; 0,. . . ,0; 1,. . . ,1)
model withφk0 = 0 for all k = 1, . . . ,K, the au-
tocorrelations of the squared time series are given
by

corr(Y2
t , Y 2

t−l) =
(∑

αkβk1

)l

.

Note that the squared autocorrelation function is
similar to that of an ARCH(1) model with the lag
1 coefficient replaced by the coefficient

∑
αkβk1.

As a generalisation of the ARCH model, the range
of possible squared autocorrelations should be as
great as that of the corresponding standard ARCH
process.

2.2 Model Estimation

The estimation of the parameters of the MARCH
model can be performed by the maximum (condi-
tional) likelihood method. Fork = 1, . . . ,K, define

α = (α1, . . . , αK−1)′;
Φk = (φk0, φk1, . . . , φkpk

)′

βk = (βk0, βk1, . . . , βkqk
)′.

The parameters in the MARCH model (1) can be
grouped into

Θ = (α′,Φ′
1,β

′
1, . . . ,Φ

′
K ,β′

K)′. (3)

Suppose that the observationY =
(y1, . . . , yn)′ is generated from the MARCH model
(1). Let Z = (Z1, . . . ,Zn)′, whereZt is a K-
dimensional unobservable random vector with its
kth component equal to one ifyt comes from thekth
component of the conditional distribution function,
and to zero otherwise. Denote thekth element ofZt

asZk,t. The observationyt will have the following
contribution to the (conditional) log-likelihood:

Lt =
K∑

k=1

Zk,t lnαk−
K∑

k=1

Zk,t

2
lnhk,t−

K∑
k=1

Zk,te
2
k,t

2hk,t
,

whereek,t andhk,t are parts of the MARCH model
defined in (1). The normalised log-likelihood func-
tion for the MARCH model is given by

L =
1
N

n∑
t=p+q+1

Lt, (4)

whereN = n − p − q with p = max(p1, . . . , pK)
andq = max(q1, . . . , qK).

Many numerical methods can be used to max-
imise the log-likelihood function in (4) and obtain
the maximum likelihood estimate of the MARCH
parameterΘ in (3). In this paper we employ the
EM algorithm (Dempsteret al., 1977), which is the
most readily available procedure in estimating mix-
ture type models. One advantage of the EM algo-
rithm is that it ensures that the likelihood values in-
crease monotonically. See McLachlan and Basford
(1988) and McLachlan and Krishnan (1997) for a
discussion of the EM algorithm and other alterna-
tives. The standard errors of the parameter estimates
can be computed by Louis’ method (1982), after the
EM estimation. The details of the EM estimation al-
gorithm for estimating the class of MARCH models
are given in Wong and Li (2001).

2.3 Model Selection

There are two aspects of model selection in the
MARCH models, namely, the number of compo-
nents (K) and the orders of each AR-ARCH com-
ponent (i.e.,pk andqk, respectively). Here, we do
not discuss the selection problem for the number of
components,K, as it is difficult to handle even in
the special case of the homogeneous MAR model
(Wong and Li, 2000). The use of the Bayesian infor-
mation criterion (BIC) that is proposed by Schwarz
(1978) to chooseK is somewhat non-standard as it
corresponds to testing problems with nuisance pa-
rameters that do not exist under the null hypoth-
esis (Davis, 1987). However, a two-component
MARCH model should be sufficient in most appli-
cations. In this paper we consider only MARCH
models withK = 2.

After the number of componentsK has been
decided, the BIC can be used for the selection of the
orders,pk andqk, of each AR-ARCH component.
Wong and Li (2001) illustrate the performance of
the minimum BIC procedure with simulation stud-
ies. They find that the minimum BIC procedure per-
forms well. They also find that the minimum AIC
procedure (Akaike, 1973) is not appropriate for the
model selection problem of the class of MARCH
models.

3. DATA AND EMPIRICAL RESULTS

The observed difference between the swap rate
and the government bond yield of corresponding
maturity is known as the swap spread. In this
section, we consider MARCH modelling of daily
Australian swap spread rates. The series under
study are 3-year (SS3t), 5-year (SS5t) and 10-year
(SS10t) swap rates. The analysis is based on the
first-order differenced series, which areDSS3t =
(SS3t − SS3t−1), DSS5t = (SS5t − SS5t−1)
and DSS10t = (SS10t − SS10t−1). The time

3019



frame of the study is 3 January 2000 to 29 December
2006, with 1821 observations for each series. Fig-
ure 1 plots theDSS5 series and Table 1 provides
the summary statistics for the data.

Table 1. Descriptive statistics

DSS3 DSS5 DSS10

Mean −0.0001 −0.0001 0.0000
Median 0.0000 0.0000 0.0000
Maximum 0.1650 0.1800 0.1495
Minimum −0.1950 −0.2000 −0.1700
Std. Dev. 0.0294 0.0296 0.0267
Skewness −0.0753 0.0994 −0.0477
Kurtosis 7.8368 6.7792 4.6743

Correlation
DSS3 1.0000
DSS5 0.7159 1.0000
DSS10 0.5532 0.6318 1.0000

Table 1 shows that the series display means
and medians around zero with similar values of
standard deviation. The series are quite symmet-
rically distributed but highly leptokurtic. Given the
large kurtosis of the distributions, the frequency of
extreme values is likely to be underestimated using
ordinary statistical models (e.g., regression analy-
sis) under the Gaussian assumption. Therefore, it
might be preferable to model theseDSS series by
means of mixture Gaussian time series processes.

In this paper we only entertain two-component
(K = 2) MARCH models. For eachDSS se-
ries, MARCH (2;p1, p2; q1, q2) models with differ-
ent combinations of orders (pk ≤ 5 and qk ≤ 5

for k = 1, 2) are estimated, and their corresponding
BIC values are computed. We find that a MARCH
(2; 3,0; 1,0) model, without intercept (i.e.,φk0 ≡
0), is consistently identified by the BIC as the best
model for the observedDSS5 andDSS10 series;
while a similar model, MARCH (2; 2,0; 1,0), is se-
lected for theDSS3 series. It should be noted that
a MARCH (2; 2,0; 1,0) model can be regarded as a
special case of a MARCH (2; 3,0; 1,0) process with
φ13 = 0. Table 2 summarises the MARCH model
estimation results. The standard errors of the esti-
mates are reported in parentheses.

The conditional volatility as implied by the fit-
ted MARCH model can be computed as the square
root of the conditional variance equation (2), with
all the parameters replaced by their corresponding
estimates in Table 2. Figure 2 plots the time series of
the conditional volatility for theDSS5 series. The
calculated conditional volatilities in Figure 2 match
reasonably the fluctuation patterns of theDSS5 se-
ries in Figure 1.

4. DISCUSSION

Given that the swap spread is in effect the current
swap price, changes in the swap spread can signif-
icantly affect the value of an on-going swap posi-
tion for both the market maker and the corporate
end-users of the agreement. In this paper we ap-
ply the class of MARCH models to three (3-year,
5-year and 10-year) swap spread series in Australia.
A MARCH (2; 3,0; 1,0) model is consistently iden-
tified for the three observedDSS series.

Table 2. Fitted MARCH model parameters forDSS data

DSS3 DSS5 DSS10

Parameter k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

αk 0.9379 0.0621 0.9033 0.0967 0.9493 0.0507
(0.0123) (0.0123) (0.0173) (0.0173) (0.0124) (0.0124)

φk1 −0.4040 −0.4278 −0.4523
(0.0243) (0.0251) (0.0258)

φk2 −0.1690 −0.2226 −0.2463
(0.0199) (0.0227) (0.0229)

φk3 −0.0975 −0.1391
(0.0201) (0.0207)

βk0 0.0003 0.0052 0.0003 0.0036 0.0003 0.0037
(0.0000) (0.0010) (0.0000) (0.0006) (0.0000) (0.0008)

βk1 0.1911 0.1878 0.2299
(0.0292) (0.0288) (0.0367)
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Figure 1. First difference of daily 5-year swap spreads (2000 - 2006).
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Figure 2. Conditional volatility for theDSS5 series as implied by the estimated MARCH model.
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There is an interesting interpretation of the
structure of the identified MARCH (2; 3,0; 1,0)
model. The first component of the model is an
AR(3)–ARCH(1) process. The second part,p2 = 0
andq2 = 0, is simply an independent random nor-
mal variate with a zero mean and variance ofβ20.
From Table 2, we find that̂α2s range from 5% to
10% for the threeDSS series and their correspond-
ing β̂20s are much larger than̂β10s. Therefore, the
fitted MARCH models can be interpreted as AR(3)–
ARCH(1) processes that are mixed with small por-
tions (5% to 10%) of independent shocks/breaks.

The empirical evidence for the time-varying
conditional volatility of high-frequency financial
time series is overwhelming in the literature. How-
ever, even if conditional heteroscedasticity is a styl-
ised fact in observed financial time series data, out-
liers/shocks may still occur. Sakata and White
(1998) propose an outlier-robust estimation pro-
cedure for conditional heteroscedasticity models.
Franses and Ghijsels (1999) apply the outlier de-
tection and adjustment method of Chen and Liu
(1993) to ARCH processes. The fitted MARCH (2;
3,0; 1,0) models in this paper are able to accommo-
date possible outliers/shocks as a component of the
model.

Furthermore, we can use the ex ante con-
ditional probabilities as a tool to detect possible
shocks in theDSS data. The ex ante conditional
probability of a MARCH model is

πk,t = E[Zk,t|Ft−1],

andZk,t is the indicator variable that is defined in
Section 2.2. Theπk,t probabilities can be estimated
during the EM algorithm (Wong and Li, 2001). Fig-
ure 3 plots thêπk,t of the second component (k= 2)
implied by the fitted MARCH (2; 3,0; 1,0) model
for the DSS5 series. Around 50 observations are
identified as likely (̂π2,t > 0.90) to come from
the second component (i.e., the shock component).
These detected shocks are mainly from the fourth
quarter of 2001 and the summer of 2003.

Kobor, Shi and Zelenko (2005) mention two
events that might be responsible for the major aber-
rant jumps that are observed in the US swap market
from 2000 – 2004. The first event is the terrorist
attacks in the United States on 11 September 2001.
The second event is the retreat of mortgage-backed
securities (MBS) convexity hedging in 2003. From
June to August in 2003, the surge in long-term US
Treasury bond yields forced MBS investors to un-
wind their convexity hedges in swaps. The sharp
rises in the swap rate relative to the treasury yield
caused the 10-year US$ swap spread to widen dras-
tically and this created waves of large volatility in
the swap spreads of all maturities. The results in
In, Fang and Brown (2004, p.55) demonstrate that
shocks in the US swap market have an impact on
the Australian swap market but not vice versa. In
this paper we also detect shocks in the Australian
swap market in the fourth quarter of 2001 and the
summer of 2003. These detected shocks are likely
the result of “impulse” transmission from the US
market.
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Figure 3. The ex ante conditional probabilities of the second regime implied by the MARCH (2; 3,0; 1,0)
model for theDSS5 data.
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5. CONCLUSION & FURTHER RESEARCH

In this paper we apply the class of mixture au-
toregressive conditional heteroscedastic (MARCH)
models to three (3-year, 5-year and 10-year) swap
spread series in Australia. The MARCH model is
able to capture both of the stylised characteristics
of the observed changes of the swap spread series:
volatility persistence and the dependence of volatil-
ity on the level of the data. The proposed MARCH
model also allows for regime switches in the swap
spreads.

In Table 1 it is clear that the threeDSS series
are not independent. It would be worthwhile to ex-
tend the problem of modelling the swap rate spreads
in a multivariate context. Even though Fonget al.
(2007) successfully derive a set of statistical proce-
dures for modelling mixture vector autoregressive
processes, method for model building of multivari-
ate MARCH models has not been developed.

The selection of the number of components in
the MARCH mixture, which is denoted byK in this
paper, is another possible topic for further research.
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