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EXTENDED ABSTRACT

The cynomolgus monkey, one of a number of primate
species phylogenetically close to humans, is com-
monly used in cardiovascular research. Assessment
of cardiac safety of drug candidates is important in
drug development. The objectives of this study were
to present a set of time series analysis technique that
enables us to detect ‘significant’ change in heart rate,
respiration rate, diastolic blood pressure and systolic
blood pressure coming from drug administration.
However, it is not easy to detect or extract the
effects of dosing from observed heart rate, blood
pressures and so on. It is just because the monkey
is alive and heart rate and blood pressures are
continuously fluctuating according to his activities.
Hence some suitable time series modeling of a
monkey’s ‘usual’ activity is required, and side effects
of drug administration should be estimated as an ‘add-
on’ over the regular time series variations. In this
paper we propose a method based on a structural time
series model which has an intervention term in the
observational equation.

In this study, data are taken from observing seventy-
five male cynomolgus monkeys (aged 4–6 years,
weighting 3–6 kg) that were housed in a controlled
environment. In the animal room, a light/dark cycle
of 12h (lights on at 08:00) was set.A telemetry
transmitter was implanted intraperitonearlly, and fixed
inside the abdominal wall under ketamine hydrochlo-
ride anesthesia. An antibiotic was administrated
intramuscularly at 0.05 mL/kg to the animals once
daily for three days including the day of plantation.
Under these experiment settings, we especially focus
on heart rate, respiration rate, systolic blood pressure
and diastolic blood pressure.

Plot of the data suggests the nonstationarity, so
we employ structural type unobserved component
models. We assume second order random walk
for trend component, and include stationary autore-
gressive component if necessary. To express the
effect of dosing, we put additional regressor which
is basically generated from an exponential function
with two unknown parameters. Once a state space
representation of the model is obtained, the model can
be estimated by the method of maximum likelihood,
and model comparison will be done by AIC.

The results shows trend plus AR with an intervention
is supported in most of the cases. Except respiration
rate data, this model was almost always selected.
It turns out that a stationary AR component is
indispensable to express the variation incurred by
regular activities of a monkey. When a simple
trend model (with or without an intervention term) is
assumed, the cases where the estimated intervention
terms are significant are just 9 to 15 cases out of 75
cases. This just comes from the poor fit of the data,
and the intervention terms are generally buries in the
noise.

The time series analysis done in this paper can be a
basis of the estimation of dose response curve. Even
if an intervention term is found to be significant, it
does not always mean an acute toxicity. For example,
we might set some threshold for the height of the
function. Suppose we set 20 rise or more in systolic
blood pressure should be regarded as the evidence
of acute toxicity. Then the case is classified as
a toxic case. Changing dose levels and repeating
experiments, finally we obtain a set of dose level times
response data. Then the usual dose response analysis
can be applicable.
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1 INTRODUCTION

The cynomolgus monkey, one of a number of primate
species phylogenetically close to humans, is com-
monly used in cardiovascular research. Assessment of
cardiac safety of drug candidates is important in drug
development.

The objectives of this study were to present a set of
time series analysis technique that enables us to detect
‘significant’ change in heart rate, respiration rate,
diastolic blood pressure and systolic blood pressure
coming from drug administration.

However, it is not easy to detect or extract the effects
of dosing from observed heart rate, blood pressures
and so on. It is just because the monkey is alive
and heart rate and blood pressures are continuously
fluctuating according to his activities.

Hence some suitable time series modeling of a
monkey’s ‘usual’ activity is required, and side effects
of drug administration should be estimated as an ‘add-
on’ over the regular time series variations. In this
paper we propose a method based on a structural time
series model which has an intervention term in the
observational equation.

The rest of the paper is organized as follows. In
section 2, we explain how the data are acquired, and
also details of experimental settings. In section 3, we
explain our statistical model to be used here. It is so-
called a structural time series model, which inevitably
exploits state space form and related algorithm. In
section 4, we present the results of our analysis on
75 male cynomolgus monkey data. In section 5, we
discuss some issues related to the results, and issues
that has something to do our future work. Section 6
concludes.

2 DATA

2.1 Animals

All procedures involving animals were approved by
the Animal Care and Use Committee of Shin Nippon
Biomedical Laboratories, Ltd. (Kagoshima Japan),
and were performed in accordance with the standards
published by the National Research Council (Guide
for the Care and Use of Laboratory Animals, NIH
OACU) and the National Institute of Health Policy
on Human Care and Use of Laboratory Animals. All
data retrieving work was performed at Shin Nippon
Biomedical Laboratories, Ltd. (Kagoshima, Japan).

Seventy-five male cynomolgus monkeys (aged 4–6
years, weighting 3–6 kg) were housed in a controlled

environment maintained at a temperature of between
23◦ C and 29◦ C and relative humidity of between
35% and 75% . The animal room was ventilated with
a minimum of 15 air changes/h, and a light/dark cycle
of 12h (lights on at 08:00) was set.

2.2 Surgical implantation

A Data Sciences International (DSI) telemetry
transmitter (TL11M2-D70-PCT, Data Sciences In-
ternational Inc.) was implanted intraperitonearlly,
and fixed inside the abdominal wall under ketamine
hydrochloride (10 mg/kg, intramuscular, Fuji Chem-
ical Industry Co., Ltd.) anesthesia. Two unipolar
lead electrodes for the electrocardiogram (ECG) were
inplanted subcutaneously at predetermined locations
on the right manubrial border of the sternum and
left anterior auxiliary line sixth rib. An antibiotic
[aqueous suspended injection of dihydrostreptomycin
sulfate (250 mg potency/mL), benzyl penicillin
procane (200,000 units/mL)] was administrated
intramuscularly at 0.05 mL/kg to the animals once
daily for three days including the day of plantation
(Horii et al., 2002). All animals were allowed
approximately two or three weeks to recover from
surgery and were used in the present study after the
ECG parameters stabilized.

2.3 Sample Data and Problem

In Figure 1, data for a cynomolgus monkey are
plotted. From above, heart rate, respiration rate,
diastolic blood pressure, and systolic blood pressure.
All the data are sampled with equally interval of 5
minutes, so the length of a time series is 288. Each
data starts from 08:00, and the final interval is 07:55.
An antibiotic was administered at 11:00, so the 37th
observation is expected to reflect the effects of dosing.

Looking at these sample plots, we find a seemingly
stationary fluctuation around a slowly changing
diurnal pattern. Even if we discard all the dark time
data, still some kind of trend might exist. This leads
to the idea of employing structural time series models.

Based on our experiments, we expect a kind of jump
and decay after t = 37. Looking at these graphs, it
seems subtle whether or not we could detect such an
acute toxicity. The aim of our analysis is to device
a statistical tool that enables us to find ‘significant’
exogenous effect from data. Whether or not an
extracted effect should be regarded as an acute toxicity
needs some external knowledge on toxicity.
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Figure 1. Plot of data obtained for a certain
cynomolgus monkey. From above, heart rate,
respiration rate, diastolic blood pressure, and systolic
blood pressure.

3 TIME SERIES MODELS

3.1 Structural Time Series Model

As a basis of the discussion of this article, this section
explains a popular model called basic structural
model. Modeling trend-seasonality with state-space
form have been explored since the end of 1970’s.
Trend and seasonal are regarded as unobservable
components, and for each unobservable component a
stochastic model is assumed. One of the most popular
specification is a set of the equations described as
follows.

yt = μt + ψt + dt + εt (1)
μt = μt−1 + βt−1 + ηt (2)
βt = βt−1 + ζt (3)

ψt =
m∑

j=1

ajψt−j + ωt (4)

In above equations, we assume that each of εt,
ηt, ζt, ωt follows zero mean normal distributions
but with different variance; σ2

ε , σ2
η , σ2

ζ and σ2
ω

respectively. This set of equations together with
seasonal component is often referred to as Harvey’s
basic structural model (BSM hereafter), see Harvey
(1989, p.47). In our data, although there might
be some diurnal pattern, we have data just for one
day, so we expect trend part will represent the
intraday seasonal pattern. Equation (1) is called
observational (or measurement) equation. This
reflects our observation that the salient features of
economic time series are trend μt and stationary AR
part γt, and the rest is regarded as irregular component
εt. The term dt expresses some deterministic effects,
and actually works as an intervention term or as a
pulse in our model. Specification of dt will be stated
in subsection 3.3.

Trend component consists of two latent variables μt

and βt, which is respectively referred to ‘stochastic
level’ and ‘stochastic slope’. The equation (2) plus (3)
is called the local linear trend model. The name comes
from the fact that the drift term βt plays a role of a
linear trend rather than a constant in (2). In practice, it
is often observed that either σ̂2

η or σ̂2
ζ is almost equal

to zero. Because of this redundancy, some researchers
assume that σ2

ζ = 0 a priori. On the other hand, it is
also possible to consider the following trend model in
stead of (2) plus (3);

μt = 2μt−1 − μt−2 + ηt. (5)

If we rewrite (5) as μt = μt−1 + (μt−1 − μt−2) + ηt,
it is easily understood that (5) is a special case of the
local linear trend model in the sense that the stochastic
slope βt is also driven by the same process ηt rather
than by a different process ζt. From now on, trend
model is fixed to (5) in this article.

3.2 State Space Form

So far I have just introduced a couple of models for
components, none of which does not correspond to the
pulse effect due to antibiotic administration. That will
be expressed as an exogenous term in measurement
equation, so in this subsection we put everything in a
state space form, and the model estimation via a state
space form.

Due to the assumption of no correlation among
innovation and noise process, the state space
representation can be built up as a composition
of small state space models for the individual
components. For the simplicity of presentation, we
put m = 2 throughout this paper. From equation
(5) and (4), it turns out that the essential quantity that
determines the present distribution of μt and ψt will
be given by a vector

αt−1 = (μt−1, μt−2, ψt−1, ψt−2)′ (6)

where the prime (′) denotes the transpose of a vector
or a matrix. By setting submatrices as follows,

T1 =
[

2 −1
1 0

]
, T2 =

[
a1 a1

1 0

]
,

R1 = R2 =
[

1 0
0 0

]
,

new matrices T and R are defined as

T =
[
T1 O
O T2

]
, R =

[
R1

R2

]
, ηt =

[
ηt

ωt

]
.

(7)
Then the transition of the state vector can be written
in a matrix notation as

αt = Tαt−1 +Rηt. (8)
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As we observe that the measurement equation (1)
just extracts and adds the components μt and γt,
defining z′ = (1, 0, 1, 0) yields the relation between
the observation and the state as

yt = z′αt + dt + εt. (9)

Now the structural model is put in a state space form
by (8) and (9). Note that the specification of αt, T ,
R and z′ described above is not a unique one because
the transformations of these vectors and matrices by a
regular square matrix still give rise to the same state
space model.

3.3 Intervention Term

We introduce an intervention term dt so that it should
express rapid increase in heart rate, blood pressure
and so on provided the administration quantity is big
enough to incur such an increase. A simple but
mostly acceptable modeling is to assume exponential
function. That is,

dt =
{

0 , t = 1, . . . , 36
ρ exp(−λ(t− 36)) t = 37, . . . , 288.

We expect both ρ and λ are nonnegative. A big ρ value
suggests acutely toxic effects, while a big λ value
implies quick decay of such an effect. Adding this
term needs two extra parameters.

3.4 Model and State Estimation

Let at−1 denote the minimum mean squared error
(MMSE) estimator of αt−1 based on the observations
up to time t − 1. Let Pt−1 denote the 4 × 4 (in our
situation) covariance matrix of the estimation error,
i.e.

Pt−1 = E[(αt−1 − at−1)(αt−1 − at−1)′].

Given at−1 and Pt−1, the MMSE estimator of αt and
the covariance matrix of the estimation error is given
by

at|t−1 = Tat−1

Pt|t−1 = TPt−1T
′ +RQR′

where Q = diag(σ2
η, σ

2
ω). These two equations are

known as the prediction equations.

Once the new observation, yt, becomes available, the
estimator of αt, at|t−1, can be updated. The updating
equations are given by the following two equations,

at = aVt|t−1 + Pt|t−1z
′f−1

t (yt − z′at|t−1 − dt)

Pt = Pt|t−1 − Pt|t−1z
′f−1

t zPt|t−1

where ft = z′Pt|t−1z + σ2
ε . Repetition of prediction

and updating constitutes so-called the Kalman filter.

Unless σ2
ε = 0, the estimation problem of a state

space model is double-folded. Given the unknown
hyperparameters θ = (a1, a2, σ

2
ε , σ

2
η, σ

2
ω)′, running

Kalman filter and fixed interval smoother yields
the estimates of unobservable components {μ̂t}T

t=1,
{ψ̂t}T

t=1 and hence {ε̂t}T
t=1. The vector of unknown

parameters, θ, can be estimated by the maximum
likelihood method. The likelihood function for a time
series can be decomposed into the product of the
density functions of one step ahead prediction error
vt = yt − z′at|t−1. The variance of observation noise
σ2

ε usually can be concentrated out of the likelihood
function. Let θ∗ = (a1, a2, σ

2
η, σ

2
ω)′, then

logLc(θ∗) = −1
2

{
T log 2πσ̃2(θ∗) +

T∑
t=1

log ft + T

}

must be maximized with respect to the unknown
parameters θ∗, while σ̃2(θ∗) is given by

σ̃2(θ∗) =
1
T

T∑
t=1

v2
t

ft
.

Model comparison will be done based on AIC
(Akaike, 1973). We will compare a simple trend
model, trend model with an intervention term, trend
plus AR model, and finally trend plus AR with an
intervention term. As regards the initial state settings,
we employ the ‘largeκ approximation’ (Harvey, 1989,
p.121). As for stationary AR part, we could express
unconditional distribution of an AR process via its
parameters so that they should give proper initial
distributions. Once the unknown hyperparameters
are estimated, then the unobserved components are
estimated by the fixed interval smoother. For the
algorithm of the fixed interval smoother, see Anderson
and Moore (1979, p.187–190), Harvey (1989, p.154)
or Kitagawa and Gersch (1996, p.58).

As for the coefficients of AR component model,
we restrict partial autocorrelations take their values
between −1 and 1 so that {ψt} should be a
stationary autoregressive process. Hence the partial
autocorrelations are transformed to have infinite
support, by logit transformation for example, then
their inverse transformations will be performed inside
the filtering subroutine.

4 RESULTS

In this section, we first present the results concerning
simple trend model and its extension. A simple
illustration reveals a problem of this approach, and it
will be shown that including stationary AR component
leads to much better modeling, and makes it possible
to detect intervention effects more often.
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4.1 Trend Model

Here the trend model is fixed to the second order
random walk model, namely to (5), while we have two
choices for the observation equation. One has dt term,

yt = μt + dt + εt,

while the other is without dt,

yt = μt + εt.

The results are summarized in Table 1. Out of
75 samples (72 for diastolic blood pressure only),
how often the model with or without intervention is
preferred is reported.

Data without dt with dt

Heart Rate 66 9
Resp. Rate 66 9
Diastolic BP 57 15
Systolic BP 61 14

Table 1. Results of model selection. Comparison
based on simple trend model.

Figure 2 shows one of the cases in heart rate where
the intervention is found to be significant. Height
of exponential function is about 53, and decay rate
parameter is estimated to be 0.45, which suggests
persistent effect in this case.

Looking at the upper panel of Figure 2, one might
think the goodness of fit of the simple trend model
(with an intervention term at most) would not be
sufficient to explain the total variability of the given
data. In the next subsection, we report the results after
including stationary AR component.

Figure 2. An intervention effect on a heart rate series.
Original and trend (upper), estimated intervention
(lower).

4.2 Trend plus AR Model

Now we incorporate a second order AR component,

ψt = a1ψt−1 + a2ψt−2 + ωt.

It is possible to increase the order of AR, to 4 or
6 say, but we do not perform further specification
searches. This can be justified in terms of detecting
the reaction to dosing. Trend order is fixed to 2 as
with the previous section. Models in comparison are
different only by the term dt. Namely, we compare (1)
and

yt = μt + ψt + εt.

The results are summarized in Table 2. In sum,
trend plus AR type decomposition accompanied with
an intervention term is very frequently selected by
minimum AIC procedure.

Trend only Trend+AR
Data /wo dt /w dt /wo dt /w dt

Heart Rate 2 0 0 72
Resp. Rate 17 0 0 58
Diastolic BP 1 0 0 71
Systolic BP 1 0 0 74

Table 2. Results of model selection. Comparison
based on simple trend model.

Figure 3 is based on the results of working on the
same data as in Figure 2. Much of the fluctuations
are absorbed into AR component, which might lead to
better fit or lower AIC value. Height of exponential
function is about 50 which is alike in the simple trend
model with an intervention case, while the decay rate
parameter is estimated to be almost 10, so the effect is
immediate.

Figure 3. An intervention effect on a heart rate
series. Trend+AR+Intervention effect. Original and
trend (upper), AR component (middle), and estimated
intervention effect (bottom).
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5 DISCUSSION

5.1 Role of AR Component

How should I understand the difference between Table
1 and 2? The plausible answer seems to come
after comparing Figure 2 with Figure 3. Without
an intervention term, the model has poor explanatory
power, and much of the fluctuation around the trend
has to be put to residuals. Then, the height of the
exponential function at its origin sometimes buries in
the noise level. If so, it is parsimonious to regard the
intervention effect just a part of irregular component.

Whatever the data, heart rate or blood pressures, they
vary according to a cynomolgus monkey’s activity,
so their fluctuations are inevitable. Our aim is to
estimate the effect of antibiotic administration, so the
inclusion of AR term gives us good description of
various measurements assuming monkey’s activities.

5.2 Toward Dose Response Analysis

The methodology presented in this paper is a basis of
future dose response analysis. Even if an intervention
term is found to be significant (in minimum AIC
sense), it does not always mean an acute toxicity;
it depends on the estimated height of exponential
function or also on the decay rate.

To understand this, it helps to look at actual form
of estimated functions (or dummies). Figure 4 and
5 show overlayed exponential functions of systolic
blood pressure and respiration rate respectively. For
example, we might set some threshold for the height
of the function. For example, we might set 20 rise
or more in systolic blood pressure should be regarded
as the evidence of acute toxicity. Then the case is
classified as a toxic case.

So far, we only have data set under the single dose
level. After increasing quantity of administration, we
run the time series analysis proposed in this paper, and
finally we obtain a set of dose level times response
data. Then the usual dose response analysis can be
applicable.

5.3 Box-Tiao Parameterization

In this paper we simply placed the exponential
function with two parameters. In the context of
intervention analysis, Box and Tiao (1975) is the most
well-known paper. It would be possible to adapt their
parameterization. Let P (T )

t be a pulse indicator where

P
(T )
t =

{
0, t �= T
1, t = T.

Figure 4. Intervention effects on systolic blood
pressure.

Figure 5. Intervention effects on respiration rate.

Then the model suitable to our problem is

dt = ω1B/(1 − δB)P (T )
t .

Obviously, the parameter ω1 corresponds to ρ in our
model, while δ determines the decay of the pulse
effects, therefore plays the same role of λ in our
model.

6 CONCLUSION

A structural time series model with an intervention
has been proposed to model the data from embedded
telemetry in a cynomolgus monkey. Not only the trend
term but stationary AR term plays an important role to
extract dose effects accurately. Estimated effects can
form a basis of the judgement of acute toxicity, then
the time series analysis done here enables usual dose
response analysis.
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