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EXTENDED ABSTRACT

The genomes of complex organisms, including the
human genome, are highly structured. This structure
takes the form of segmental patterns of variation in
various properties, and may be caused by the division
of genomes into regions of distinct function, by the
contingent evolutionary processes that gave rise to
genomes, or by a combination of both. Whatever
the cause, identifying the change-points between
segments is potentially important, as a means of
discovering the functional components of a genome,
understanding the evolutionary processes involved,
and fully describing genomic architecture.

One property of genomes that is known to display
a segmental pattern of variation is GC content.
Genomes are composed of DNA: a long, double-
stranded, linear polymer built up from four nucleotide
bases, namely adenine, cytosine, guanine, and
thymine (A, C, G, and T). The two strands of a
DNA molecule form a double-helix, held together by
hydrogen bonds formed between G and C nucleotide
pairs, and between A and T nucleotide pairs, as
illustrated in Figure 1. The two strands are thus
complementary; the sequence of either strand can be
deduced from that of the other by interconverting G
with C, and A with T.

Figure 1. The DNA structure. Source:
http://cnx.org/content/m12382/latest/

The GC content of a portion of DNA is thus the
proportion of GC pairs that it contains. Sharp changes
in GC content can be observed in the human and
other genomes. For example, Figure 2 shows a small
portion of a sequence, in which a sharp increase in GC
content is observed at about position 35.

1 35 70

gaattaatatgagatttatatagttgataaagctactccctacccatccccgcctcatctagcccggagg

1000000000101000000000100100000110010111001110011111110100100111111011

Figure 2. An example of a sequence and its binary
representation with a well defined change-point.

Such change-points may be the boundaries of
functional elements, or may play a structural role. We
model genome sequences as a multiple change-point
process, that is, a process in which sequential data is
separated into segments by an unknown number of
change-points, with each segment supposed to have
been generated by a different process.

Multiple change-point models are important in many
biological applications and, particularly, in analysis
of biomolecular sequences. For example, multiple
change point models can be applied in segmenting
protein sequences (which have a 20 character
alphabet) according to hydrophobicity. This can aid in
the identification of functional domains and can assist
in determining the three-dimensional conformations
of protein molecules. Another application in which
the authors have an interest is in identifying segments
that are conserved between two species.

We consider a Sequential Importance Sampling
approach to change-point modeling using Monte
Carlo simulation to find estimates of change-points as
well as parameters of the process on each segment.
Numerical experiments illustrate the effectiveness of
the approach. We obtain estimates for the locations
of change-points in artificially generated sequences
and compare the accuracy of these estimates to
those obtained via MCMC and a well-known method,
IsoFinder. We also provide examples with real data
sets to illustrate the usefulness of this method.

2917



1 INTRODUCTION

Eukaryotic genomes display segmental patterns of
variation in various properties, including GC content
and level of evolutionary conservation. The genome
can be divided into segments that are internally fairly
uniform with respect to the property of interest, but are
significantly different from neighbouring segments.
The boundaries of such segments are regions of abrupt
change, and are known aschange-points.

One property that exhibits a segmental pattern of
variation is GC content. That is, DNA sequences
vary in the local proportion of the nucleotides G and
C, as opposed to the nucleotides A and T. Many
eukaryote genomes are known to contain structures
termedisochores, which are large (that is, megabase)
segments that differ significantly in GC content from
neighbouring segments.

Another important property of genomes that displays
segmental variation is the degree of conservation
between two species. That is, homologous parts of
two genomes may exhibit more sequence similarity
than flanking sequences, as a result of selective
pressures that inhibit fixation of mutations. One
way in which such conserved segments are detected
is to first align the two genomes and then perform
a “sliding window” analysis — a form of Loess
analysis. The alignment is divided into contiguous
segments of a fixed width or “window length” and the
proportion of matches is determined for each window.
Each window thus produces a single data point in
the interval [0,1]. The proportion of the genome
that is conserved can then be estimated by fitting a
mixture model to these data points and estimating
the mixture proportion of the most slowly evolving
component. This approach has been used to estimate
the proportion of the human genome that is conserved
relative to mice to be about 5% (Watersonet al.,
2002). Such estimates are relevant to current debates
about the amount of functional material in genomes
and the role of non-protein-coding RNAs.

A problem with using sliding windows is that abrupt
changes are blurred over a region equal to the window
size. It is possible to reduce the window size, but
this increases noise. A more important problem
is that this approach is not a very sensitive way
to identify statistically significant change-points. A
more sensitive technique than sliding windows is
sequence segmentation, which involves modelling the
sequence as a collection of segments with uniform
internal properties and identifying probable locations
of change-points. Various methods of genome
segmentation have been proposed, and a number of
these are reviewed in Braun and Miller (1998). Recent
approaches include those of Keithet al. (2004) and
Oliver et al. (1999, 2001, 2002). The authors are

actively involved in developingMarkov chain Monte
Carlo (MCMC) approaches to this problem; see Keith
(2006) and Keithet al. (2007).

In this paper we present asequential importance
samplingapproach to change-point modelling using
Monte Carlo simulation to find estimates of change-
points as well as parameters of the process on each
segment. We include results of numerical experiments
indicating the usefulness of this method. We apply the
method to real data from the human genome to detect
segmental variation in GC content, but the method
could equally be applied to detect segmental variation
in other important properties.

The paper is structured as follows. Section 2 includes
a statement of the multiple change-point problem in
mathematical terms. In Section 3, we explain the
basic framework of SIS. In Section 4, we develop
SIS for the multiple change-point problem. Section
5 presents the results of two numerical experiments.

2 THE MULTIPLE CHANGE-POINT PROB-
LEM

Let us formulate the multiple change-point problem
in mathematical terms. A binary sequenceb =
(b1, . . . , bL) of length L is given. A segmentation
of the sequence is specified by giving the number
of change-pointsN and the positions of the change-
pointsc = (c1, . . . , cN ), where0 = c0 < c1 < . . . <
cN < cN+1 = L. In this context, a change-point
is a boundary between two adjacent segments, and
the valuecn is the sequence position of the rightmost
character of the segment to the left of then-th change-
point. A maximum number of change-pointsNmax

is specified, where0 ≤ N ≤ Nmax < L. The
model for the data assumes that within each segment
characters are generated by independent Bernoulli
trials with probability of success (that is obtaining a
“1”) θ that depends on the segment. Thus, the joint
probability density ofb1, . . . , bL, conditional onN ,
c = (c1, . . . , cN ), andθ = (θ0, . . . , θN ), is given by

f(b1, . . . , bL | N, c, θ)

=

N
∏

n=0

θI(cn,cn+1)
n (1 − θn)O(cn,cn+1),

where

I(cn, cn+1) =

cn+1
∑

i=cn+1

bi,

O(cn, cn+1) = cn+1 − cn − I(cn, cn+1).

In other words,I(cn, cn+1) is the number of ones in
the segment bounded by sequence positionscn+1 and
cn+1, andO(cn, cn+1) is the number of zeros in that
same segment.
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To formulate the problem in terms of a Bayesian
model, a prior distribution must be defined on the set
of possible values ofx = (N, c, θ), denoted

X = ∪Nmax

N=0 {N} × CN × (0, 1)N+1,

with

CN = {(c1, . . . , cN ) ∈ {1, . . . , L − 1}N :

c1 < . . . < cN}.

We assume a uniform prior both on the number of
change-points and onCN , and uniform priors on(0, 1)
for eachθn. Thus, the overall priorf0(N, c, θ) is a
constant. The posterior density at pointx = (N, c, θ),
having observedb1, . . . , bL, is thus given by

π(x) ∝

N
∏

n=0

θI(cn,cn+1)
n (1 − θn)O(cn,cn+1).

3 SEQUENTIAL IMPORTANCE SAMPLING

Consider the problem where we wish to evaluate the
quantity

ℓ =

∫

X

H(x)π(x) dx = Eπ [H(X)],

where the subscriptπ means that the expectation is
taken with respect toπ(x) — the target density (in
our case the posterior density) — andH(x) ≥ 0 is
some performance function.

We can then representℓ as:

ℓ =

∫

H(x)
π(x)

g(x)
g(x) dx = Eg

[

H(X)
π(X)

g(X)

]

.

We can now get an unbiased estimator forℓ, called the
importance sampling estimator, as follows:

ℓ̂ =
1

N1

N1
∑

i=1

H(X(i))
π(X(i))

g(X(i))
,

whereX
(1), . . . ,X(N1) is a random sample from a

different densityg. The ratio of densities

W (x) =
π(x)

g(x)

is called theimportance weightor likelihood ratio.

A variant of the importance sampling technique is
know assequential importance sampling(SIS). It is
not always easy to come up with an appropriately
close importance sampling densityg(x) for high-
dimensional target distributions. SIS builds up the
importance sampling density sequentially.

Suppose thatx can be written in the formx =
(x1, x2, . . . , xd), where each of thexi may be multi-
dimensional. Then we may construct our importance
sampling density as

g(x) = g1(x1) g2(x2 |x1) · · · gd(xd |x1, . . . , xd−1),

where thegt are chosen so as to makeg(x) as close
to the target density,π(x), as possible. We can also
rewrite the target density sequentially as

π(x) = π(x1)π(x2 |x1) · · ·π(xd |xd−1),

where we have abbreviated(x1, · · · , xt) to xt. The
likelihood ratio now becomes

wd =
π(x1)π(x2 |x1) · · ·π(xd |xd−1)

g1(x1) g2(x2 |x1) · · · gd(xd |xd−1)
,

which can be evaluated sequentially as

wt = ut wt−1, t = 1, . . . , d,

with initial weight w0 = 1. The incremental weights
{ut} are given byu1 = π(x1)/g1(x1) and

ut =
π(xt |xt−1)

gt(xt |xt−1)
=

π(xt)

π(xt−1) gt(xt |xt−1)
,

t = 2, . . . , d.

However this incremental weight requires knowing
the marginal probability density functions{π(xt)}.
This may not be easy and so we need to introduce a
sequence ofauxiliarypdfsπ1, π2, . . . , πd such that (a)
πt(xt) is a good approximation toπ(xt), (b) they are
easy to evaluate, and (c)πd = π. The SIS method can
now be described as follows.

Algorithm 1 (Sequential Importance Sampling)

1. For each finitet = 1, . . . , d, drawXt = xt from
g(xt |xt−1).

2. Computewt = utwt−1, wherew0 = 1 and

ut =
πt(xt)

πt−1(xt−1) gt(xt |xt−1)
,

t = 1, . . . , d.

3. RepeatN1 times and estimateℓ via

ℓ̂w =
w(1)H(x(1)) + · · · + w(N1)H(x(N1))

w(1) + w(2) + · · · + w(N1)
,

with w(i) ≡ w
(i)
d for i = 1, . . . , N1.

For more on importance sampling and SIS see, for
example, Rubinstein and Kroese (2007).
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4 SIS FOR THE MULTIPLE CHANGE-POINT
PROBLEM

In order to estimate the average GC content, we are
interested in the evaluation of the following integral:

ℓ(y) =

Nmax
∑

N=0

∑

c∈CN

∫

(0,1)N+1

H(y)π(N, c, θ) dθ,

y = 1, 2, . . . , L,

where

H(y) =







θ0, 1 ≤ y ≤ c1,
θn, cn < y ≤ cn+1, n = 1, . . . , N − 1,
θN , cN < y ≤ L.

We can represent our change-point variablex as ad =
Nmax-dimensional vector:

x = (x1, . . . , xd), xt = (c′t, θ
′
0,t, θ

′
1,t),

1 ≤ t ≤ d,

where

• c′t is the position of a change-point, which has
been defined at thet-th iteration of Algorithm
2, (c′1, . . . , c

′
d) ∈ {1, . . . , L}d;

• θ′0,t andθ′1,t are values of the parameter for the
segment obtained att-th iteration to the left and
right of c′t, respectively.

It will also be convenient to defineθ′0,t = θ′1,t, if there
is no change-point at thet-th iteration. We rearrange
the positionsc′1, . . . , c

′
d in ascending order and denote

the resulting positions byc′1,d ≤ . . . ≤ c′d,d. If all the
positionsc′1,d, . . . , c

′
d,d are different (in which case all

the inequalities are strict) andc′d,d < L, then we have
d change-points,c1, . . . , cd, 0 < c1 < . . . < cd <
L. If there are equalities, then we obtainN , N < d,
change-points, which we denote byc1, . . . , cN , 0 <
c1 < . . . < cN < L. Finally, we take

θ0 = θ′0,t1
,

θn =

{

θ′1,tn
, if tn > tn+1,

θ′0,tn+1
, if tn < tn+1,

n = 1, . . . , N − 1,

θN = θ′1,tN
,

wheretk = min{t : c′t = ck}, k = 1, . . . , N , N ≤
Nmax.

Next, we build up the proposal densityg(x) as
follows. Using all observationsI(1) = {1, . . . , L},
we generate a pointx1 = (c′1, θ

′
0,1, θ

′
1,1) by simulation

from a distribution

g1(x1) ∝ f(b1, . . . , bL | x1)f1(x1),

where f1(x1) is a prior density defined on
{1, . . . , L} × (0, 1)2. Recall that we have assumed a
uniform prior onCN and uniform priors on(0, 1) for
eachθn. It follows thatf1(x1) is a constant.

Then, we have two intervalsI0,1 = {1, . . . , c′1} and
I1,1 = {c′1 + 1, . . . , L} (one of them may be empty).
We choose these intervals proportional to

S0,1 =
∑

i∈I0,1

p2(i, c
′
1) and S1,1 =

∑

i∈I1,1

p2(c
′
1, i),

respectively, wherep2(r1, r2) is a uniform prior on
{(r1, r2) ∈ {1, . . . , L}2 : r1 ≤ r2}. Thus,S0,1 and
S1,1 are proportional to the length of the intervalsI0,1

andI1,1, respectively.

Since we have independent observations,I0,1 is
independent ofI1,1. So we do not need to know the
values of the parameterθ for non-selected intervals.
Using the selected intervalI(2) ∈ {I0,1, I1,1}, we
generate the next pointx2 = (c′2, θ

′
0,2, θ

′
1,2) ∈ I(2) ×

(0, 1)2. Taking into account that the prior distribution
on (0, 1)2 is uniform, we obtain

g2(x2 | x1) ∝ v(2)
∏

i∈I(2)

f(bi | x2),

wherev(2) ∈ {v0,1, v1,1}, vk,1 = Sk,1/(S0,1 + S1,1).
Similarly, at thet-th iteration we have

gt(xt | xt−1) ∝ v(t)
∏

i∈I(t)

f(bi | xt), t = 2, . . . , d,

where

v(t) ∈ {v0,t−1, . . . , vt−1,t−1},

vk,t−1 = Sk,t−1

(

t−1
∑

k=0

Sk,t−1

)−1

with

S0,t−1 =
∑

i∈I0,t−1

pt(i, c
′
1,t−1, . . . , c

′
t−1,t−1),

...

St−1,t−1 =
∑

i∈It−1,t−1

pt(c
′
1,t−1, . . . , c

′
t−1,t−1, i),

and

c′1,t−1 = min{c′1, . . . , c
′
t−1},

...

c′t−1,t−1 = max{c′1, . . . , c
′
t−1},

c′1,t−1 ≤ . . . ≤ c′t−1,t−1,

I(t) ∈ {I0,t−1, . . . , It−1,t−1},

Ik,t−1 = {c′k,t−1 + 1, . . . , c′k+1,t−1},

c′0,t−1 = 0, c′t,t−1 = L,

2920



where pt(r1, . . . , rt) is a uniform prior on
{(r1, . . . , rt) ∈ {1, . . . , L}t : r1 ≤ . . . ≤ rt}.

We may define the sequence of auxiliary pdfs
π1, . . . , πd as

πt(xt) ∝ f(b1, . . . , bL | xt)ft(xt), t = 1, . . . , d,

whereft(xt) is a uniform prior distribution defined
on {1, . . . , L}t × (0, 1)t+1. In particular,π1(x1) =
g1(x1) andπd(xd) = π(x).

θ0,1 θ1,1

θ1,3θ0,3

(a) t = 1

(b) t = 2

(c) t = 3

θ0,2 θ1,2

c′1

c′2

c′3

Figure 3. Three iterations of the SIS procedure.

Figure 3 shows the first three iterations of the SIS
algorithm for the multiple change-point problem. In
part (a) we have a sequence and we draw our first
change-point indicated by the crossc′1. We now draw
θ0,1 andθ1,1 for the segments to the left and right of
this change-point respectively. In the second iteration
(part b) we have picked the left interval proportional
to its length as we are using a uniform prior. We draw
a change-pointc′2, θ0,2 andθ1,2. This is repeated until
we have drawnd change-points.

The SIS for the multiple change-point problem can be
defined as the following procedure.

Algorithm 2 (SIS for Multiple Change-point Problem)

1. DrawXt = xt fromgt(xt | xt−1). That is,

(a) Calculate the weightsvk,t−1, k =
0, . . . , t − 1.

(b) Select an intervalI(t) ∈ {Ik,t−1, k =
0, . . . , t − 1} with probabilities propor-
tional to the weights calculated in the pre-
vious step. LetI(t) = {c

(t)
0 + 1, . . . , c

(t)
1 },

c
(t)
0 , c

(t)
1 are adjacent change-points from

{c′1, . . . , c
′
t−1} such thatc(t)

0 < c
(t)
1 .

(c) Calculate the posterior probabilities

f(c′t | bi, i ∈ I(t)) ∝ p1(c
′
t)

×

∫ 1

0

θI(c
(t)
0 ,c′t)(1 − θ)O(c

(t)
0 ,c′t) dθ

×

∫ 1

0

θI(c′t,c
(t)
1 )(1 − θ)O(c′t,c

(t)
1 ) dθ,

wherep1(c
′
t) is a uniform prior distribu-

tion, c′t ∈ I(t).

(d) Insert a new change-point atc′t (possibly,

c′t = c
(t)
1 ) proportional to the probabilities

calculated in the previous step.

(e) Select new Bernoulli parametersθ′0,t and
θ′1,t for the segments to the left and right of
c′t by sampling from the Beta distribution

with parameters(α0,t = I(c
(t)
0 , c′t) +

1, β0,t = O(c
(t)
0 , c′t) + 1) and (α1,t =

I(c′t, c
(t)
1 ) + 1, β1,t = O(c′t, c

(t)
1 ) + 1),

respectively.

Letxt = (xt−1, xt), wherext = (c′t, θ
′
0,t, θ

′
1,t).

2. Compute

ut =
πt(xt)

πt−1(xt−1)gt(xt | xt−1)

and letwt = wt−1ut, w0 = 1, t = 1, . . . , d.

3. RepeatN1 times and estimateℓ via

ℓ̂w =
w(1)H(x(1)) + · · · + w(N1)H(x(N1))

w(1) + w(2) + · · · + w(N1)
,

with w(i) ≡ w
(i)
d for i = 1, . . . , N1.

5 RESULTS

In this section we compare our SIS approach to two
other methods, IsoFinder (Oliveret al., 2004) and
the MCMC approach in Keithet al. (2004). For
comparison we use two sequences. The first sequence
is an artificial sequence with known distribution and
the second uses a portion of theMajor Human
Histocompatibility regionlocated on chromosome six.

5.1 Example 1: Artificial data

Let (b1, b2, . . . , b22000) be a sequence of independent
Bernoulli random variables generated with the
parameters given in Table 1. The true profile of this
sequence can be seen in Figure 4.

We used the SIS algorithm in Algorithm 2 withd =
10, N1 = 500, IsoFinder with a0.95 significance
level and tract size of1000, and the MCMC algorithm
with 100 samples and a step size of3000. The
Mean Squared Error (MSE) is calculated as MSE=
√

∑22000
i=1 (t(i) − e(i))2 where t(i) is the true GC

proportion ande(i) is the estimated GC proportion
at positioni. The results are displayed in Table 2.
Figure 4 shows both the MCMC and SIS estimates
for the average GC content along the sequence.
These two plots are in excellent agreement with each
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Table 1.Bernoulli parameters for artificial sequence.

Positions Bernoulli
parameter

1 — 2000 θ0 = 0.35
2001 — 4000 θ1 = 0.25
4001 — 6000 θ2 = 0.4
6001 — 8000 θ3 = 0.5
8001 — 10000 θ4 = 0.45
10001 — 12000 θ5 = 0.55
12001 — 14000 θ6 = 0.4
14001 — 16000 θ7 = 0.6
16001 — 18000 θ8 = 0.65
18001 — 20000 θ9 = 0.5
20001 — 22000 θ10 = 0.4

Table 2. The running time and Mean Squared Error
for the three different algorithms when applied to an
artificial sequence of22000 characters.

Algorithm Time (sec) MSE
SIS 69 4.36
MCMC 393 2.88
IsoFinder ∼ 4 NA

other, supporting the fact that both produced only
very small difference between their estimates and
the true distribution. It is interesting to note that
both algorithms almost always under-estimated or
over-estimated the GC content in the same direction.
This could be attributed to the fact that although the
artificial sequence was drawn from Bernoulli random
variables with parameters given in Table 1, it is still
a random process and it is possible that the true GC
proportions are not exactly the same as the Bernoulli
parameters of Table 1.
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Figure 4. Average GC content as determined by the
SIS and MCMC algorithms as well as the true GC
profile.

This example illustrates the accuracy of estimates of
change-points as well as parameters of the process on
each segment.

5.2 Example 2: Real data

The second example uses a real DNA sequence. As a
consequence, we do not know the true profile but can
still look for agreement between the methods. Using
the same algorithm parameters as before, we obtain
the results summarized in Table 3.

Table 3. The running time of the algorithms
when applied to a segment of the Major Human
Histocompatibility region.

Algorithm Time (sec)
SIS 37
MCMC 582
IsoFinder ∼ 4

Here, both the IsoFinder and SIS methods are
substantially faster than the MCMC approach. All
three methods produced consistent GC estimates and
these are shown in Figure 5. To try and gauge the
goodness of each method we calculated the sum of
the squared difference between each curve. These
differences are given in the Table 4.

Table 4. The sum of the squared differences of the
profiles for each pair of algorithms.

Algorithms Difference
SIS - MCMC 4.949
MCMC - IsoFinder 6.1354
IsoFinder - SIS 5.6338

Using these distances as a measure of closeness, the
SIS profile is closer to both the MCMC and IsoFinders
profiles than the latter two are to each other. This
indicates that, on average, the SIS approach produces
estimates for the mean GC content that lie in between
those of the other methods. When examining Figure
5, it is clear to see that the SIS estimate is similar to
both the MCMC and IsoFinder estimates.

6 CONCLUSION

In this paper we have proposed how SIS can be used
to identify change-points in biological sequences. The
methodology can also be extended to more general
multiple change-point models. We have demonstrated
the effectiveness of this method in examples using
both real and artificial sequences.

For the artificial sequence, our method produced av-
erage GC estimates that were in excellent agreement
with both the MCMC approach and the true profile.
IsoFinder was unable to produce an estimate for this
example. The running time of the SIS approach was
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Figure 5. Average GC content as determined by the
SIS, MCMC, and IsoFinder algorithms applied to
a segment of the Major Human Histocompatibility
region.

about five and a half times less than that of the MCMC
approach.

When comparing the methods using a segment of
the Major Human Histocompatibility region the SIS
profile was closer to each of the two established
profiles than those were to each other. This indicates
that the SIS approach produces estimates for the
average GC content that lie in between those of the
two other methods. The SIS profile is also similar to
both other profiles.
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