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ABSTRACT

We study Markovian models for population pro-
cesses in continuous time, addressing questions
concerning the behaviour of ensembles of individuals
(equilibrium, quasi-equilibrium and time-dependent
behaviour), and in particular what can be deduced
from models for individual behaviour. It is self evident
that ensemble behaviour is precisely the combined
behaviour of individuals, so let me be more precise
by way of three examples of populations, which will
be used throughout to illustrate our major results. I
will make the distinction between the two kinds of
models (or processes) by referring to them simply as
the “individual model” or the “ensemble model” (or
process).

Population 1. Our first example is a population
network, frequently called a metapopulation (see for
example Gilpin and Hanski (1991)), where a fixed
number n of individuals occupies geographically
separated regions or patches. Patches may become
empty, but can be recolonized through migration
from other patches. From the point of view of the
individual, it spends a period of time in a given
patch and might then emigrate to another patch,
spend a period there, and so forth. Assuming
individuals do not affect each other’s progress through
the network, one could model the progress of the
individual as a random walk on the patches, and
thus evaluate quantities such as the probability pj(t)
that the individual occupies patch j at time t. Our
intuition tells us that, for the ensemble, the proportion
of individuals in patch j should be approximately
equal to pj(t). So strong is this intuition that
scientists frequently model population proportions
using individual-level models.

In Section 2 we give a careful examination of
whether it is reasonable to approximate random
proportions of individuals that share a characteristic
using probabilities derived from individual-based
models. We are able to make a very precise statement
for a very general class of models.

Population 2. This is a variant of Population 1
where we allow death or external emigration from

any patch. We will study two cases: (i) the open
network, where there is external immigration to
one or more patches, and (ii) the closed network,
where there are n individuals to begin with, each
eventually disappearing from the network through
death or external emigration. As before, individuals
are assumed not to affect one another’s progress, but
now individuals (perhaps arriving from outside the
network) perform a random walk on the patches but
then eventually leave. In contrast to Population 1,
the total number of individuals is random. Yet, we
would expect to be able to draw similar conclusions
concerning ensemble proportions. Furthermore, as
the population would be expected to settle down
to a stable equilibrium, we might ask whether it
is also reasonable to approximate the equilibrium
proportion of individuals occupying patch j using
the equilibrium probability that an individual is in
patch j. This is certainly reasonable in the open
case, but even closed metapopulations can exhibit
“quasi” equilibrium behaviour over reasonable time
scales before extinction occurs; see Pollett (1999).

We examine these questions in Sections 3 and 4,
evaluating stationary quasi-stationary distributions for
the open and closed ensembles, respectively, and
describing their relationship with the corresponding
distributions for the individual model.

Population 3. Our final example is a population of
organisms, each having a life time that consists of
several distinct stages (for example, the butterfly life
cycle comprises egg, larva, pupa and adult). Again our
intuition tells us that the proportion of the population
in stage s should be close to the proportion of time ps
that an individual spends in stage s of its life cycle.
Results proved in Section 2 confirm this. The quasi-
equilibrium behaviour of this population is examined
in Section 4.

We begin by describing a general individual model
and then construct the corresponding ensemble model.
The individual model is Markovian with a specified
set of transition rates Q. Since Q is arbitrary,
the model is very flexible. In the ensemble model
individuals are assigned to the various states, each
then moving independently according to Q.
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1 INDIVIDUAL AND ENSEMBLE MODELS

Let X(t) be the state of an individual at time t (≥ 0);
for Populations 1 and 2 it is the patch occupied by
that individual, while for Population 3 it is the current
stage in the individual’s life cycle. We will suppose
that (X(t), t ≥ 0) is a continuous-time Markov chain
taking values in a discrete set S with a (conservative)
set of transition rates Q = (qij , i, j ∈ S). Thus, qij
represents the rate of transition from state i to state j,
for j 6= i, and qi := −qii =

∑
j 6=i qij represents

the total rate out of state i. The sample behaviour
is as follows: the process starts in a given state i,
spends an exponentially distributed amount of time
there with mean 1/qi before jumping to another state j
with probability pij = qij/qi, where it spends another
exponentially distributed period, but with mean 1/qj ,
and so on. If the process reaches a state j for
which qj = 0 (an absorbing state) it remains there.
For further explanations and terminology see for
example Anderson (1991) or Norris (1997). It will be
convenient to restrict our attention to the case where S
is a finite set, but I note that many of the arguments
presented hold more generally. The state probabilities
p(t) = (pj(t), j ∈ S), where pj(t) = Pr(X(t) = j),
can be obtained as the (unique) solution to the forward
equation p ′(t) = p(t)Q satisfying p(0) = a, where
a = (aj , j ∈ S) is a given initial distribution (here
and henceforth all vectors shall be interpreted as row
vectors).

Population 1. Suppose that there are M patches in
the population network. The states S = {1, . . . ,M}
are the patch labels and qij represents the intrinsic
tendency for movement of individuals from patch i
to patch j: when the individual leaves patch i it
moves to patch j with probability pij = qij/qi,
where qi =

∑
j 6=i qij is the total (per-capita) rate

of departure from patch i. For example, qij might
be a function of the area of patch i and the distance
between patches i and j, but our results do not require
any particular prescription. We will suppose only that
S is irreducible: any individual may pass between any
two patches either directly or indirectly via a chain of
other patches.

Population 2. Now S = {0, . . . ,M} and we have
the extra transition from i to 0 at (per-capita) rate
qi0 for each i ∈ C := {1, . . . ,M}, corresponding
to death or external emigration at patch i. We will
suppose that qi0 > 0 for at least one i. In the open
case there is an additional set of parameters ν =
(νi, i ∈ C) with νi representing the rate at which new
individuals arrive at patch i: when the individual starts
its journey through the network it begins in patch i
with probability ai := νi/

∑
k∈C νk. In contrast to

the model for Population 1, S here is not irreducible
because 0 is an absorbing state. However, it will
be convenient to suppose that C is irreducible: the
individual can leave the network from any patch or,

in the open case, reach any patch from outside the
network (in both cases either directly or via a chain
of other patches).

Population 3. In the life cycle example we let M
be the number of stages of life, with M being the
first stage and 1 being the last, and with state 0
representing death, so that S = {0, . . . ,M}. The
rate at which an individual moves from stage s to
the next stage s − 1 (s ≥ 1) is qs = qs,s−1 > 0
(equivalently, the individual spends an exponentially
distributed amount of time in stage swith mean 1/qs).
Again S is not irreducible. Each state s, including the
absorbing state 0, is in a class by itself.

Now we construct a model for the ensemble. Suppose
that at time t = 0 the individuals are assigned to the
states according to some rule and then each moves
independently in S as a Markov chain governed by Q.
The key assumption here is independence: individuals
do not affect one another. We record only the number
of individuals in the various states, rather than their
positions. Let Nj(t) be the number of individuals
in state j at time t, and let N = (Nj , j ∈ S).
The process (N(t), t ≥ 0) is also a continuous-time
Markov chain. In applied probability parlance, N(t)
is an example of a migration process (Whittle (1967)),
or, in queueing theory parlance, a network of infinite-
server queues. Suffice it to say that systems
like these are much studied and well understood.
Books by Kelly (1979) and Serfozo (1999) together
give an excellent summary of stochastic network
theory. Since we are assuming that individuals
move independently, the ensemble model can also be
viewed as a (non-interacting) particle system, and thus
dates back to at least Doob (1953).

The closed ensemble. We suppose that there is a fixed
number n of individuals, each moving according toQ.
Population models 1 and 3 and the closed version of
model 2 fit this context. The ensemble process takes
values in E = {n ∈ {0, . . . , n}S :

∑
j∈S nj = n},

and its transition rates Q
E

= (q(n,m),n,m ∈ E)
are given by q(n,n+ ej − ei) = niqij , for all states
j 6= i in S, where ej = (0, . . . , 0, 1, 0, . . . , 0) is the
unit vector with a 1 as its j-th entry. This follows
because a transition from n to n+ ej − ei is effected
by the movement of a single individual from state i to
state j and there are ni individuals in state i when the
state is n, each moving to state j at rate qij . Notice
that the total rate out of state n is

q(n) :=
∑

m∈E: m6=n

q(n,m) =
∑
i∈S

niqi (n ∈ E).

The open ensemble. Now individuals may enter the
system and, once there, move according to Q. New
individuals appear in the various states according to
independent Poisson processes, the rate for state j
being νj . With Population 2 (open case) in mind, we
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will adopt the setup S = {0} ∪ C, where C is a finite
irreducible class and 0 is an absorbing state which is
accessible from C (qi0 > 0 for at least one i ∈ C),
so that an individual’s departure from the system is
effected by its entry into state 0. Thus, the ensemble
process takes values in E = {0, 1, . . . }C , which is
irreducible because C is irreducible, and we have
additional sets of transition rates q(n,n−ei) = niqi0
and q(n,n+ ei) = νi (i ∈ C). Now the total rate out
of state n is

q(n) =
∑
i∈C

νi +
∑
i∈C

ni
∑

j∈C, j 6=i

qij

+
∑
i∈C

niqi0 = ν +
∑
i∈C

niqi (n ∈ E),

where qi =
∑
j∈S, j 6=i qij (i ∈ C) and ν =

∑
i∈C νi.

2 ENSEMBLE PROPORTIONS

The closed ensemble. Our aim is to demonstrate
that the proportion of individuals occupying state j
can indeed be approximated by the probability that a
single individual is in state j. To this end let Xj(t) =
Nj(t)/n be the proportion of individuals in state j
at time t, where recall that n is the total number of
individuals in the ensemble. Note that (X(t), t ≥ 0),
where X = (Xj , j ∈ S), is itself a continuous-
time Markov chain. As we are going to vary n, let
us make the dependence on n explicit in our notation
by writing X(n)

j for Xj and X(n) for X , et cetera.
Our first theorem establishes that, in the limit as n
becomes large, the process of proportions converges
(uniformly in probability over finite time intervals) to
a deterministic (that is, non-random) trajectory, being
the unique solution of the forward equations (referred
to above) of the individual model. The only proviso is
that the initial proportions (at t = 0) converge.

The proof of Theorem 1, along with the proofs of
our other major results, are given in the appendix.
Theorem 1, and Theorem 2 below, exploit important
results of Kurtz (1970) on approximating limits of
pure-jump Markov processes by solutions of ordinary
differential equations.

Theorem 1. IfX(n)(0)→ a as n→∞, then, for all
u > 0, and for every ε > 0,

Pr
(

sup
0≤t≤u

∣∣∣X(n)(t)− p(t)
∣∣∣ > ε

)
→ 0 as n→∞,

where p(t) = (pj(t), j ∈ S) is the unique solution to
p ′(t) = p(t)Q satisfying p(0) = a, namely p(t) =
a exp(tQ), where exp( · ) is the matrix exponential.

The implications for our population models are
obvious. For Model 1 and the closed version of
Model 2, the proportion of individuals in patch j
at time t can be approximated by the probability

pj(t) that an individual occupies patch j at time t,
the individual moving amongst the patches according
to any given irreducible (finite) Markov chain. For
Population 3, the same is true but for the proportions
of individuals in the various stages of life. But, as
individuals follow a death process, we can exhibit
the limiting proportions explicitly. For example, if
q1, q2, . . . are distinct, then (tweak Exercise 6.8.31
of Grimmett and Stirzaker (2001)) the limiting
proportions are given by

pj(t) =
1
qj

M∑
k=j

qke
−qkt

M∏
l=j, l 6=k

ql
ql − qk

,

for j = 1, . . . ,M , and p0(t) = 1−
∑M
j=1 pj(t).

The open ensemble. Now the total number of
individuals is not fixed but random, yet there is
an analogue of Theorem 1, which provides an
approximation that is valid for large external arrival
rates (in the specific context of Population 2, heavy
immigration from outside the population network).
As we are going to let the total exogenous arrival
rate ν become large, we make the dependence on
ν explicit in our notation. Let v(ν) = (v(ν)

j , j ∈
C), where v

(ν)
j = νj/ν is the probability that,

when a new individual appears, it appears in state j.
Our premise is that v(ν) → v = (vj , j ∈ C) as ν →
∞. Similarly we let X(ν) = (X(ν)

j , j ∈ C), where

X
(ν)
j (t) = Nj(t)/ν.

Theorem 2. Suppose that v(ν) → v as ν → ∞.

Then, if X(ν)(0) → a, we have, for all u > 0 and,
for every ε > 0,

Pr
(

sup
0≤t≤u

∣∣∣X(ν)(t)− r(t)
∣∣∣ > ε

)
→ 0 as ν →∞,

where r(t) = (rj(t), j ∈ C) is the unique solution to
r ′(t) = v + r(t)Q

C
satisfying r(0) = a, with Q

C

being the restriction of transition rate matrix Q to C.

Notice that
∑
k∈C X

(ν)
k (t) = N(t)/ν, where

N(t) =
∑
j∈C Nj(t) is the total number of

individuals in the system at time t. Therefore
(formally), the proportion Nj(t)/N(t) of individuals
in state j can be approximated by rj(t)/

∑
k∈C rk(t).

The quantity rj(t) is clearly not a probability,
but does it admit a probabilistic interpretation
for the individual model? It certainly does in
the important special case where a = 0, which
happens if the ensemble system is initially empty.
We can solve the differential equation in Theo-
rem 2: since

∫ t
0

exp(uQ
C

)duQ
C

= exp(tQ
C

)− I ,
r(t)=a exp(tQ

C
)+
∫ t
0
v exp(uQ

C
)du. Thus rj(t) is

the sum of two terms, the first being the probability
that the individual is in state j at time t after his arrival
under the initial distribution a, and the second being
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the expected amount of time the individual spends in
state j up to time t under the initial distribution v (the
latter being the interpretation of rj(t) when a = 0).
This observation also permits us to make a connection
with an important result of Kingman (1969). If
the system is initially empty, then, remarkably, the
numbers of individuals Nj(t), j ∈ C, in the various
states are independent with Nj(t) having a Poisson
distribution with mean νrj(t); no approximation is
required. It follows that E(X(ν)

j (t)) = rj(t) for all ν.

Before leaving this section we remark that
Kurtz (1971) provides a Central Limit Theorem
that allows one to approximate fluctuations
of the process of proportions about its
macroscopic limit. These fluctuations follow
a Gaussian diffusion Z = (Z(t), t ≥ 0) whose
parameters can be determined. For example,
in the context of Theorem 1, the process of
scaled proportions (Z(n)(t), t ≥ 0), where

Z
(n)(t) =

√
n(X(n)(t)− p(t)) can be shown

to converge (over finite time intervals) to Z. This
implies, for example, that (X(n)(t1), . . . ,X

(n)(tk))
has, for large n, an approximate Gaussian (normal)
distribution with mean p(t) and a covariance structure
that can be can be exhibited explicitly. Some of the
implications of this for parameter estimation in
population models are detailed in Ross et al. (2006).

3 EQUILIBRIUM BEHAVIOUR

The closed ensemble. When S is irreducible
(as it is in the model for Population 1), both
the individual model and the ensemble model have
a unique equilibrium distribution (because S is
finite). For the individual model the equilibrium
distribution is the unique probability distribution p =
(pj , j ∈ S) satisfying pQ = 0; pj is the equilibrium
probability that the individual is in state j. For the
ensemble model the equilibrium distribution π(n) =

(π(n)(n),n ∈ E) is given by

π
(n)(n) = n!

∏
j∈S

p
nj

j

nj !
(n ∈ E). (1)

To see this, apply Theorem 2.3 of Kelly (1979). So, in
equilibrium, the numbers of individuals Nj , j ∈ S, in
the various states have a multinomial distribution with
parameters (pj , j ∈ S); it is as if the n individuals
were allocated to the various states independently,
with state j being allocated with probability pj .

Since the two equilibrium distributions are also
limiting (they are the limit of the state probabilities as
t→∞), we might expect the equilibrium proportions
in the ensemble model to converge to p as n→∞.
Whilst this cannot be deduced from Theorem 1,
because uniform convergence in probability is

established over finite time intervals, it is obviously
true from elementary considerations. Indeed a
stronger result obtains. Suppose that (Nj , j ∈ S)
has the multinomial distribution (1). Then, Nj has
a binomial distribution with parameters n and pj .
Hence, by the Strong Law of Large Numbers,
Nj/n → pj with probability 1. Indeed, N/n→ p
with probability 1. So for large ensembles the
equilibrium proportions of individuals in the various
states can be approximated by proportions that accord
with the equilibrium distribution of the individual
model.

The open ensemble. In equilibrium, the numbers
of individuals Nj , j ∈ C, in the various states are
independent, with Nj having a Poisson distribution
with mean αj := νrj , where r = (rj , j ∈
C) is the unique solution to v + rQ

C
=

0. This is a result due to Bartlett (1956) (and
consistent with the result of Kingman mentioned
earlier). Thus, the total number of individuals
N =

∑
j∈C Nj has a Poisson distribution with

mean α := ν
∑
j rj and, given N = n, (Nj , j ∈

C) has the multinomial distribution (1), but with
pj = rj/

∑
k∈C rk (= αj/α). It follows, again

from elementary considerations, that the equilibrium
proportions converge, as ν becomes large, to p (with
probability 1), where p = (pj , j ∈ C).

4 QUASI-EQUILIBRIUM BEHAVIOUR

We restrict our attention to the following case:
S = {0} ∪ C, where C is an irreducible finite set,
and 0 is an absorbing state which is accessible
from C (we have in mind here the closed version
of Population model 2). Each of n individuals
reaches 0 with probability 1 in finite mean time, and
so too the ensemble process reaches its absorbing
state (n, 0, . . . , 0) in finite mean time. However, the
ensemble process is not irreducible. It has irreducible
classes Ek = {n ∈ {0, 1, . . . }S :

∑
j∈C nj = k}

(k = 0, 1, . . . , n) corresponding to there being k
individuals in C, with E0 having the single member
(n, 0, . . . , 0), the process moving from Ek to Ek−1

when one of the k individuals that remain in C
reaches 0. The classes are therefore arranged as
follows: En � En−1 � · · · � E1 � E0 (D � E
means qij > 0 for at least one i in D and at least one
j in E).

Theorem 1 tells us that at any time t the ensemble pro-
portions can be approximated by p(t) = a exp(tQ),
the entries of a being the (large-n) initial proportions
of individuals in the various states. But, what
happens when t is large? Although both processes
have degenerate equilibrium distributions assigning
all mass to the absorbing state, they can settle down
to a quasi equilibrium before extinction occurs. For
this reason we usually model the long-term behaviour

2906



using a limiting conditional (or quasi-stationary)
distribution. The idea is as follows. First suppose we
have complete information: we know the probability
px(t) that the process is in state x at time t, for
all states x and for every time t. If at a fixed
time t we observe that the process has not reached
the absorbing state z, the appropriate probability to
evaluate is px(t)/(1 − pz(t)), the probability that
the process is in state x conditional on it not having
been absorbed by time t; to be emphatic, this is the
best possible information we could have about the
chance of being in state x having observed that the
process has not been absorbed. This being the case for
every time t, it is natural to evaluate this probability
in the limit as t → ∞ to obtain information about
the long-term behaviour of the process conditional on
non-absorption (hence the term limiting conditional
distribution). Under mild conditions this limiting
conditional distribution (LCD) can be determined,
directly from the transition matrix restricted to the
transient states, as an appropriately normalized left
eigenvector corresponding to the eigenvalue with
maximum real part; it is not necessary for us to know
px(t) explicitly.

If the transient states form an irreducible class C,
as is the case in the individual model, we can apply
the classical result of Darroch and Seneta (1967).
The restricted transition matrix Q

C
has an eigenvalue

−α with maximum real part, which is real,
strictly negative and simple (multiplicity 1), and
corresponding to it are strictly positive left and right
eigenvectors, u = (uj , j ∈ C) and x> = (xj , j ∈
C). Furthermore, pj(t)/(1 − p0(t)) → πj , where
πj = uj/

∑
k∈C uk (j ∈ C). The quantity α is

called the decay parameter, because pj(t) = O(e−αt)
(see Kingman (1963)). For the (reducible) ensemble
model, we must appeal to recent results of Van Doorn
and Pollett (2007) to establish the existence of a
LCD over the set of non-absorbing states C

E
:=

E\E0 = ∪nk=1Ek. Indeed, the ensemble process is
an example of a quasi-death process, and Theorem 7
of Van Doorn and Pollett (2007) can be applied. The
main result of this section shows that the LCD of the
ensemble process assigns positive probability only to
those states in E1, being precisely the “unit vectors”
(n − 1, ej) = (n − 1, 0, . . . , 0, 1, 0, . . . , 0) (j ∈
C) corresponding to the single remaining individual
being in state j (and hence n− 1 in state 0).

Theorem 3. The ensemble process admits a LCD
u

E
= (u(m),m ∈ C

E
). It assigns all its mass to E1,

with u((n− 1, ej)) = πj (j ∈ C), where (πj , j ∈ C)
is the LCD of the individual process.

Whilst this result is not surprising (because each of
the n individuals is lost at the same rate), we see that
again ensemble proportions can be approximated by
probabilities obtained from the individual model. It

accords with Theorem 1; since the proportionX(n)
j (t)

of individuals in state j at time t is approximately
pj(t), we should expect Nj(t)/(n − N0(t)) =
X

(n)
j (t)/(1 − X

(n)
0 (t)), the proportion in state j of

those “alive” at time t, to be close to pj(t)/(1−p0(t))
(j ∈ C).

Van Doorn and Pollett (2007) contains enough
technology to extend Theorem 3 to the case where
C is not irreducible, but where the (sole) absorbing
state 0 is accessible from all states in C for which
the initial distribution assigns positive probability
(however, note that now the ensemble process is not
a quasi-death process). We will content ourselves
with a result for Population 3 (which of course has C
reducible). Recall that there are M stages of life,
with M being the first stage and 1 being the last,
and with state 0 representing death. Individuals move
from stage s to stage s− 1 at rate qs > 0. Theorem 6
of Van Doorn and Pollett (2007) gives the LCD of
the individual process. Let C = {1, . . . ,M} and
q = mins∈C qs. One might have expected that those
stages s for which qs = q (s could in fact be unique)
would act as a “bottleneck” in that most individuals
would be expected to be in those stages. But, it turns
out that the limiting probability of being in stage s,
conditional on being alive, is 0 unless s ≤ κ, where
κ = min{k : qk = q}.

Theorem 4. For the death process describing
Population 3, the ensemble process admits a LCD
u

E
= (u(m),m ∈ C

E
), which does not depend

on the initial distribution over states. It assigns all its
mass to E1, with u((n− 1, es)) = πs (s ∈ C), where
(πs, s ∈ C), the LCD of the individual process, is
given by

πs =


q

qs

s−1∏
i=1

(
1− q

qi

)
if s ≤ κ

0 if s > κ.

5 SURVIVAL

We conclude proceedings with a result that brings
together many of the ideas of the paper.

One of the many characterizations of the LCD is
that if a Markov process starts in state x ∈ X
(some irreducible set) with probability πx, where
π = (πx, x ∈ X ) is the LCD (conditional on not
having left X ), then the chance that the process
is in state y ∈ X at time t is πye−αt, where α
is the decay parameter of X . This result holds
in great generality, and, depending on the setting,
usually results from a simple calculation; for a
recent discussion, see for example Steinsaltz and
Evans (2004). It follows immediately that the time
to exit from X is exponentially distributed with
parameter α (because the probability of still being
in X at time t is

∑
y∈X πye

−αt = e−αt). The
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implications for our models are obvious, the result
for the ensemble being not particularly surprising
because the ensemble survives until the last individual
reaches 0. However, using an elaboration of the
arguments presented in Section 3 of Derman (1955)
(see also the proof of Theorem 2 of Brown (1970) for a
more transparent discrete-time parallel), we can prove
the following. The setup is S = {0} ∪ C, where C is
an irreducible finite set with decay parameter α and 0
is an absorbing state which is accessible from C.

Theorem 5. Let π = (πj , j ∈ C) be the LCD of
the individual process. If the initial numbers Nj(0),
j ∈ C, are chosen independently with Nj(0) having a
Poisson distribution with mean πj , then, for all t > 0,
Nj(t), j ∈ C, are independent with Nj(t) having a
Poisson distribution with mean πje−αt.

For the aficionados. This result holds in much greater
generality; C need not be finite, Q could be explosive,
π = (πj , j ∈ C) could be anyα-subinvariant measure
and, more remarkably still, π need not be finite
(we could have

∑
j∈C πj =∞); for definitions, see

Anderson (1991).

6 APPENDIX

Proof of Theorem 1. The ensemble model is density
dependent in the sense of Kurtz (1970): there is
an open subset of RS , namely E = (0, 1)S , and
functions f : E × ZS → R with the property that
q(n,n + l) = nf (n/n, l), n,n + l ∈ ZS . Clearly
f(x, ej − ei) = xiqij , j 6= i. Our theorem is then
proved by applying Theorem 3.1 of Kurtz’s paper. We
first define F : E → RS by F (x) =

∑
l lf(x, l).

This function is required to be Lipschitz continuous
on E (clearly true because F has bounded first partial
derivatives on E), thus guaranteeing a solution p(t) to
p ′(t) = F (p(t)), p(t) ∈ E, 0 ≤ t ≤ u, satisfying
p(0) = a. Next, two technical conditions must be
fulfilled: (i) supx∈E

∑
l6=0 |l|f(x, l) < ∞ and (ii)

limd→∞ supx∈E
∑
|l|>d |l|f(x, l) = 0. They are

trivially satisfied because S is a finite set. Kurtz’s
theorem states that X(n)(t) converges uniformly in
probability over finite time intervals to p(t) as n →
∞, so it remains for us to show that F (x) = xQ.
This is straightforward:

F (x) =
∑
i∈S

∑
j 6=i

(ej − ei)f(x, ej − ei)

=
∑
k∈S

xk
∑
i∈S

qkiei.

Hence, F (x) = xQ, because (elementwise) Fi(x) =∑
k∈S xkqki (i ∈ S).

Proof of Theorem 2. In addition to f(x, ej − ei) =
xiqij , j 6= i, we have f(x,−ei) = xiqi0 and
f(x, ej) = vj (asymptotically). The model is not
strictly density dependent, but asymptotically density

dependent in the sense of Pollett (1990), and the
present result follows from Theorem 3.1 of Pollett’s
paper, which shows thatX(ν)(t) converges uniformly
in probability over finite time intervals to r(t) as ν →
∞, the unique solution to r ′(t) = F (r(t)), r(t) ∈ E,
0 ≤ t ≤ u. We may evaluate F (x) as follows:

F (x) =
∑
i∈C

∑
j∈C, j 6=i

(ej − ei)f(x, ej − ei)

−
∑
i∈C

eif(x,−ei) +
∑
j∈C

ejf(x, ej)

=
∑
k∈C

xk
∑
i∈C

qkiei +
∑
i∈C

eivi,

where recall that qi = −qii =
∑
j∈S, j 6=i qij . Hence,

F (x) = v + xQ
C

, because (elementwise) Fi(x) =
vi +

∑
k∈C xkqki (i ∈ C).

Proof of Theorem 3. Let Qk be the restriction to Ek
of transition rate matrix Q

E
of the ensemble process

and let −αk be the eigenvalue of Qk with maximum
real part (k = 1, . . . , n). Then, αk = kα. To see
this, observe that αk = limt→∞−(1/t) log Pr(T >
t), where T is the time to first exit of the process
from Ek (see Kingman (1963)); the limit does
not depend on the initial distribution over states.
However, T = min{T1, . . . , Tk}, where Ti is the
time it takes individual i to reach 0, and, since
the individuals move independently, Pr(T > t) =∏k
i=1 Pr(Ti > t). Since the individuals move

according to Q, −(1/t) log Pr(Ti > t) → α
as t → ∞. Hence, αk = kα. It follows
immediately that −α is the eigenvalue of Q

E
with

maximum real part, and, moreover, that its algebraic,
and hence geometric, multiplicity is equal to 1. We
may therefore appeal directly to Theorem 5 of Van
Doorn and Pollett (2007), which implies that the LCD
of the ensemble process exists provided the initial
distribution assigns mass to at least one ofE1, . . . , En
(we assume that all n individuals are present initially,
and so all this mass is assigned to En). Furthermore,
the LCD is the unique non-negative solution u

E
=

(u(m),m ∈ C
E

) tou
E
Q

E
= −αu

E
withu

E
1> = 1.

So, it remains to show that the given u
E

satisfies
these equations: u(m) = 0 unless m ∈ E1, in
which case u((n− 1, ej)) = πj (j ∈ C), where
π = (πj , j ∈ C) is the LCD of the individual process,
that is, the unique (strictly positive) solution to
πQ = −απ with π1> = 1. Writing out the latter we
get

∑
i∈C, i6=jπiqij = (qj − α)πj (j ∈ C), where

qj =
∑
k∈S, k 6=j qjk, while the former eigenvector

equation may be written as∑
m∈En,m6=n

u(m)q(m,n) = (q(n)− α)u(n), (2)

n ∈ En, and, for k = 1, . . . , n− 1,∑
m∈Ek+1

u(m)q(m,n) +
∑

m∈Ek,m6=n

u(m)q(m,n)

= (q(n)− α)u(n) (n ∈ Ek). (3)

2908



Clearly (2), and (3) for k = 2, . . . , n, are satisfied
because u(m) = 0 when m ∈ ∪nk=2Ek, and the
remaining equation (k = 1) will hold if and only if∑

j∈C

∑
i∈C, i6=j

u(n+ ej − ei)(nj + 1)qji

=

(∑
k∈C

nkqk − α

)
u(n) (n ∈ E1), (4)

remembering that the total rate out of state n ∈ Ek
is q(n) =

∑
i∈C niqi. But, m ∈ E1 if and only if

m = (n− 1, ei) for some i ∈ C, and so we require∑
i∈C, i6=j

u((n− 1, ei))qij = (qj − α)u((n− 1, ej)),

for j ∈ C. On substituting u((n − 1, ei)) = πi,
we find that

∑
i∈C, i6=j πjqij = (qj − α)πj (j ∈ C),

which of course is the individual process eigenvector
equation.

Proof of Theorem 4. This is similar to the proof of
Theorem 3, but now we appeal to Theorem 3 of Van
Doorn and Pollett (2007) for important information
about accessibility; the initial distribution must assign
all mass to∪k≥κ

E
Ek, where κ

E
is the smallest index k

of those αk which share the smallest value among
α1, . . . , αn. However, αk = kα, implying that
κ

E
= 1, and so the accessibility condition is satisfied

automatically (we have assumed that the ensemble
process starts in En). Evaluating the LCD as directed
by Theorem 3 of Van Doorn and Pollett (2007)
amounts to calculating u

E
as in the proof of our

Theorem 3, but now the individual process is a simple
death-process. Therefore, α = q and the unique
(strictly positive) solution π = (πj , j ∈ C), to
πQ = −απ with π1> = 1 is given in Theorem 6
of Van Doorn and Pollett (2007), and written out in
the statement of our theorem.
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