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EXTENDED ABSTRACT

Interest in grouped or aggregated data in epidemi-
ology has grown over the last decade because of
increasing emphasis on data confidentiality and also
because not all disease determinants can be applied
at an individual-level. Often researchers must choose
between using the publicly available aggregated data
or gathering individual data without prior knowledge
of a gain in efficiency (Lang and Gottschalk, 1996).

Individual-level analyses are often case-centered and
focused on identifying individual susceptibility, but
may fail to identify the underlying cause of incidence,
i.e. the ecologic effects (Rose, 1985). Diez Roux’s
(2004) summaries issues on study of group-level
factors in epidemiology and calls for further research
to lead to an understanding of how interactions within
and between levels affect health.

The efficiency loss from fitting aggregated data to
estimate coefficients of group-level variables, rather
than using individual data is discussed by Lang
and Gottschalk (1996) using ordinary least squares
(OLS) linear models. However, the impact of
estimating parameters of group-level variables in a
logistic regression model remains unclear. It may be
unwarranted to apply the results from linear regression
directly to logistic regression.

In this paper, we focus on the potential benefits
of using group-level variables over individual-level
variables in aggregated data analyses. Two logistic
regression models were used in our analyses:

1. Individual-level model (binary model)

Individual observation yij ∼ Bernoulli(pij)

log
( pij

1− pij

)
= C(1) + β(1)xi + δ(1)zij

where pij is the probability of yij = 1.

2. Aggregated-level model (binomial model)

Number of events at the aggregated level
yi· ∼ Binomial(mi, p̄i)

log
( p̄i

1− p̄i

)
= C(2) + β(2)xi + δ(2)z̄i

where p̄i is the average probability of yij = 1
in group i.

We asses the bias and efficiency of β̂(2). Using
simulation, we explore the effects of aggregation by
comparing the results of group-level analyses with
those from individual-level analyses.

These simulation results suggest that there are benefits
of using aggregated data when our research interest
is in group-level variables. In general, the bias
from fitting aggregated data is negligible if the
effects of individual-level variables on the outcome
are moderate. Loss of efficiency resulting from
aggregation in estimating group-level effects is also
small if the strength of the correlation between
explanatory variables is moderate. A large number of
observations per group or a large number of groups
do not affect the accuracy of estimated parameters
of group-level variables and provide little benefit in
efficiency either. The loss of efficiency can appear
when the number of groups is less than 10.

Under certain circumstances, if we examine the
group-level effects, we can choose to use the
publicly available aggregated data instead of gathering
individual data. In some cases, as pointed out by
Lang and Gottschalk (1996), even if the loss of
efficiency exists in aggregated data analyses, the gain
in efficiency in gathering individual-level data may
not warrant trade-offs with time and monetary costs
involved.
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1 INTRODUCTION

Privacy has become a sensitive issue in recent years
(Behlen and Johnson, 1999; Denley and Smith 1999;
Gostin and Hadley, 1998). Growing concerns about
confidentiality and privacy increase the difficulty
of obtaining the information from individuals. In
epidemiology, much attention has been drawn to
the fact that not all disease determinants can be
conceptualized as individual-level attributes (Diez
Roux, 2004). Alternatively, aggregated or grouped
data, to which individuals belong, are relatively
easier and cheaper to obtain than individual-level
information. Such data will encourage greater interest
and study of aggregation in epidemiologic research in
the future.

Studies limited to characteristics of aggregates
(groups) of individuals are commonly termed ecologic
studies (Langbein and Lightman, 1978; Morgenstern,
1998). Ecologic study benefits research with focus
on ecologic effects, i.e. effects on groups rather
than individuals. Individual-level analyses are often
case-centered and focused on identifying individual
susceptibility, but may fail to identify the underlying
cause of incidence, i.e. the ecologic effects (Rose,
1985). Ecologic effects are particularly relevant
when evaluating the impacts of social processes such
as programs, policies, or legislation (Morgenstern,
1998). Group-level variables, such as alcohol
consumption, health performance or life expectancies
of different countries or regions, are research interests.
Diez Roux (2004) summarizes issues on study of
group-level factors in epidemiology and called for
further research to understand how interactions within
and between levels affect health.

Ecologic analysis in linear regression is well under-
stood (Jargowsky, 2005; Langbein and Lightman,
1978). If the aggregate regression model is correctly
specified, the analysis will provide equally unbiased
estimates as those from individual level models.
In fact, there is no guarantee that the individual
regressions are better than aggregate ones (Jargowsky,
2005). Aggregation sometimes does not produce
an aggregation loss, but may instead produce an
aggregation gain (Grunfeld and Griliches, 1960).

Binary outcome response is a common type of
outcome in epidemiology. Logistic regression is
perhaps the most commonly used model (Greenland,
1998). Recent studies have explored the implications
of covariate aggregation in logistic regression
(Johnston et al., 2002). Models were constructed at
individual level with an aggregated individual-level
variable.

Previous ecologic research has mainly focused on
the aggregation impacts on estimating parameters

of individual-level variables in the presence of both
individual-level and aggregated-level variables. Few
studies demonstrate the effects of aggregation on
estimating parameters of group-level variables. Lang
and Gottschalk (1996) discuss, in linear models,
the efficiency loss from fitting aggregated data to
estimate coefficients of group-level variables, rather
than ordinary least squares (OLS) estimates from
individual data. However, the impact of estimating
parameters of group-level variables in a logistic
regression model remains unclear. It may also be
unwarranted to apply the results from linear regression
directly to logistic regression.

Often researchers must choose between using the
publicly available aggregated data or gathering
individual data without prior knowledge of a gain
in efficiency from gathering individual data at
considerable expense (Lang and Gottschalk, 1996). In
this paper, we assess the bias and the efficiency loss
of estimated parameters of group-level variables using
aggregated data in logistic regression models. This
knowledge has an immediate relevance in the design
of epidemiological studies.

2 AGGREGATING EFFECTS IN ORDINARY
LEAST SQUARES LINEAR REGRESSION

Before the simulation study of logistic regression, we
briefly examine findings on the properties of estimated
parameters of group-level variables in individual-level
OLS models versus those estimated in corresponding
models using aggregated data.

2.1 Individual-level model

Consider the general two-level linear regression
model as follows:

yij =
a∑

k=1

βkxik +
b∑

p=1

δpzijp + εij (1)

where i = 1, . . . n and j = 1, . . . , mi. Here yij

as response variable, xik are group-level explanatory
variables (k = 1, . . . , a) and zijp are individual-level
explanatory variables (p = 1, . . . , b). Set n as the
number of groups or clusters and mi as the number
of the observations per group. The total number of
observation, denoted as N, equals

∑n
i=1 mi.

The above model for observations in group i can be
written in matrix form as:

yi = Xiβ + Ziδ + εi (2)

for i = 1, 2, · · · , n, where E(εi) = 0; V ar(εi) =
Vi = σ2Ii, and ε1, · · · , εn are independent. Here
yi and εi are mi × 1 vectors; Xi is an mi ×
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a design matrix for the number of a group-level
variables in group i; and Zi is an mi × b design
matrix for the number of b individual-level variables
in group i. We have Xi = 1ixi

T , in which
xi

T =
[
xi1 xi2 · · · xik · · · xia

]
and 1T

i =[
1 1 · · · 1

]
of length mi.

2.2 Aggregated-level model

When we aggregate the data (1), observations are the
means of all variables:

ȳi =
1

mi

mi∑

j=1

yij , x̄ik =
1

mi

mi∑

j=1

xik = xik,

z̄ip =
1

mi

mi∑

j=1

zijp, ε̄i =
1

mi

mi∑

j=1

εij

so that the relationship is

ȳi =
a∑

k=1

βkxik +
b∑

p=1

δpz̄ip + ε̄i (3)

The above model can be written in the matrix form
corresponding to equation (2) as:

ȳi = xT
i β + z̄T

i δ + ε̄i (4)

where E(ε̄i) = 0; v̄i = V ar(ε̄i) = 1T
i Vi1i/m2

i =
σ2/mi and v̄i is a scalar. Here z̄T

i =[
z̄i1 z̄i2 · · · z̄ib

]
= (mi)−11T

i Zi.

2.3 Bias and efficiency

The method of OLS provides β̂, the Best Linear
Unbiased Estimate (BLUE). Similarly, weighted least
squares (WLS) provides the BLUE estimator β̂agg , of
β for aggregated data in equation (4). β̂agg is, by
definition, unbiased for β.

We compare the variances of estimated coefficients
from an individual-level model and aggregated model
to examine loss of efficiency using aggregated
data. Since we are interested in the group-level
variables,our interest is restricted to the variances
of estimated coefficients of group-level variables,
denoted as Var(β̂) and Var(β̂agg). We shall not take
the covariance into account, rather we compare the
corresponding diagonal elements of these matrices.

For the individual-level model, we have

Var(β̂) = σ2[
∑

imixixT
i −

(
∑

i xi1T
i Zi)(

∑
i Z

T
i Zi)−1(

∑
i Z

T
i 1ixT

i )]−1

(5)

For aggregated data, WLS estimation provides:

Var(β̂agg) = σ2[
∑

imixixT
i −

(
∑

ixi1T
i Zi)(

∑
i(mi)−1ZT

i Zi)−1(
∑

iZ
T
i 1ixT

i )]−1

(6)
The relative efficiency of β̂agg

k for kth group-level
variable is given as

REk =
V ar(β̂k)

V ar(β̂agg
k )

k = 1, · · · , a. (7)

We expect the ratio to be equal to or close to one if
there is no or little efficiency loss by using aggregated
data. From equation (5) and (6), we conclude:

• If there is no correlation or weak correlation
between group-level explanatory variables and
individual-level explanatory variables, REk is
equal to or close to 1. There is no loss of
efficiency of β̂agg

k . On the other hand, if the
correlation is very strong, then the REk is
expected to be as small as zero.

• (
∑

i(mi)−1ZT
i Zi)−1 is the only item that is

different in equation (5) and (6). As group size
increases, V ar(β̂agg

k ) increases as well. This
means REk decreases towards zero. Loss of
efficiency of β̂agg

k is getting bigger.

Corresponding to equation (7), Lang and Gottschalk
(1996) derived the simplification of equation (7) for
relative efficiency of the kth group-level variable when
numbers of observations in each group are equal.

REk =
1−R2

agg

1−R2
ind

, (8)

where R2
ind is the uncentered R-square from the

auxiliary individual-level regression of xk, a group-
level variable, on the all the other remaining explana-
tory variables. Similarly, R2

agg is the uncentered R-
square from the aggregated-level auxiliary regression
of xk on all other aggregated variables. Equation (8)
indicates that the loss of efficiency from estimating
coefficients of group-level variables with aggregated
data depends only on the two uncentered R-squares.

Lang and Gottschalk (1996) concluded that the loss in
efficiency hinges on the correlations between group-
level variable of interest xk and remaining explanatory
variables. When they are orthogonal, there is no
loss in efficiency from using aggregated data, which
is also what we have concluded. When they are
not orthogonal, however, relative efficiency depends
on whether the within-group variation in individual-
level variables is large relative to the between-group
variation. If all the values within each group
are similar, the loss of efficiency will be modest,
otherwise it will be larger. As long as the two R-
squares are small or are roughly of equal size, there
is little loss from using aggregated data.
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3 LOGISTIC REGRESSION SIMULATION

Using simulation, we generated data sets with two
hierarchical levels (individual and group). Individuals
are nested in the different groups. Following the
notation in section 2, the outcome variable yij is an
independent Bernoulli random variable (1 for event, 0
for non-event) at the individual-level. There are two
explanatory variables in the individual-level study,
one individual level variable zij and one group-
level variable: xi. The individual-level variable zij

represents each individual’s profile in the study. The
group-level variable xi is the study variable of interest,
which might correspond to a group-level performance
or policy variable.

The outcomes of group-level data are sums aggregated
from those outcomes in individual-level data. After
aggregation, the number of event in each group equals∑n

i=1 yij , denoted by yi·, and the total number of
observations (events and non-events) is N .

In this section, we firstly specify the problems to
be studied by introducing relevant models, and then
explain the simulation procedure to be applies for
data analysis. All simulations and calculations were
performed with R (version 2.4.1).

3.1 Models and study problem

Two logistic regression models were used in the
analysis:

1. Individual-level model (binary model)

log
( pij

1− pij

)
= C(1) + β(1)xi + δ(1)zij (9)

where yij ∼ Bernoulli(pij) and pij is the probability
of yij = 1.

2. Aggregated-level model (binomial model)

log
( p̄i

1− p̄i

)
= C(2) + β(2)xi + δ(2)z̄i (10)

where yi· ∼ Binomial(mi, p̄i) and p̄i is the average
probability of yij = 1 in group i.

We asses the bias and efficiency of β̂(2) . The bias of
group-level exposure effect is defined as the difference
between β̂(2) and its true value used in simulation to
generate data. If β̂(2) is unbiased, we would expect
that β(2) = β. Relative efficiency (RE) is defined as
ratio between variances of β̂(1) and of β̂(2). RE is used
to measure the loss of efficiency of β̂(2). If there is
no loss of efficiency of group-level model estimates,
we would expect that relative efficiency is equal to
or close to 1. Next, simulation was employed to test
these claims.

3.2 Simulation and data analysis

To facilitate the simulation, several assumptions were
required. We generated two continuous explanatory
variables. At group-level, these two variables were
independent, identically distributed variables with a
bivariate normal distribution.

To simplify the simulation and explanation, we set the
mean of xi and µi, the expected value of zij in group
i, to zero (µx = µµ = 0) and σx = σµ = 1. The
correlation coefficient between xi and µi is denoted as
ρ. We set the number of observations in each group to
be equal. First we generated the group-level data with
two explanatory variables using the bivariate normal
distribution with parameters as above and obtained 50
group-level values for each variable.

Then, we expanded this matrix to individual-level
data by duplicating group-level variable xi to 100
individual-level values in each group; and by
generating zij using zij = µi + ε′ij where ε′ij ∼
N(µi, 1). The linear predictor (LP) at the individual
level was:

LP = C + βxi + δzij (11)

where C was a constant, equal to -2.2. C was chosen to
make the probability of outcome equal to 10% when
all the variables are equal to their mean value, i.e.
zero. 10% was chosen because the rate of incidence is
generally low, such as the death rate of heart attack.
Next we generated the outcome variable yij from
a Bernoulli distribution with probability calculated
from a linear predictor.

1000 replicates of 5000 individual observations in
each group were generated. There were two sets
of data in each replicate, i.e. individual-level
and aggregated-level data. We fitted individual
and aggregate level models respectively for the two
different levels of data to obtain β̂ in each. For
each model, we then calculated the mean of 1000 β̂s.
The limits of the Wald 95% confidence interval for
each simulation were calculated to test the inclusion
of the true underlying group-level study effect, i.e.
β. The percentage of coverage, i.e. the proportion
of simulations in which the calculated confidence
interval included the true value, was presented to
examine the behavior of confidence intervals. We also
calculated the sample variances of β̂ from both models
and relative efficiency was calculated.

4 RESULTS

We varied a number of variables to determine the
reliability and limitations of the aggregated-level
analysis on the effects of group-level study variable.
We considered the effects of correlation between two
explanatory variables (ρ), the different impact of
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individual risk variables on the outcome (δ), numbers
of observations in each group (m), and numbers of
groups (n). The simulation outputs include: the
mean of β̂ from 1000 simulations, denoted as ¯̂

β; bias
( ¯̂β(2)− β); the percentage of coverage of the true β in
1000 replicates; and the average standard errors of β̂
and the average relative efficiency. We were interested
in whether we would obtain unbiased and efficient
β̂(2) under different situations compared with results
from individual-level analyses. We also calculated the
RE calculate from OLS equation (8).

We used the same value of β in all the replicates since
changes of β were observed to have very little impact
on bias and loss of efficiency of group-level variable
estimates from aggregated data. The choice of β is not
a critical parameter to the findings presented below. In
all the simulations, we modeled a small effect for the
group-level variable (β = 0.5).

We first examined the impact on group-level variable
estimation from aggregated data when the strength of
correlation between two explanatory variables varies.
Table 1 shows that there is very little bias of β̂(2) from
aggregated data and its coverage of true β is around
95% as the absolute value of ρ increases. Relative
efficiency is close to 1 when ρ is small or moderate.
This means loss of efficiency is small. However,
the loss of efficiency grows bigger as the strength of
correlation increases.

Table 2 indicates that the association between
outcome and individual-level risk variable has a strong
impact on β̂(2). As the effect of individual-level
risk variable on outcome is getting stronger, bias of
β̂(2) is increasing and coverage of the true β drops
dramatically. As a result of this, relative efficiency of
β̂(2) increases.

In Table 3, we can see that the changing number
of observations in each group has no impact on
estimates of β and there is no bias from aggregated-
level models. As the group size increases, estimates of
s.e. of β̂ decrease in both individual-level and group-
level analyses. We see relative efficiency indicates a
slight drop, which is negligible.

There is no indication of bias in Table 4 when we vary
the number of groups. Loss of efficiency is modest
even when we have as few as 10 groups. But the
relative efficiency is small when the number of groups
is less than 10. When the number of groups is 5, the
average RE is 0.78 as shown in the table. There is a
much larger variation (lower quartile 0.63 and upper
quartile 0.98 from 2000 simulations) than those under
other situations (for example, when the number of
groups is 10, lower quartile is 0.83 and upper quartile
is 0.99 from 2000 simulations). Loss of efficiency can
be large when the number of groups is less than 10.

RE based on equation (8) for linear model outcomes
is shown in the last row of all four tables. In
general, RE (linear) is slightly lower than RE for
binary outcomes calculated from simulations except
when δ is large. In Table 2, as |δ| increases, RE
from simulations increases while RE (linear) remains
constant. Therefore, RE (linear) could be used as
a rough indicator of relative efficiency in logistic
regression when the effect of individual risk variables
on the outcome is moderate.

5 DISCUSSION

In this paper, our main focus is group-level variables
using aggregated data. This focus distinguishes
our research from previous studies, which mainly
examined individual-level variables. Our simulation
results suggest that there are benefits of using
aggregated data when our research interest is on
group-level variables. In general, bias from fitting
aggregated data is negligible if the model is correctly
specified and the effects of individual-level variable
on the outcome are moderate. Loss of efficiency
resulting from aggregation in estimating group-level
effects is also small if the strength of the correlation
between explanatory variables is moderate. A large
number of observations per group or a large number
of groups do not affect the accuracy of estimated
parameters of group-level variables and provide little
benefit in efficiency either. The loss of efficiency
exists when the number of groups is less than 10.

Under certain circumstances, if we examine the effect
of group-level effects, researchers can choose to
use the publicly available aggregated data instead
of gathering individual data. In some cases, even
when the loss of efficiency exists in aggregated data
analyses, the gain in efficiency may not warrant
trade-offs with time and monetary costs involved in
gathering individual-level data (Lang and Gottschalk,
1996).

We examined the group-level effects for the linear
model in section 2 based on the assumption of
independent and identically distributed disturbance
terms. We have made the same assumption in our
simulation study of logistic regression. However,
this assumption is not valid any more if disturbance
terms are correlated and not identically distributed.
In many applications, we are confronted with the
specification of grouped data or hierarchical data
structure. For example, asthma patients may be
included from different cities with different levels
of air pollution. We need to take the variance-
covariance structure of error term into consideration
when we research aggregation effects on group-
level variables. The logistic regression model is no
longer an appropriate model to use. Few options
are available: generalized nonlinear least-squares
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Table 1. Group-level variable effect estimates varying |ρ|

|ρ| 0 0.3 0.5 0.7 0.9

¯̂
β

Individual Model 0.50 0.50 0.50 0.50 0.50
Aggregated Model 0.49 0.49 0.49 0.49 0.50

Bias( ¯̂β(2) − β) -0.01 -0.01 -0.01 -0.01 0

Coverage (%) Individual Model 95.0 95.3 95.2 95.5 95.4
Aggregated Model 94.1 95.5 96.2 95.9 96.0

S.E. of β̂ (×10−3)
Individual Model 48 49 51 54 60

Aggregated Model 48 50 54 65 103
RE 1.01 0.96 0.87 0.68 0.33
RE (OLS) 0.99 0.94 0.85 0.67 0.33

The correlation between explanatory variables (ρ) varies in each model. The true value of β is equal to 0.5. Estimates are averages of 1000
replicates with 50 groups and 100 observations in each group. The association between the outcome and the individual-level risk variable is
fixed (δ = 0.4).

Table 2. Group-level variable effect estimates varying |δ|

|δ| 0 0.5 1.0 1.5 2.0

¯̂
β

Individual Model 0.50 0.50 0.50 0.50 0.50
Aggregated Model 0.50 0.49 0.44 0.38 0.32

Bias( ¯̂β(2) − β) 0 -0.01 -0.06 -0.12 -0.18

Coverage (%) Individual Model 96.5 95.4 96.4 96.0 96.2
Aggregated Model 96.0 95.7 75.0 19.3 1.1

S.E. of β̂ (×10−3)
Individual Model 51 48 47 48 50

Aggregated Model 52 49 45 43 41
RE 0.94 0.97 1.10 1.28 1.49
RE (OLS) 0.94 0.94 0.94 0.94 0.94

The association between the outcome and the individual-level risk variable (δ) changes. The true value of β is equal to 0.5. Estimates are
averages of 1000 replicates with 50 groups and 100 observations in each group. The correlation between explanatory variables (ρ) is fixed
in each model (ρ = 0.3).

Table 3. Group-level variable effect estimates varying group size (m)

Group Size 5 10 20 50 100 150 500

¯̂
β

Individual Model 0.51 0.52 0.51 0.50 0.50 0.50 0.50
Aggregated Model 0.50 0.51 0.50 0.49 0.49 0.50 0.48

Bias( ¯̂β(2) − β) 0 0.01 0 -0.01 -0.01 0 -0.02

Coverage (%) Individual Model 95.0 95.8 95.2 96.2 94.8 96.9 97.3
Aggregated Model 95.7 95.8 95.6 96.9 94.5 96.2 92.2

S.E. of β̂ (×10−3)
Individual Model 224 157 111 70 49 41 22

Aggregated Model 227 159 113 71 50 42 22
RE 0.98 0.97 0.97 0.97 0.96 0.95 0.98
RE (OLS) 0.96 0.95 0.95 0.95 0.94 0.94 0.94

The number of observations in each group varies. Estimates are averages of 1000 replicates from 50 groups with different number of
observations in each group. The true value of β is equal to 0.5. The correlation between explanatory variables (ρ) is fixed in each model
(ρ = 0.3). The association between the outcome and the individual-level risk variable is fixed (δ = 0.4).

(GNLS) model, generalized estimating equations
(GEE) and latent variable modelling. We will conduct
further research on this topic using such approches.

Estimation is often needed in situations where the
model has been incompletely specified due to the
omission of important covariates. The omission may
be due to either an incorrect understanding of the
phenomenon under study or an inability to collect data
on all the relevant factors related to the outcome under

study (Neuhaus, 1993). For example, unmeasured
factors or unspecified variables may confound the
baseline disease risk for groups or the effect of the
risk factor under study. Confounders in ecological
studies may be unmeasured group-level variables or
factors which vary between individuals (Jackson et
al., 2002). Previous studies have been done to
examine the effects of aggregating the individual-
level factors. It is claimed that group-level analysis
appears to be more reliable than standard individual-
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Table 4. Group-level variable effect estimates varying group number (n)

Group Number 5 10 20 50 100 150

¯̂
β

Individual Model 0.52 0.50 0.51 0.50 0.50 0.50
Aggregated Model 0.51 0.49 0.50 0.49 0.49 0.49

Bias( ¯̂β(2) − β) 0.01 -0.01 0 -0.01 -0.01 -0.01

Coverage (%) Individual Model 95.8 96.6 95.9 95.1 95.8 95.7
Aggregated Model 96.1 97.2 95.7 95.4 95.9 95.7

S.E. of β̂ (×103)
Individual Model 232 129 83 49 34 27

Aggregated Model 287 138 85 50 34 28
RE 0.78 0.90 0.95 0.96 0.97 0.98
RE (OLS) 0.78 0.88 0.93 0.94 0.95 0.95

The number of groups varies. Estimates are averages of 1000 replicates from a range of number of groups with 100 observations in each
group. The true value of β is equal to 0.5. The correlation between explanatory variables (ρ) is fixed in each model (ρ = 0.3). The
association between the outcome and the individual-level risk variable is fixed (δ = 0.4).

level analysis under certain situations (Johnston et al.,
2002) and aggregating exposure data to the group-
level can help absorb measurement error (Richardson
and Monfort, 2000). We wish to consider the variable
omission problem in further our research.
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