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EXTENDED ABSTRACT 

In a recent set of work (Boschetti, 2007; Brede et 
al, 2007; Brede and De Vries, 2007) we have 
explored the potential for porting tools originally 
developed for the optimisation of multi-agents 
engineering systems (Wolpert and Tumer, 2001; 
Wolpert et al, 2004) into resource management 
modelling. These tools were designed to minimise 
interference between system components which 
may arise in system optimisation, as can be found 
in data communication problems and aerospace 
engineering (Bieniawski et al, 2004; Wolpert et al, 
2000; Wolpert and Tumer, 1999). 

The analogy with resource exploitation and 
management is based on viewing human agents 
(fishers, farmers, etc..) as members of a larger 
system (fleet, farming community, etc,) which 
accesses a common resource. The global harvest is 
the sum of the harvest of each agent. However, 
maximising the harvest of each agent does not 
necessarily result in a maximum global harvest 
(Arthur, 1994; Challet and Zhang, 1998). Agents 
naturally tend to compete for a better resource 
allocation; when the resource is spread over 
several zones, resource availability at specific 
locations may attract more agents than necessary 
for the desirable level of exploitation of the zones’ 
resource, thereby worsening the global harvest. 
Also, overuse of the resource by a few agents will 
result in the collapse of the entire resource and, 
consequently, poorer performance for each agent. 
Clearly dynamics of various levels are connected: 
the action of each agent impinges on the 
performance of the entire community and, vice-
versa, the global performance of the entire 
community will affect future returns for each 
individual (Batten, 2007).  

It is easy to see (Boschetti, 2007) that, given 
sufficient resources, optimal global exploitation 
can be achieved by spreading the community 
harvesting effort proportionally to the resource 
availability in different zones. However, achieving 
this optimal allocation without centralised control 

is not trivial and here is where ideas inherited from 
engineering, computer science and game theory 
can be useful.  

Of course, human agents are very different from 
components of an engineering system: their 
decision making is not mechanical and thus can 
not be written down as an algorithm. Often 
decision making is not fully rational, that is, it is 
not based solely on economic incentives. It follows 
that not all tools which perform well in 
engineering problems may be easily ported to 
human applications. The tool we discuss in this 
paper, the Collective Intelligence (COIN; Wolpert 
et al, 2000), gives some confidence that it might be 
an exception: while it cannot overcome the ‘non 
algorithmic’ component of human decision 
making, its functioning is so simple that it could be 
implemented by pen and paper via very simple 
bookkeeping and accounting (Boschetti, 2007), 
making it easily accessible to human agents 
without any need for computers or mechanical 
aids.   

Initial numerical tests have proved encouraging in 
different scenarios of resource dynamics and 
exploitation pattern (Boschetti, 2007; Brede et al, 
2007; Brede and De Vries, 2007). Our on-going 
research aims to explore within which context this 
technique can be used as a resource management 
tool. As a step in addressing this problem, in the 
present paper we envisage a large fishing fleet 
targeting a resource spread over a number of 
fishing zones. Given a certain management goal, in 
this case optimal resource exploitation, we ask 
whether a mixed centralised resource allocation, in 
which fleet managers adopt COIN to direct fishing 
vessels towards chosen fishing zones, can do better 
than a totally decentralised approach in which each 
vessel adopts COIN for its own decision making. 
Both approaches are compared against what we 
define as the ‘null hypothesis’ approach, in which 
both individual vessels and fleet managers choose 
to optimise ‘greedily’ a perceived immediate 
profit.  
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1. THE RESOURCE EXPLOITATION 
MODEL 

In this paper we report a model of a simplified, 
non-spatially explicit fishery. We imagine N 
fishing vessels, belonging to NM ≤≤2 fleet 
managers: managers can own either a single vessel 
or a larger fleet. We also imagine Z fishing zones 
in which an amount ZzFishz ..1, = of resource is 
available. The managers do not have information 
about the global distribution of zFish and decide 
where to direct their vessels according to the 
discounted returns of past catches in the different 
fishing zones (see Boschetti, 2007, for details).    

At each fishing period a vessel targets a single 
fishing zone. We assume that the decision on 
which zone to target is taken solely by the vessel’s 
manager. Once the zone has been targeted, the 
resource available in that zone is shared equally 
among all vessels accessing it. Each vessel has a 
maximum fishing capacity (which can also be 
interpreted as a maximum allowed quota). Thus, 
the catch of a vessel n is given by 

),/( QuotaCrowdFishMinCatch ZnZnn =     (1) 
where nCatch  is the amount of fish caught by 
vessel n, Zn is the fishing zone chosen by vessel n, 

ZnFish is the amount of fish available in nzone , 

ZnCrowd is the number of vessels   (1)
  (1)  (1)which chose 
to fish in Zn , with which vessel n has to share the 
available resource.  We do not model fishing costs 
(navigating to the zones, equipment 
renting/buying, etc) though these could be 
included easily if needed. 

The total catch of the fleet is obviously given by 
the sum of each vessel’s catch, 

∑
=

=
Nn

nCatchTotalCatch
,1

    (2)  

The maximum possible catch of the entire fleet is 
given by either the total amount of resource in the 
fishery or by the sum of the maximum allowed 
quota per vessel, if the resource is abundant: 

∑
=

=
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zFleet QuotaNFishMinMaxCatch
,1

)*,(      (3) 

This is the optimal catch against which the results 
of the fishing strategies will be evaluated. Notice 
that, because each vessel has a maximum allowed 
quota, we have: 

FleetMaxCatchTotalCatch ≤             (4) 
that is, unless the vessels spread their effort wisely, 
the fleet may not be able to catch to its full 
capacity.  

2. THE COLLECTIVE INTELLIGENCE 

As explained above, the exploitation of the 
resource described in the previous section can be 
seen as an optimisation problem, in which we aim 
to allocate the N vessels proportionally to the 
resource zFish .  

From an optimisation perspective, we could 
choose to optimise two quantities: a) the ‘private’ 
return for each vessel and b) the ‘global’ return to 
the entire fleet. Optimising either of them in 
isolation is known to be sub-optimal. The ‘private’ 
return is optimised in a class of problems known as 
a Minority Game (Challet and Zhang, 1998; 
Arthur, 1994), in which it is shown that the fleet 
never reaches a distribution proportional to the 
resource distribution; rather it oscillates around the 
optimum value and these oscillations correspond 
to a waste of resource (Boschetti, 2007) and never 
dissipate. Alternatively, the ‘global’ return is 
optimised in what is called a ‘team game’ and it is 
known that it reaches an optimal exploitation 
distribution only for very small problems (Wolpert 
and Tumer, 2001).  

The COIN approach can be seen as a sort of 
compromise between these two. It is based on each 
vessels aiming to optimise their own ‘private’ 
return, but in this case the private return is a 
function of how they influence the ‘global’ return. 
In particular, each vessel tries to maximise its 
impact on the global return, where the impact is 
equal to the difference between the global catch for 
the fleet and the catch that the fleet would have 
caught had the vessel not being present. The 
presence of a maximum fishing capacity (or a 
quota) for each vessel may result in this impact be 
different from the catch of the vessel itself. Details 
on how this quantity can be calculated are given in 
the Appendix and we refer the reader to Boschetti 
(2007) for more details. Importantly, this measure 
can be calculated using only local information 
about the area targeted by the vessel, without any 
need for global information. 

3. PREVIOUS RESULTS 

In this section we briefly summarise the results we 
obtained in previous tests of COIN performance in 
fisheries resource exploitation problems and we 
refer the readers to the original publications for 
further details.  

In Boschetti (2007) we describe a number of 
virtual experiments mimicking a fishing fleet 
operating in areas of different fishing capacity, but 
fully renewable resource. In that scenario, COIN 
provides optimal catches for the fleet while, at the 
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same time, each individual vessel also maximizes 
its own profit: in principle COIN requires fishing 
vessels not to act greedily but no individual 
sacrifice is required to achieve the common goal. 
We also show that a fleet following a COIN 
strategy adapts much faster to change in resource 
distributions, promising increased benefits over 
standard approaches in volatile environments.  

These results were extended to scenarios in which 
the resource dynamics were explicitly modelled 
(Brede et al, 2007). We also explored the trade-off 
between long and short term planning by providing 
vessels with some knowledge of the time evolution 
of the resource and thereby allowing them to plan 
their fishing behaviour in light of predicted long 
term resource behaviour (Brede and de Vries, 
2007). Finally, vessels were allowed to 
dynamically choose what strategy to adopt 
(ranging from fully cooperative, fully competitive, 
random and COIN) according to the strategy past 
return, in a typical evolutionary economics 
scenario (Gintis, 2000). We showed that the 
balance of vessels choosing a COIN versus a 
greedy approach depends crucially on the resource 
availability. Importantly, we also showed that 
although COIN requires more local information 
than a fully greedy approach, COIN is not very 
sensitive to incorrect/false information, providing 
acceptable performances even in the presence of 
considerable noise (Brede and de Vries, 2007). 
This reinforced our optimism that the method 
could, in principle, be implemented in real 
scenarios. 

 

Figure 1. Average catch per vessel (Y) as a 
function of resource availably (X). The vertical 

dashed bars indicate which strategy is optimal for 
different resource abundance; RAND= random 

choice of fishing zone, COINL= COIN with long 
term projection of resource dynamics, 

COINS=COIN without projection of resource 
dynamics, MGL= greedy strategy with long term 
projection of resource dynamics, MGS= greedy 

strategy without projection of resource dynamics. 

The dependence of COIN performance on the 
resource availability is of particular interest for 3 
reasons: a) it indicates when COIN can be most 
effective, b) it can give an indication of resource 
availability (Brede et al, 2007) and c) it can 
describe the dynamics of cooperation versus 
competition in natural resource problems. These 
ideas are summarised in Figure 1 (see Brede et al, 
2007 for more details). 

The X axis gives an indication of resource 
abundance in relation to the fishing capacity of the 
overall fleet, while the Y axis shows the modelled 
average catch per vessel (the catch plateaus for 
abundant resources because of the limit in vessel 
fishing capacity due to physical limitations or 
quotas).  The vertical lines indicate which fishing 
strategies give the best catches under different 
resource regimes. Starting from the right-hand side 
and moving leftward, we can see how the optimal 
fishing strategy changes as a function of resource 
abundance.  When the resource is very abundant 
(basically unlimited in comparison to the fleet 
capacity) there is no need to put much effort in 
choosing where and how to fish, and consequently 
a random strategy (RAND in the figure) performs 
well. When the resource is abundant, but not 
unlimited, a COIN strategy accounting for long 
term resource dynamics (COINL) is best. From 
now on, further resource reduction favours more 
and more greedy fishing strategies; when the 
resource is limited but not over-exploited COIN 
with no long term projection of resource dynamics 
fares best (COINS), while when the resource gets 
overexploited fully competitive, greedy behaviours 
become optimal and thus more dominant in the 
fleet (MGL, greedy behaviour with long term 
projection and MGS, greedy behaviour with no 
long term projection). Important for our discussion 
is the transition from COIN to greedy strategies, 
which maps the transition between under-exploited 
and over-exploited resources.  

Suppose that this transition could actually be 
detected in practise and consequently be used as an 
indicator of the resource state. If each vessel is 
managed independently, this knowledge would not 
change the decision of whether or not to go fishing 
and consequently potentially inflict long-term 
damage to the resource. Effectively, an over-
exploited resource results in a Tragedy of the 
Commons situation (Hardin, 1968), in which little 
economic benefit is provided to avoid over-
exploiting a limited resource.  However, imagine 
vessels are managed as members of larger fleets; 
then it may make economic sense to prevent 
certain vessels from going fishing, thus reducing 
the cost of fishing by limiting the size of the fleet 
to the minimum required to catch the limited 
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resource. This would not reduce the environmental 
damage but would reduce the cost of exploitation.  

It is obvious from Section 2 that the impact of a 
fishing vessel, as defined by the COIN approach, 
is exactly the piece of information which a fleet 
manager needs in order to choose the optimal fleet 
size. Before addressing this problem though, we 
need to make sure that the COIN approach can be 
used by a fleet manager and that its performance is 
acceptable against a fully decentralised COIN and 
against a traditional greedy approach. This is the 
motivation of the tests we describe in the next 
section. 

 

Figure 2. Fishing efficiency versus resource 
skewness for the 4 strategies under analysis. 

4. FLEET MANAGEMENT BY COIN  

 
The purpose of our tests is to compare 4 fishing 
strategies: 
 
1) a fully decentralised COIN; in this case we 

have M=N, that is, each vessel is privately 
owned; at each period, each vessel decides 
where it will fish next according to the 
discounted record of past COIN impacts. We 
call this DecenCOIN in the coming figures.  

2) A centralised COIN; the entire fleet is 
subdivided into smaller fleets, each managed 
separately. In these tests a sub-fleet comprises 
10 vessels. At each period, the sub-fleet 
manager decides how to allocate his 10 
vessels according to the discounted record of 
the past COIN impacts of his fleet. We call 
this CenCOIN. 

3) A fully decentralised greedy fleet (M=N, each 
vessel is privately own); at each period, each 
vessel decides where to fish next according to 
the discounted record of past catches. We call 
this DecenMG (we use MG for consistency 
with the notation in our previous papers). 

4) A centralised greedy fleet (each sub-fleet 
comprises 10 vessels). At each period, the 
sub-fleet manager decides how to allocate his 
10 vessels according to the discounted record 
of the past catches of his fleet. We call this 
CenMG. 

We want to check the relative performance of 
these strategies under different conditions of 
resource distribution, resource availability and 
fleet size. 

4.1. Performance versus resource 
distribution and abundance 

In Figure 2 we show the performances of the 4 
scenarios described in the previous section for 
resource distribution of varying skewness. All 
results are obtained by modelling a fleet of fixed 
size including N=50 vessels, which corresponds to 
5 sub-fleets of 10 vessels for the centralised 
scenarios. In all figures the results are given for 
runs of 100 fishing periods, and include the initial 
transient during which the strategies train 
themselves on initially random data.  We also 
model Z=2 fishing zones for which the resource 
ratio 1....2.0,1.0,/ 12 == kkFishFish ; k=1 corresponds to 
an even distribution of resource while k=1/10 
corresponds to a most skewed one. In the Y axis 
we plot the average fishing efficiency, that is the 
ratio between the average and the maximum 
possible catch per vessel. In the figure, red lines 
show the COIN results while black lines show the 
results of the greedy strategies. Also, thick lines 
show decentralised approaches and dashed lines 
show those that are centralised.  

Figure 2 suggests a number of conclusions: first, 
decentralised strategies perform better than 
centralised ones, both for COIN and the greedy 
approach. Second, for both centralised and 
decentralised scenarios, COIN outperforms the 
greedy approach. Finally, the 4 strategies react 
differently to the different level of skewness in 
resource distribution. The centralised MG is 
strongly affected by it, the decentralised COIN and 
MG are only slightly affected and the centralised 
COIN almost unaffected. 

 

Figure 3. Fishing efficiency versus relative 
resource abundance for the 4 scenarios under 

analysis. 

In Figure 3, we analyse the efficiency of the 4 
scenarios versus relative resource abundance. This 
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is calculated as the ratio between available 
resource and the maximum fishing capacity of the 
fleet, ranging from .5 (resource equal to half the 
fishing capacity) to 2 (resource equal twice the 
fishing capacity). In this case we modelled a 
moderately skewed resource distribution, 

3/1/ 12 =FishFish . The behaviour of Figure 3 is 
more complicated than the one in Figure 2, 
showing that the resource abundance has a 
stronger influence on the fishing efficiency than its 
distribution. For a very scarce resource the greedy 
approaches outperform COIN, while the opposite 
is true for abundant resources, confirming the 
results displayed in Figure 1. This is true for both 
centralised and decentralised approaches. When 
the amount of resource is roughly equal to the 
fishing capacity, we have a minimum in fishing 
efficiency for all scenarios; this is the situation for 
which a proper fleet distribution is most crucial for 
optimal resource exploitation.  Around this value, 
decentralised scenarios outperform centralised 
ones, as in Figure 2.  

Finally, in Figure 4 we show a 2D plot in which 
the Y axis shows different levels of resource 
skewness and the X axis different levels of 
resource abundance. At each location on the plot 
we map which of the 4 scenarios performs best. In 
the figure dark tones refer to COIN and lighter 
tones to greedy strategies. As expected, for low 
relative resource abundances (<0.8 in the figure) 
greedy strategies perform better, with the 
centralised greedy strategy being optimal for more 
skewed resource distributions. For more abundant 
resources the COIN strategies perform better. In 
this case the decentralised COIN (black area) 
performs best in most scenarios. 

 

Figure 4. Best performing strategy as a function of 
resource skewness and relative resource 

Abundance. White=CenMG, light-
gray=Decen_MG, dark-grey=CenCOIN, 

black=DecenCOIN . 

4.2. Performance versus fleet size 

Here we analyse how the results presented in the 
previous section scale with problem size. In Figure 

5 we plot the average fishing efficiency versus 
relative resource abundance (as in Figure 3) for a 
much larger fishery, including a fleet of 200 
vessels targeting a skewed resource distributed 
over 20 fishing zones.  

 

Figure 5. Fishing efficiency versus relative 
resource abundance for the 4 scenarios under 

analysis for a large fishery model. 

The main difference between Figure 5 and Figure 
3 lies in the better performance of the COIN 
strategies versus the greedy ones. For the larger 
fleet, COIN outperforms greedy strategies already 
for scarce resources, while for smaller fleets 
(Figure 3) this happens only for abundance 
resources. This suggests that the considerable 
increase in the number of options for the vessel 
allocation in the larger problem is handled better 
by the COIN than by the greedy approach. Similar 
results are reported in the COIN literature for 
engineering applications (Wolpert et al, 2004). 

 

Figure 6. Best performing strategy as a function of 
resource skewness and relative resource 

Abundance for a large fleet.  

Finally, in Figure 6 we show which strategies 
perform best for different values of resource 
skewness and resource abundance for the large 
fleet; this figure should be compared with Figure 
4.   Clearly, for larger problems, the decentralised 
COIN improves its role as dominant strategy. 

5. DISCUSSION AND FUTURE WORK 

The results presented in this paper can be 
summarised as follows: 
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1) except for very scarce resources, COIN 
outperforms greedy strategies; this is true both 
for centralised and decentralised approaches.  

2) COIN performance scales up better than 
greedy approaches, and consequently 
promises to be particularly useful in the 
management of large problems. 

3) Resource skewness does not seem to affect the 
strategies to a large extent, with the exception 
of a centralised greedy approach. 

4) Most important for the scope of this work, 
decentralised strategies fare better than 
centralised strategies. 

The last point deserves some discussion. At first 
sight, it suggests that a bottom-up approach is 
more effective than a top-down one. This would 
not prevent a manager adopting COIN to allocate 
fishing effort. It simply means that this manager 
should perform a COIN calculation at the scale of 
each single vessel belonging to its fleet rather than 
at the scale of its overall fleet.  

There are a number of reasons behind the apparent 
contradiction in suggesting that the decentralised 
COIN approach could be implemented by a 
manager; that is in a pseudo-centralised fashion, 
rather than in a proper decentralised way, by each 
vessel’s skipper. First, as mentioned in Section 3, 
we believe that the use of COIN by a management 
body would ease the potential introduction of the 
tool in resource management. The other reasons 
require a deeper investigation of the causes of the 
results presented above. 

First, let’s analyse the difference in performance 
between COIN and greedy approaches. As 
described in Section 2, the difference between the 
COIN and a greedy approach is that while the 
greedy algorithm accounts for each vessel’s catch, 
the COIN accounts for the vessel’s impact on the 
fleet overall catch. This allows COIN to decrease 
the number of vessels targeting areas which are 
already over-fished: in these zones the catch of a 
potential additional vessel would result in a 
decrease of the catch of other vessels targeting the 
same zone (since the zone is over-fished) which is 
why the vessel’s impact on this zone would be 
zero (see Boschetti, 2007). The reason why COIN 
performs poorly against a greedy strategy in 
situations of scarce resources is that in these cases 
vessels are unable to produce an impact anywhere, 
since all zones are over-fished. As a result COIN 
lacks the information necessary to perform an 
appropriate effort allocation.   

Now, let’s direct our attention to the difference in 
performance between centralised and decentralised 
approaches. In a centralised approach, a fleet 
manager receives information about the potential 
impact of a vessel in each of the zones one of its 
vessels has targeted. In principle, the fleet manager 
has more information than each single skipper in 
his fleet. However, he does not have information 
on how to split the effort among the zones. This 
results in spreading the fleet equally over the zones 
which results in poorer performance. 

In our research, however, we have assumed that 
each vessel will go fishing in each period. Let’s 
consider the situation of a scarce resource in which 
a vessel forecasts it cannot make any impact in any 
fishing zone. As explained above, this results in 
lack of information to the COIN. However, in 
principle, this is a very useful piece of information 
telling the vessels that, for the good of the overall 
fleet, it should not go fishing: independently of 
where it will go fishing, the catch of the overall 
fleet will be unaffected. Obviously, if the vessel 
acts independently, in a bottom-up approach, there 
is no incentive for the vessel not to go fishing, 
because this would result in lost income. However, 
if the vessel is part of a larger fleet, there would be 
an incentive for the fleet manager to prevent the 
vessel going fishing, since his fleet would obtain 
the same overall catch with reduced costs.       

The conjecture we suggest from the above 
discussion is that a fleet manager’s optimal 
strategy would be to adopt a decentralised COIN 
in case of an abundant resource (which would 
guarantee optimal catches) and a centralised COIN 
in case of a scarce resource, thanks to which it 
could estimate the minimum number of vessels 
needed for the job, thereby minimising costs 
without impairing the catch itself. In order to carry 
out the above strategy, what is needed is a way to 
use the COIN impact information in order to 
decide which vessels should not be employed in a 
fishing period. We will direct our future work at 
exploring this idea and we hope to report on this at 
the conference presentation. 

6. CONCLUSIONS 

The relative performance of greedy approaches 
and COIN depend on resource availability and size 
of the problem, which suggests that an adaptive 
meta-strategy would probably be optimal in 
general resource management problems. A bottom-
up decentralised strategy, in which calculation for 
optimal vessel allocation are carried out at the 
vessel level, rather than at the fleet level, provides 
best resource exploitation for most modelled 
scenarios.   
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Finally, we discussed how such a bottom-up 
approach could be implemented by a fleet 
manager, and conjectured that this may result in 
reduce exploitation costs. 
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APPENDIX A – COIN Impact Calculation 

We define the impact of vessel n1 on the overall 
fleet as the difference between the global catch of 
the fleet and the catch of the fleet would have 
caught if vessel n1 had not gone fishing: 

1
1

n
n TotalCatchTotalCatchIMpact −−= ,             (A1) 

where the superscript ‘-n’ refers to the fleet 
without vessel n1.  Notice that, because the catch 
of each vessel is limited by physical constraint or 
quota restrictions, we can have: 

1
1

n
n CatchTotalCatchTotalCatch −≠− .  

 
Eq. A1 can be approximated by removing vessel 
n1 from the fleet, leaving everything else 
unchanged. Let’s suppose vessel n1 targeted 
fishing zone z1. Clearly it could not have any 
impact on the other zones, so we need to concern 
ourselves only about zone z1. It thus follows that:  
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where Fleet is the size of the fleet which targeted 
zone z1 and the possible catch per vessel is 
constrained by the quota. Since 11

1
1 −=−

z
n

z FleetFleet , 
we have thus have: 
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which is the equation used in our calculation.  
 
Clearly, for each fishing period, a vessel can obtain 
information only about the zone it has targeted. 
Information about the other fishing zones is 
available only via past catches. Each vessel stores 
fishing results in a table, in which catches or 
impacts from past periods are discounted linearly 
according to their age. The sum of the discounted 
catches (or impacts) for each zone, properly 
normalised, gives the probability of a vessel 
targeting that zone at next period. In order to 
prevent certain zones never being targeted by a 
certain vessel, probabilities below a given 
threshold are forbidden.     
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