
Developing a bioeconomic simulation tool of fisheries
dynamics: a case study

1D. Versmisse, 2C. Macher, 1É. Ramat, 1J.C. Soulié, and 2O. Thébaud

1 LIL - Laboratoire d’Informatique du Littoral
Maison de la Recherche Blaise Pascal
50, rue Ferdinand Buisson - BP 719
62228 CALAIS Cedex FRANCE
E-Mail: versmisse@lil.univ-littoral.fr,
ramat@lil.univ-littoral.fr,
soulie@lil.univ-littoral.fr

2 Marine Economics Department - IFREMER
BP. 70
29280 Plouzané
E-mail: Claire.Macher@ifremer.fr,
Olivier.Thebaud@ifremer.fr

Keywords: DEVS, Coupling models, Fisheries Dynamics, Bio-economy

ABSTRACT

The purpose of this article is to present a simulation
tool developed by our team in order to help
answer problems of mixed fisheries modelling and
simulation. This work deals with the context of the
CHALOUPE Biodiversity project funded by the NRA
(French National Research Agency). The aim is to
model and simulate the Bay of Biscay nephrops-hakes
fisheries.

In this article we will, first, present the technical
part of our work. Indeed, we have to take into
account different parameters: economic, technical,
and biological factors. Difficulties relate, in particular,
to the complex dependencies between the various
components of the model. The goal, here, is to provide
a tool that allows quick development, modification
and use of fisheries models. In particular, the
modelling tool includes the repetitive and complex
tasks of parameterization using standard data format.
Main technologies used are: DEVS formalism, the
XML language, the C++ language, the embedded
possibilities of PYTHON, and our own simulation
platform: VLE (acronym for Virtual Laboratory
Environment). Second, we present simulation
preliminary results concerning the management of
the Bay of Biscay hake-nephrops fishery. This
fishery is characterized by technical interactions
between trolling for nephrops and for the hake
fishery. We simulate the potential impact changes in
technical regulations concerning nephrops harvesting
and analyze the implications for the fleet harvesting
both hake and nephrops.

1 INTRODUCTION

The effects of fishing and of climate change have by
now been identified as key factors in the biological
evolution of marine populations and communities.
The effect of this evolution on fisheries specifically
has been that its development operates in a context
of failed regulations on access to resources (leading
to fleet overcapacity, increasing demand for fisheries
products, and the deregulation of markets). The
extent of these changes and the relative weight of
different factors on a regional scale (i.e Bay of
Biscay, for instance)have yet to be quantified. This
is the principal objective of the CHALOUPE Project1

funded by the NRA (French National Research
Agency), which was launched in February 2006.

To carry out the objectives fixed, four tasks have been
defined and will be carried out for three case studies.
The four tasks are:

1. To measure the response of the communities,
environmental temporal variations and impact
of fishing;

2. To measure the response of fisheries to
ecological, economic and institutional changes;

3. To Diagnose of the ecological and economic
status and the conditions of viability of the
exploited communities/fisheries systems;

4. To model and simulate possible evolutions in
the bio-economic system.

The three case studies are: the Bay of Biscay
that represents a temperate continental shelf, the
Moroccan up-welling that represents a shelf under the
influence of an up-welling, and the shelf of French
Guyana that represents an amazonian tropical shelf.

1http://www.projet-chaloupe.fr/

2799

mailto:versmisse@lil.univ-littoral.fr
mailto:ramat@lil.univ-littoral.fr
mailto:soulie@lil.univ-littoral.fr
mailto:Claire.Macher@ifremer.fr
mailto:Olivier.Thebaud@ifremer.fr
http://www.projet-chaloupe.fr/

This paper presents a work that takes place within
the task four and applied to the Bay of Biscay case
study. Our position within the CHALOUPE project
is to provide a set of tools allowing quick writing
and development models created jointly with the
biologists and economists. Our team has worked
for several years on the modeling and simulation
problems and we have developed a framework named
VLE (acronym of Virtual Laboratory Environment)
[RP03, QDRT07]. VLE is a DEVS [Zei76] engine and
is entirely written using C++. The simulation set up
process is realized by charging the description of the
model from a XML file2 (number of atomic models,
their names, their types, the connections between
them, and their dynamics) and loads the appropriate
plugins to run it. Each DEVS atomic model is a
plugin written in C++ or in Python. Finally, VLE
allows the user to write arbitrary XML part within the
initialization file. These XML pieces are translated
into a ”vle compliant” XML thanks to another type of
dedicated plugin: the translators.

This paper is organized as follows: first we present
the specification of our model, second the solution we
developed in order to simulate our model, and finally,
we present a set of simulation results representing the
Bay of Biscay nephrops-hakes fisheries.

2 THE NEEDS IN THE CHALOUPE PROJECT

In this section, we present the paradigm used in
our model and the consequences due to this choice.
Indeed, we have to consider two parts: the biological
part and the economical part and we have also to
represent the interactions between these two parts.

2.1 A large set of strongly recurrent equations

The core of our bioeconomic models relies on a large
series of equations. For instance, in our current
model representing the Bay of Biscay nephrops-hakes
fisheries, we have the number of individuals Na (for a
given species, for a given age class), that is computed
with:

• Na−1 of the number of individuals with are in
the a− 1 age class;

• Z the total mortality which results from fishing
mortality and natural mortality for a given
species, for a given class).

and the formula:

Na := Na−1 × e−Z

2http://www.w3.org/XML/

Our model of the Bay of Biscay defines: nephrops and
hakes species based on 9 classes of age, 4 métier, a
price models, and a market model. Finally we define a
total of 2130 recurrent equations like presented above.
A variable (a model’s output) depends on about 3.3
inputs. Given this large set of strongly recurrent
equations a number of difficulties appear:

• How to manage all of these equations?

• How to describe the dependency between these
equations? Given the fact that they are complex
and the system is absolutely not linear;

• How to keep the same equation to make two
different computations? For instance, with the
natural growing equation, it is always the same
equation but with different inputs;

• And the most important, how to keep all these
computations efficient?

2.2 The VLE framework provides a DEVS
context

In the framework of our simulator VLE, we have to
describe all models like a DEVS (acronym of Discrete
EVent system Specification) [Zei76, ZKP00] atomic
model.

DEVS defines a model M as follows:

M =< X,S, Y, δint, δext, λ, τ >

Where X is the input space, S is the system state
space, Y is the output space, δint : S −→ S is the
internal state transition function, δext : Q × S −→
S is the external transition function, Q is the ”total
state” (the set of all previous and actual model states),
λ : Q −→ Y is the output function and τ is the time-
advance function.

DEVS allows coordinates the components of a
large complex system and makes coupled models
manipulation easier. After their definitions, models
will exchange timestamped messages in order to
communicate.

So, it is necessery to translate the resolution of the
equations via the DEVS mechanisms. This translation
is a key point of our work because it can raise several
problems whose principals ones are:

• It could be several time scales;

• Some outputs must be computed with the values
of the entries at ti, others with the values at
ti−1;

2800

• Some variables must be set up with a
computation that depends on the initial data;

• Some equations are complex, it is difficult to
describe them using XML and it is necessary to
find a simple way to describe them;

• After having described the binding between the
equations, the algorithm must choose the order
it will evaluate these equations. This last point
is the most difficult one.

It is often difficult to realize this translation from a
formalism to the DEVS formalism, but it has to be
realized. Indeed, when we have all the components
translated into the DEVS formalism, we can mix them
very more easily. This is why after the implementation
of our equations tool, we can use it with all existing
models (for instance: a differential equations solver,
timers, an agent modeller, . . .). The only work to do
is to connect atomic or coupled models together.

Although VLE is written in C++, we can write a
model (an atomic model in the DEVS language)
in several languages (C++, Python, .Net, R and
Java). It is simply a class that inherites from a pre-
defined one with the DEVS functions (Delta_ext,
Delta_int, . . .). This feature has been developed
in order to avoid the C++ difficulties (explicit pointer
management, multiple inheritance, etc.). Indeed,
some scientists not involved in implementation works
could be discouraged by developing with C++
although they know other programming languages.

3 OUR SOLUTION TO THE MANAGEMENT
OF RECURRENT EQUATIONS

Our solution is based on our VLE framework to run
the simulation, the XML language for the description
of the model and the Python language to write and
evaluate the equations.

3.1 Description of our XML specification

We developed an XML syntax that allows to simplify
the description of the model and its dependencies.
Such class of syntaxes are based on tags that
reprensent keywords in the grammar.

The first tag we proposed is the <PARAMETERS> tag
defining:

• The different time scales;

• The file format in which the models’ outputs are
stored. In our case this is CSV files. This file
format is very often used because it can be read
directly by the classical spreadsheets;

• The inputs in order to set up some part of our
model. These inputs are stored into CSV files
or databases.

These definitions give a name to reference tops, inputs
and outputs in the rest of the XML, it is shorter
and more practical. The different time scales are a
multiple of a STEP.

The listing below shows the PARAMETERS part of
our XML file. We can see the definition of three
“top” with a time step of 0.5, 1 and 1.5. The
definition of two outputs “all” and “trainee”,
stored into CSV files. And finally an input “my_csv”
which is a CSV file too.
<PARAMETERS>
<CLOCK STEP="0.5">
<TOP NAME="top1" MULT="1"/>
<TOP NAME="top2" MULT="2"/>
<TOP NAME="top3" MULT="3"/>

</CLOCK>
<SCRIBE>
<CSV NAME="all"
FILE="output_all.csv"/>

<CSV NAME="trainee"
FILE="output_trainee.csv"/>

</SCRIBE>
<STREAM>
<CSV NAME="my_csv"
FILE="example.csv" TYPE="TITLE"/>

</STREAM>
</PARAMETERS>

Listing 1. A part of our XML file

Second, we have the <ROOT> tag which contains the
description of the model. It is a tree structure. The
<NODE> and <MODULE> tags are the containers for
others tags.
<ROOT>
<NODE NAME="OFFICE">
<CONSTANT NAME="K" VALUE="2"/>

<MODULE NAME="The boss" PYTHON="example"
CLASS="Boss">
<IN PATH="K"/>
<OUT NAME="A" CSV_NAME="Boss"/>

</MODULE>

</NODE>
</ROOT>

Listing 2. Example of <ROOT> node, It is a tree
structure. Objects are in <NODE> and <MODULE>

A module defines an equation with its entries and
its outputs. The entries are the <IN> tags. The
PATH describes how and where to find the value.
It could be an output of another module or a
constant. Outputs (<OUT> in modules) and constant
(<CONSTANT>) have got two names, a short and
a long one. The short is for instance: given
the <CONSTANT NAME="K" VALUE="2"/>, the
name K, and the long is ROOT:OFFICE:K. So in a
PATH tag, we can give:

• The long name of an entry;

2801

• The short name, and the system will look for
an output or a constant with this name in the
higher branches of the tree. For instance K in
the The Boss module;

• A relative path using the explicit notation “..”.
For instance A in the Trainee N1 module.

In order to handle the different time scales and the
nature of the inputs, modules have a tag TOP and three
MODE which are:

• LAZY: it computes its OUT only one time. This
mode is used to evaluate some constants at the
beginning of the computation;

• preevaluation: it computes its OUT with
the values of its INPUT at the time t− 1;

• postevaluation it computes its OUT with
the values of its INPUT at the time t, in fact it
must wait to have all of its INPUT.

The computation is made in a library loaded and
written in C++. As presented above, it as also
possible to use the Python language but it is less
efficient in term of computation time. We use the
Python language during the development process
because it as an interpreted language and it avoids
repetitive compilations that are time consuming.
When the development process is ended, we translate
the code written in Python into the C++ language.
Consequently we can take advantage of the C++
efficiency.

<MODULE NAME="Trainee N1"
PYTHON="example" CLASS="Trainee"
TOP="top1"
MODE="preevaluation">

<IN PATH="..:The boss:A"/>

<CONSTANT NAME="FACTOR"
VALUE="my_csv#’Trainee’=’1’|’Value’"/>

<IN PATH="FACTOR"/>
<OUT NAME="A" CSV_NAME="A1" SCRIBE="trainee"/>

</MODULE>

Listing 3. Example of <MODULE>. It is an equation, the
inputs are A and FACTOR. The output (or result) is A. The
computation is made into a Python file example.py and
the used class to evaluate is Trainee

In OUT tag, we have the optional attribute INIT (for
the initial value of this variable). Without the INIT
the system tries itself to calculate the value. This
computation is automatic, integrated in the DEVS
model of a module.

We also added the possiblity to make loops, tests and
define constants, and finally, we created a syntax to
carry out the requests in CSV files.

<FOR VAR="trainee_number" IN="my_csv#|’Trainee’">
<MODULE NAME="Trainee N$trainee_number$"
PYTHON="$python_file$" CLASS="Trainee"
TOP="top$(trainee_number-1)%3+1$"
MODE="preevaluation">

<IF EXPRESSION="$trainee_number .eq 1$">
<IN PATH="..:The boss:A"/>

</IF>

<IF EXPRESSION="$trainee_number .neq 1$">
<IN
PATH="..:Trainee N$trainee_number-1$:A"/>

</IF>

<CONSTANT NAME="FACTOR" VALUE=
"my_csv#’Trainee’=’$trainee_number$’|’Value’"/>

<IN PATH="FACTOR"/>

<OUT NAME="A" CSV_NAME="A$trainee_number$"
SCRIBE="trainee"/>

</MODULE>
</FOR>

Listing 4. This is the rewriting of the “Trainee”
module with a loop and two tests

We can see in the last example that our
translator has a little expressions interpreter. All
expressions surrounded by $ are evaluated and
switched for its result in the character string.
Expressions could be complex, for instance this
one:$(trainee_number-1)%3+1$ computes
the good number for the TOP tag. We can see
the reading in input my_csv, a stream defined
in the <PARAMETERS> tag, by the string
’Trainee’=’$trainee_number$’|’Value’.
It is the request in the CSV file. We have invent a
small language for these requests in a CSV file. If
the stream is a classic data base, we send directly the
SQL request to the data base.

3.2 The DEVS model of the equation handler

The DEVS model of the simulator which evaluates an
equation must take into account of all requirements
presented in the first part. Our solution is a DEVS
atomic model with six states: INIT_WAITING,
INIT_SENDING, INIT_OK, WAITING, SENDING
and IDLE. And, as defined above, three modes
PREEVALUATION, POSTEVALUATION and
LAZY. We described classic DEVS procedures (ta,
λ, δint and δext) of this atomic model in the below
algorithms. They are sufficiently explicit, we will
only clarify some points. The PREEVALUATION
mode qualify equations whose outputs must be
calculated with the values of the entries at ti−1, the
POSTEVALUATION mode waits that all input values
(at t = ti) are received and calculates the outputs
and finally the LAZY mode computes only one time
the outputs (at t = 0) and sends always the same
values during the simulation. This last mode is for
the calculation of constants at the beginning of the
simulation.

2802

The model designer should not rewrite or think in term
of model DEVS. He only must overload, or accept
the default behavior of a serie of functions/procedures
whose are called by the DEVS model which are:

• initialize() Called before the start of the
simulation, by default, this procedure does
nothing;

• auto init() Called during the computation of
all initial value for each variable. This
procedure have a default behavior, which is:
waiting for all the inputs of an equation and call
compute(0);

• compute(t) Called exactly at the good time
by the DEVS model to ask an evaluation
of the equation with the actual input values.
This function must return the result of the
computation;

• finalize() Called after the end of te simulation.

Here is an extract of our model. This part computes

the equation: Ca =
Na × (1− e−Za)

Za × Fa

class Catch(Treq):
def compute(self,t):

self.set_out("C",
self.get_in("N")*\\
(1-exp(-self.get_in("Z")))/\\
self.get_in("Z")*self.get_in("F"))

Listing 5. An example of complex equation written in
a Python file and executed by VLE exactly at the good
time according to the specification of the module that
uses this code. We can use all the power of Python to
describe the equation and its result.

This part computes Ca, it does not use an overloaded
auto init() function, so to calculate Ca at the
beginning of the simulation, the program waits for
N , Z and F , and calculates Ca with the call of
compute(0). As we can see, the DEVS model solves
the problems of evaluation automatically: the correct
control of the set up, i.e in which order is necessary
to initialize the variables, and then at the time of
simulation.

Let us see now the DEVS model of an atomic model
that handles an equation.

First, the init and the finalize functions which
are called at the beginning and at the end of the
simulation.

call initialize()
call auto init()
//iteration stores the number of "top"
iteration←0
state←INIT_SENDING

Listing 6. The DEVS model of an equation: The init
function

call finalize()

Listing 7. The DEVS model of an equation: the
finalize function

Second, the Ta function of our solution with the
various returns according to the state of the module.
Ta specifies the duration of a state.

if state=INIT_WAITING
return step

else if state=INIT_SENDING
return 0

else if state=INIT_OK
return 0

else if state=WAITING
return step

else if state=SENDING
return 0

else if state=IDLE
return step

end if

Listing 8. The DEVS model of an equation: the Ta
function

Third, the λ function. It is the output of a DEVS
atomic model. An output is an event which is send
to the good modules. With the PATH tag in each
input from a module, the translator knows which is
connected to a module and where it must send the
event which is the new value of a variable (its long
name and its new value).

if state=INIT_WAITING
return "No event"

else if state=INIT_SENDING
if size(out_dict)=total_out

return "All outputs"
state←INIT_OK

else
return "No Event"

end if
else if state=IDLE

return "No event"
else if state=WAITING

return No event
else if state=SENDING

return "All outputs"
end if

Listing 9. The DEVS model of an equation: the λ
function. total_out stores the number of OUT tag in
the module

The δint function is called by the DEVS engine when
a state is finished. According to its last state the

2803

atomic model moves to a new state and can make
some computations.

if state=INIT_WAITING
error "This module has not

received enought
data to make its
self initialization"

else if state=INIT_SENDING
state←INIT_WAITING

else if state=INIT_OK
state←IDLE

else if state=IDLE
iteration←iteration+1
if iteration mod mult=0

mode=PREEVALUATION
call compute(t)
state←SENDING

else if mode=POSTEVALUATION
if total_input 6= 0

received_input←0
state←WAITING

else
call compute(t)
state←SENDING

end if
else if mode=LAZY

state←SENDING
end if

else if state=WAITING
nop

else if state=SENDING
state←IDLE

end if

Listing 10. The DEVS model of an equation: the δint

function. total_in stores the number of IN tag in
the module which are not constants

We can remark that the model is able to detect an error
in the graph of dependencies of the equations: if an
equation could not compute its result due to it did not
receive all its inputs, an error is raised. Generally, it
is because some variables do not have an initialisation
value and it is impossible to evaluate it with the given
datas.

Finally, the δext function. It is called when an event
(so a new value for a variable) comes.

call set_in(name,value)
if state=INIT_WAITING

call auto init()
state←INIT_SENDING

else if state=INIT_SENDING
call auto init()

else if state=INIT_OK
nop

else if state=IDLE
nop

else if state=WAITING
received_input←received_input+1
if total_input=received_input

call compute(t)

state←SENDING
else if state=SENDING

nop
end if

end if

Listing 11. The DEVS model of an equation: the
δext function. The event (the new value of a external
variable) has two argument its name and its value

This model is implemented in our VLE framework
and all the equations (the code with the functions:
auto init, compute, . . .) are stored into a Python file.
The data are stored into a ods file (an openDocument
spreadsheet format3). A small program converts this
file in several CSV files for VLE. So, we can change
a value in the spreadsheet or change an equation
implementation in the Python file and rerun directly
the simulation. The results can also be read by a
spreadsheet. A run roughly takes a minute to be
carried out with 50 time steps.

4 PRESENTATION OF THE MODEL AND
THE RESULTS

The French Nephrops trawler fishery in the Bay of
Biscay is characterized by a high level of discards
of many species especially Nephrops and Hake.
Talidec et al. [TRBM05] estimated that Nephrops
trawlers discard about half of their Nephrops catches
in numbers, and a third in weight. Discarding mainly
occurs on the younger ages of Nephrops and Hake that
are under the Minimum Landing Size (MLS) fixed
by the European Commission in the framework of
the CFP. Because of high mortality rates on discards,
these discarding behaviours lead to an important waste
for the stocks and for the fleets. Nephrops trawlers
themselves as well as other fleets targeting discarded
species like the hake netters are affected by the low
selectivity of the trawlers. The simulation tool enables
us to study impacts of implementing management
measures on the status of the stocks (in terms of
biomass and age structure) and on several indicators
for the fleets (such as the gross return from the
catches or the return to be shared). The model
is age-structured and deterministic. It is close to
the model described in [MGTB06] but includes the
dynamic of hake and two netter fleets. A scenario of
improving selectivity on the three first age groups of
Nephrops and Hake caught by the Nephrops trawler
fleets was tested using the “VLE” model. This
scenario corresponds to the case of the adoption by the
Nephrops trawler fleet of a selective device according
to the regulation on MLS: no hake and no Nephrops
under MLS are caught neither discarded.

The biological parameters for Nephrops and Hake

3http://opendocument.xml.org/

2804

stock dynamic are provided by the ICES working
groups [ICE04a, ICE04b]. Six Nephrops trawler fleets
practicing the métiers of Nephrops single bottom
trawling and Nephrops twin bottom trawling and
two Hake netter fleets were parameterized for their
cost and revenue structure and their exploitation
pattern for the two stocks using the data collected
by IFREMER (SIH). The potential benefits of the
scenario implemented in simulated year 30 are
addressed. The model enables to provide the results at
different level of aggregation: per fleets, per métiers
or per fleet-métier, for the whole stocks or detailed
per age-group. At present the model is within a
validation stage. The preliminary results are very
encouraging, but we want to confront them with the
known data before advancing a series of curves and
interpretations.

5 CONCLUSION

In this article, we have presented a tool and a way
to handle a model of complex fisheries. The design
of our solution allows to add more complexity in the
model: we can add new equations or news DEVS
models and connect them together. In the past, we
have already realized a model of fisheries relies on a
DEVS equation differential solver, and so now, we can
mix all the point of view.

We have also seen that this tool is enough effective
to handle the complex model of the Bay of Biscay
nephrops-hakes fisheries. It is easy to write a new
model or modify an old one: the data are brought
together in a spreadsheet file, the complex equations
in a Python file and the description of the model in a
XML file. This last file is the more difficult to do, so
we currently have developed a graphical tool to write
this file automatically.

6 ACKNOWLEDGEMENT

The authors would like to thank the CHALOUPE
project(agreement n◦ ANR-05-BDIV-001-06, French
Research National Agency - Biodiversity Program)
for the stimulating intellectual environment it pro-
vided to us, as well as the financial support for this
work.

7 REFERENCES

ICES. Report of the working group on nephrops
stocks. ICES CM ACFM:19, 2004.

ICES. Report of the working group on the assess-
ment of southern shelf stocks of hake,monk and
megrim. ICES CM ACFM:02, 2004.

C. Macher, O. Guyader, C. Talidec, and M. Bertignac.
A cost-benefit analysis of improving trawl selec-
tivity: the nephrops norvegicus fishery in the bay
of biscay. AMURE PUBLICATIONS, ISSN 1951-
641X, Working Papers Series N◦ D-20, 2006.

G. Quesnel, R. Duboz, É. Ramat, and M. K. Traouré.
A multimodeling and simulation environment,
proceedings of the summer computer simula-
tion conference. In Summer Computer Simula-
tion Conference ACM, editor, Moving Towards the
Unified Simulation Approach, San Diego, USA,
july 2007.

E. Ramat and P. Preux. Virtual Laboratory Envi-
ronment (VLE): a software environment oriented
agent and object for modeling and simulation of
complex systems. In Simulation Modelling Prac-
tice and Theory, volume 11, pages 45–55, 2003.

C. Talidec, M.J. Rochet, M. Bertignac, and C. Macher.
Discards estimates of nephrops and hake in the
nephrops trawl fishery of the bay of biscay:
methodology and preliminary results for 2003 and
2004. ICES Working Group on the Assessment
of Southern Shelf Stocks of Hake, Monk and
Megrim, WGHMM, 2005.

B. P. Zeigler. Theory Of Modeling and Simulation.
Wiley Interscience, 1976.

B. P. Zeigler, D. Kim, and H. Praehofer. Theory
of modeling and simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems.
Academic Press, 2000.

2805

	Introduction
	The needs in the CHALOUPE project
	A large set of strongly recurrent equations
	The VLE framework provides a DEVS context

	Our solution to the management of recurrent equations
	Description of our XML specification
	The DEVS model of the equation handler

	Presentation of the model and the results
	Conclusion
	Acknowledgement
	REFERENCES

