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EXTENDED ABSTRACT 

The yield of an urban water supply system is 
defined as the average annual volume of water that 
can be supplied from the water supply system over 
a given planning period, subject to streamflow 
variability, operating rules and demand pattern, 
without violating the adopted level of service. 
Since yield plays a key role in the management of 
urban water supply systems, it is important for 
water authorities to accurately estimate it with 
minimal inherent uncertainty. Sensitivity analysis 
can identify key variables used in yield estimation, 
allowing water authorities to improve the 
knowledge of those variables (or input factors) and 
thus to improve the confidence and reliability of 
the system yield.  

The increase of computational power that has 
become available over the past decades has meant 
the variance based sensitivity analysis techniques, 
FAST (Fourier Amplitude Sensitivity Test) and 
Sobol’, have become favourable. Additionally, the 
Morris method, a computationally inexpensive 
screening technique, is commonly used to 
economically identify non-influential input 
variables so they can be disregarded from the more 
computationally expensive variance based 
techniques. 

The case study considered in this study was a 
simple urban water supply system consisting of 
two storages and a single urban demand centre 
simulated using the REALM simulation package. 
Historic monthly data was used for streamflow, 
rainfall and evaporation. Twenty-eight input 
variables were identified within the model 
consisting of historic data, empirical values and 
model parameters. 

A screening experiment using the Morris method, 
the results were confirmed by the Extended FAST 
method (EFAST, a derivative of FAST), was used 
to identify non-influential input variables. These 
variables were then set at their nominal values and 

disregarded from the subsequent experiments 
using the FAST, EFAST and Sobol’ techniques. 

The ranked results from the Morris and EFAST 
screening techniques showed close similarity with 
only some differences occurring in the lower 
influential variables. The sensitivity indices were 
dominated primarily by the streamflow, with the 
supply reliability, upper restriction rule curve and 
the maximum number of consecutive restriction 
months variables showing some significance. 

Detailed sensitivity analyses on the simple model 
were then performed using FAST, EFAST and 
Sobol’ considering the ten highest ranked variables 
from the screening experiments. The remaining 18 
variables were kept at their nominal value. 
Experiments of increasing model simulations, and 
hence accuracy, were performed until a 
convergence was met or the required number of 
simulation was impracticable. 

Comparison of the results of the detailed 
sensitivity analyses again indicated the dominance 
of the streamflow, and the minor significance of 
the supply reliability, upper restriction rule curve 
and the maximum number of consecutive 
restriction months variables. The results obtained 
from FAST and EFAST were reasonably similar, 
however the Sobol’ experiments gave erroneous 
results, where the total-order sensitivity is less than 
the first-order effect. Nevertheless, these errors 
were found only for lower influential variables. 

1. INTRODUCTION 

The reliable supply of clean potable water is 
increasingly viewed as an essential commodity 
throughout the world. Government authorities 
continually confront various issues, problems and 
limitations in their attempt to provide the 
community’s needs of a clean and reliable water 
supply. Lack of rainfall, water quality, suitability 
of source, cost, infrastructure and storage, and the 
community’s acceptable security of water supply 
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are issues which need to be addressed to 
ameliorate urban water supply. 

The main issue for urban water supply systems is 
to continually supply a demand that does not 
outstrip the volume of water entering a system 
over a long period. The recent drought experienced 
in Australia has meant that many water supply 
systems are required to supply a demand that 
exceeds a sustainable volume. This shortfall can be 
reduced by; decreasing the demand via water 
saving measures and schemes, and education; 
and/or increasing the yield of the system by; 
optimising system management, or augmentation 
with additional water sources.  

The definition of yield used in this study and 
commonly used by many water authorities 
throughout Australia is: the average annual volume 
of water that can be supplied from the water 
supply system over a given planning period, 
subject to streamflow variability, operating rules 
and demand pattern without violating the adopted 
level of service. Yield is commonly estimated by 
increasing or decreasing the average annual 
demand until the accepted level of service is just 
violated, by using a computational model that 
simulates the specific water supply system that 
incorporates streamflow variability, operating rules 
and demand pattern. REALM (REsource 
ALlocation Model), a water supply simulation 
software tool, is commonly used in Australia for 
modelling water supply systems (Perera and James 
2003, Perera et al. 2005). 

REALM is a generalised computer simulation 
software package that models the harvesting and 
bulk distribution of water resources within a water 
supply system. It uses a fast network linear 
programming algorithm to optimise the water 
allocation within the network during each 
simulation time step, in accordance with user-
defined operating rules including Target Rule 
Curves (TRC) and Restriction Rule Curves (RRC) 
(Perera et al. 2005). 

The yield of a water supply system is dependant on 
numerous variables including climate dependant 
data (e.g. streamflow and demand), empirical 
inputs (e.g. operating rules), and model parameters 
(e.g. transmission losses). As these inputs are 
determined through measurement, optimisation or 
modeller experience, they inherently contain 
unquantified errors which are conveyed through 
the model structure to the output. Minimising these 
errors will increase the confidence in the yield 
estimate. However, input variables may have 
different significance in terms of their influence on 
the estimation of yield. Investigation into some of 

the variables may result in little improvement in 
the confidence of the yield estimate. Therefore it is 
more efficient to identify, investigate and improve 
only those variables that provide a significant 
effect on the output. The identification of 
influential, or important, variables is a primary 
goal of Sensitivity Analysis (SA). 

In this case the principle aim was to determine the 
variables that have the greatest influence on the 
estimation of yield, whilst evaluating the 
appropriateness of various sensitivity analysis 
techniques on a water allocation model. 

This paper briefly discusses the principles of SA, 
and introduces the Morris method, and two 
variance based techniques: the Fourier Amplitude 
Sensitivity Test (FAST) and the Sobol’ Method. 
This is followed by a discussion of the urban water 
system case study and appropriate handling of the 
model’s input variables. Finally, the results of the 
case study are presented along with some 
discussion, recommendations and conclusions. 

2. SENSITIVITY ANALYSIS 

Sensitivity analysis can be defined as the study of 
how the variation in the output of a model can be 
apportioned, (qualitatively or quantitatively) to 
different sources of input variation. It can provide 
valuable information regarding the structure of the 
model, and its reliance upon the input variables, or 
lack thereof (Saltelli 2000). The sensitivity of an 
input variable or parameter is an indication of the 
effect that a variation of that input will have on the 
output; an input variable of higher sensitivity will 
result in a greater variation of the output and vice-
versa. The sensitivity of a variable illustrates the 
care that modellers must take to obtain and employ 
an appropriate value for the variable, but can also 
signify its importance in relation to its dependency 
by the model structure (Saltelli et al. 1999). 

The successful application of sensitivity analysis 
largely depends upon the model structure and the 
selection of an appropriate technique(s) to 
accurately investigate the nature of the variables 
and model. For example, a purely linear model (i.e. 
a model where the input-output relationship is 
linear) can be easily investigated with the use of 
first-order, differential or one at a time (OAT) 
techniques. However, for a model that is non-
linear, first-order differential analyses are 
ineffective as they cannot identify or handle non-
linearity, interactions, or correlations between 
variables. Computational advancements have 
allowed the use of variance based techniques that 
can accommodate non-linearity and interactions 
within a model and its variables. 
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Two such variance based methods, the Fourier 
Amplitude Sensitivity Technique (FAST) (Cukier 
et al. 1973, Saltelli et al. 1999) and the method of 
Sobol’ (Sobol’ 1993), are commonly used for 
detailed analyses after using a screening analysis 
employing the computationally efficient screening 
technique: the Morris method (Morris 1991). The 
Morris method is first applied to quickly determine 
which variables are non-influential. These can then 
be held at constant values and eliminated from 
subsequent analyses, so as to reduce the number of 
model simulations that the computationally 
expensive variance based methods require. 

These methods were selected as the most 
appropriate as they are regarded as the best for 
non-linear, complex, computationally demanding 
simulation models such as the REALM model 
used in this study. 

2.1. The Morris Method 

The Morris method is a specialised randomised 
OAT design that has proved to be an efficient and 
reliable technique to identify and rank important 
variables (Morris 1991, Campolongo et al. 2007). 
It gives a modeller insight into the nature of the 
influence of input variables on a model’s output 
with a limited number of model simulations. The 
method is based on the OAT assumption that if all 
variables are changed by the same percentage, the 
variable that exhibits the largest variation in the 
output is the most sensitive.  

To perform this, a multiple number of trajectories 
through the parameter space are generated to 
provide an efficient and systematic method to 
explore the model output. Each trajectory provides 
a single estimation of the Elementary Effect (EE) 
for each model input, as defined by: 

1 1 1[ ( ,..., , , ,..., ) ( )]( ) i i i k
i

y x x x x x yEE − ++∆ −
=

∆
xx  (1) 

where ∆ is a value in {1/(p-1),…,1-1/(p-1)}, p is 
the number of levels that divide the parameter 
space, x is the set of input values, and y is the 
model output.  

Morris (1991) proposed two measures, namely the 
mean (µ) and standard deviation (σ) of the set of 
EEs for each variable. The sensitivity index, µ, 
assesses the overall influence of a variable on the 
model output, including higher-order and 
interaction effects. When µ is high, the variable 
said to be highly sensitive as a unit change causes 
a large deviation of output and vice versa. The 
spread, or standard deviation, denoted as σ, 

provides a measure that indicates possible 
interaction of a variable with other variables and/or 
the variable has a non-linear effect on the output 
(Campolongo and Braddock 1999). 

Campolongo et al. (2007) propose a third output 
index, µ*, the mean of the absolute EE’s, which 
addresses the possible misrepresentation of the 
magnitude of sensitivity of the variables in a non-
monotonic model given by µ. Such variables 
would produce positive and negative elementary 
effects, from which the mean value of the EE’s, µ, 
would indicate a lower overall sensitivity measure 
for a variable that is highly sensitive. The benefit 
of µ* is that only the magnitudes of the changes 
are considered, avoiding some effects that may 
cancel out each other (Campolongo et al. 2007), 
hence providing a more accurate measure of 
overall sensitivity compared to µ.  

2.2. Variance Based Techniques 

Owing to the vast increase of computing power 
over the past recent decades, more powerful 
methods of SA have become feasible. The primary 
developments have been made on Variance Based 
Sensitivity Analysis methods. These methods can 
identify and quantify interactions between 
variables, and can be applied to a single or group 
of variables. They are also model independent so 
they can be used on a model whose algorithms are 
unknown or complex. The main drawback of 
variance based measures is their computational 
cost since they involve the estimation of k-
dimensional integrals.  

The FAST and Sobol’ methods determine the same 
first order sensitivity index: Si, the estimate of the 
ratio of the variance due to the i-th variable to the 
variance due to all variables. Therefore, if the 
model is purely additive the sum of Si equals 1, 
while for non-uniform, non-additive models the 
sum of Si is less than 1. 

The second sensitivity measure that can be 
computed using variance based methods is the 
total sensitivity index STi. This is defined as the 
sum of all effects involving the i-th variable. It can 
be computed using Sobol’ and Extended FAST 
(EFAST), a derivative proposed by Saltelli et al. 
(1999) of the original FAST. Further higher order 
indices can be calculated by both variance based 
methods, but generally only determined using 
Sobol’. This is due to the relatively small number 
of extra model simulations that are required, 
compared to the number required for FAST. 

2770



Figure 1. Case Study Water Supply System. 

Method of Sobol’ 

The key principle behind Sobol’s approach is to 
decompose the total output variance V(Y) in the 
form: 

12...( ) ...i ij k
i i j i

V Y V V V
>

= + + +∑ ∑∑  (2) 

where:  

( ( | ))i iV V E Y X= , (2a) 

( ( | , ))ij i j i jV V E Y X X V V= − − , etc. (2b) 

Corresponding sensitivity indices are given by 
Si=Vi/V, Sij=Vij/V etc., where Sij, indicates the 
two-factor interaction effect. 

The Sobol’ decomposition also allows for an 
estimate of the total sensitivity index, STi, a 
measure of the sum of all order sensitivity effects 
involving the i-th input variable.  

Fourier Amplitude Sensitivity Test Method 

The Fourier Amplitude Sensitivity Test (FAST) 
(Cukier et al. 1973), and related Extended FAST 
(EFAST) (Saltelli et al. 1999), use the Fourier 
principles of frequency analysis to determine the 
same indices as Sobol’s method. Each input 
variable is assigned a certain angular frequency ωi 
to transform the input variables into an 
approximately space filling curve from which the 
samples are selected. The Fourier coefficients A 
and B at all frequencies of the resultant model 
output are determined. Si is then estimated by 
considering the ratio of their magnitude at the i-th 
variable’s angular frequency (and harmonics) to 
the total magnitude of all frequencies. 

Total indices STi can also be calculated by using 
EFAST. The basic idea is to consider the 
frequencies that are not harmonics of the 
frequencies {ω1, ω2, …, ωk} (Saltelli et al. 1999). 

These frequencies contain information about the 
residual variance that is not accounted for by the 
first order indices.  

Accuracy of the sensitivity indices depends on the 
selection of space filling curve and set of angular 
frequencies. The set of frequencies should be 
incommensurate and selected so that common 
Fourier transform issues, such as aliasing and 
interference, are prevented (Cukier et al. 1973). 

3. CASE STUDY 

3.1. System Description and Data 

A hypothetical example of a two-reservoir system 
(VU and DSE 2005) was considered as the case 
study for this paper. A schematic diagram of the 
system is shown in Figure 1, while basic system, 
streamflow and demand data are as given in VU 
and DSE (2005). 

Reservoirs A and B supply water to a demand 
centre. Both reservoirs receive streamflow from 
their own catchments and are both subjected to 
evaporation losses and rainfall gains; modelled 
using storage volume - surface area relationship, 
rainfall and evaporation climatic data and 
empirical factors A and B. (Note: rainfall and 
evaporation data are used for storage gains and 
losses only.) The mean annual flow at the two 
reservoirs is approximately 104,000 Ml (1 Ml = 
103 m3). Reservoir A, which has a capacity of 
100,000 Ml, can transfer water to the 60,000 Ml 
capacity reservoir B, according to the defined 
TRCs. Both reservoirs have a minimum capacity 
of zero Ml. The monthly demand disaggregation 
factors, which reflect typical high demands during 
summer months and low demands during winter 
months, were used to disaggregate annual demand 
into monthly demands. These monthly demands 
were further adjusted by a ‘climatic index variable’ 
(CLINX) to account for climatic variability. The 
streamflow data at the reservoirs, climatic data (i.e. 
rainfall and evaporation) for modelling reservoir 
evaporation and climatic index data for 
disaggregating annual demand data into monthly 
data were available for a 28 year period. 

A four-level demand restriction policy, consisting 
of upper and lower rule curves, including four 
intermediate restriction zones (with definitions of 
relative positions and percentage restrictable 
levels), and a base demand curve, was used to 
restrict the demand during low storage volume 
periods. Storage TRCs were defined by a single set 
of five-point curves for all months of the year, 
indicating the preferred individual storage volumes 
for different total system storage volumes. 
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Variable Range Variable Range 

Streamflow Time Series ±5% of historic data Initial Volume of Reservoir A 25-100% of capacity 

TDFs ±5% of nominal position Initial Volume of Reservoir B 25-100% of capacity 

CLINX Time Series ±5% of historic data Stage 1 Percentage Restrictable ±5% of nominal position 

Consecutive  Restriction Months 6 – 18 months Stage 2 Percentage Restrictable ±5% of nominal position 

Worst Restriction Level 3 – 4 Stage 3 Percentage Restrictable ±5% of nominal position 

Supply Reliability 80% – 98% Stage 4 Percentage Restrictable ±5% of nominal position 

Rainfall Time Series ±5%of historic data Upper RRC ±5% of nominal position 

EVAP Time Series ±5% of historic data Lower RRC ±5% of nominal position 

Evaporation Factor A - Storage A 0 – 5 Base Demand ±5% of nominal position 

Evaporation Factor A - Storage B 0 – 5 Stage 1 Relative Position ±5% of nominal position 

Evaporation Factor B - Storage A 0.95 – 1.05 Stage 2 Relative Position ±5% of nominal position 

Evaporation Factor B - Storage B 0.95 – 1.05 Stage 3 Relative Position ±5% of nominal position 

Volume to Surface Area Relationship ±5% of nominal volumes Target Curve ±5% of nominal position 

As stated earlier, the yield in this study is defined 
as the average annual volume of water that can be 
supplied from the water supply system over a 
given planning period, subject to streamflow 
variability, operating rules and demand pattern, 
without violating the adopted level of service (or 
security criteria), defined by the supply reliability, 
worst restriction level and consecutive number of 
months of restrictions (VU and DSE 2005). 

3.2. Handling of Input Variables 

For SA, the input factors or variables must be 
sampled over a plausible range of values. This 
range can be absolute values, or denote a 
percentage change of their nominal values, 
depending on the type of data. A list of the 28 
variables considered and their assigned ranges 
used in this case study can be seen in Table 1. See 
VU and DSE (2005) for more detail relating to 
these variables. Typical types of data relevant to 
this case study are as follows:  

Time series data – Time series data used (i.e. 
streamflow, rainfall and evaporation) are based on 
measurements and therefore a percentage of the 
observations was considered to define the range so 
as to reflect the possible errors. For each variable, 
a single percentage, randomly sampled from the 
range is used to change all data points in the time 
series. However, such changes to time series may 
not be appropriate and can cause issues with any 
correlations that exist between time series 
variables. 

Other data, whose range is defined by a 
percentage change of the nominal value – These 
are initial storage volumes, supply reliability, 
storage volume - surface area relationship of 
reservoirs, upper and lower RRCs, base demand 

curve, and relative position and percentage of 
demand restrictable for various intermediate stages 
of restriction. A single percentage randomly 
selected from a range is used for these parameters. 

Ranges defined by absolute values – The ranges of 
some input variables are defined by absolute 
values rather than percentage changes. They are: 
consecutive number of restriction months, worst 
restriction level, and factors A and B in modelling 
reservoir evaporation. A single randomly selected 
value from the range is used for each parameter. 

Multi-factored variables that sum to a certain 
value – Some data items (i.e. monthly temporal 
disaggregation factors (TDFs), TRC points, and 
climatic index variables (CLINX)), which add to a 
certain value need to be handled differently. They 
are handled through an algorithm which adjusts the 
individual factors, to approximately the same 
randomly selected percentage, so that their sum 
maintains the required property.  

4. DESIGN OF EXPERIMENTS 

The aim of this study was to apply three sensitivity 
analysis techniques, the Morris method, FAST, 
and Sobol’, to determine the importance of each 
variable on the estimation of yield and evaluate 
their appropriateness for use on a urban water 
supply simulation model. Firstly the Morris 
method was used as a screening technique on all 
28 variables with EFAST used to confirm the 
results. Several experiments of both techniques 
using different random seeds were performed to 
avoid any possible anomalies that could result 
from a particular sample selection. To ensure that 
the sensitivity indices have reached convergence, 
experiments of increasing number of simulations, 
or resolution, were performed. Holding the non-

Table 1. Description of the 28 Input Variables Used 
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 Morris Method – 30 Trajectories EFAST – 19956 Runs 

 µ µ* σ Ranked µ* Si STi Ranked Si

Streamflow time-series 6332 6332 930 1 0.6841 0.7135 1 

TDFs -427 460 280 10 0.0038 0.0073 10 

CLINX -748 748 271 6 0.0097 0.0217 6 

Rainfall time-series 806 806 230 5 0.0102 0.0210 5 

Evaporation time-series -639 651 250 9 0.0055 0.0157 9 

Evaporation Factor A Storage A -658 673 224 8 0.0074 0.0197 8 

Evaporation Factor A Storage B -736 736 177 7 0.0084 0.0214 7 

Evaporation Factor B Storage A -292 292 233 12 0.0016 0.0120 11 

Evaporation Factor B Storage B -312 312 242 11 0.0014 0.0129 12 

Volume to Surface area 179 179 187 14 0.0013 0.0201 13 

Consecutive  Restriction Months 877 877 1816 4 0.0219 0.0555 4 

Reliability  -4024 4024 1109 2 0.2418 0.2706 2 

Base RRC -195 213 250 13 0.0011 0.0053 14 

Upper RRC -1145 1145 627 3 0.0289 0.0357 3 

Percentage Restrictable 1 78 134 232 15 0.0003 0.0035 15 

 

influential variables at their nominal values/states, 
detailed FAST and Sobol’ experiments were then 
used to provide an accurate estimate of the 
importance of the remaining variables.  

5. RESULTS AND DISCUSSION 

5.1. Morris and FAST Screening 

Table 2 shows the highest 15 ranked results 
(considering the 28 variables listed in Table 1) in 
terms of the µ* and Si of the Morris Method and 
EFAST screening experiments, respectively. 
Typically the result of a Morris experiment is 
displayed on a µ – σ plane, but for convenience of 
comparison and space limitation they are presented 
in Table 2 in this paper. 

Strong similarity exists between the µ* and Si 
ranks with only some lower influential variables’ 
ranks differing. The quantitative values of µ* and 
Si cannot be directly compared as Si is the 
percentage of the i-th variable’s variance to the 
total variance, and µ* is a measure of an expected 
output change due to a unit change in the input. 
However, the rankings confirm that the Morris 
method is efficient in screening and ranking a large 
number of input variables. Also noticeable from 
both sets of indices is the presence of possible 
interactions or non-uniform behaviour. This is seen 
from the Morris sensitivity index, σ, and from the 
difference between EFAST Si and STi measures. 

5.2. FAST and Sobol’ 

Variables that displayed lower influence on the 
estimation of yield were eliminated and higher 
resolution FAST and Sobol’ experiments were 
performed on the 10 most significant variables. 
Results presented in Table 3 show the sensitivity 
indices at the maximum number of model 
simulations for each sensitivity technique 
performed. At this point the sensitivity indices had 
satisfactorily converged or, in the case of the 
Sobol’ experiment, the number of runs required in 
the next experiment was impracticable. 

The results of the FAST and Sobol’ sensitivity 
analyses indicate that the streamflow and 
reliability are the most important input variables in 
the estimation of yield, followed by the upper 
restriction curve, and the number of consecutive 
months in restriction. The remaining variables are 
relatively insignificant. The differences in results 
between the experiments are due to the difference 
between the techniques used, but all show 
reasonably similar results. 

Comparing the Si and STi can indicate possible two 
and higher factor interaction effects. However, by 
doing so errors within the Sobol’ indices were 
identified. For some variables (such as CLINX and 
rainfall) the total-order is less than the first-order 
index, which according to the definition of 
variance should not occur. This problem occurs 

Table 2. Comparison results for the Morris and FAST screening experiments. Experiments consisted of 28 
variables: the highest 15 variables are displayed. 
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when the analytical indices of variables are close 
to zero (Saltelli et al. 2004). To resolve this issue, 
experiments with greater number of model 
simulations, and accuracy, should be performed.  

Since only a few input variables were significant 
and dominated the variance of the output, further 
sensitivity analysis should be performed on all 
variables excluding the highly influential variables. 
This will allow a better understanding of the less 
influential variables and improve the overall 
knowledge of the model, its variables, and their 
behaviour. 

6. CONCLUSION 

The sensitivity analysis performed in this research 
indicates that the yield estimate of the hypothetical 
urban water supply system is most sensitive to 
streamflow, followed by reliability of supply. The 
upper restriction curve, and the number of 
consecutive restriction months also showed some 
influence on the output.  

The three sensitivity analysis techniques that were 
applied to this case study performed well. The 
screening experiment of the Morris method 
provided a good overall understanding of the 
importance of each variable in the model and was 
confirmed by the EFAST screening experiment. In 
the more detailed study of the most influential 
variables, FAST and EFAST provided the most 
reliable first- and total-order sensitivity measures 
estimates, the results of which converged within a 
relatively limited number of model simulations.  
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and Sobol’ experiments.  
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Rainfall 0.0123 0.0118 0.0178 0.0135 0.0120

Evaporation 0.0016 0.0016 0.0070 0.0018 0.0027

Evaporation factor 
A - Storage A 0.0076 0.0083 0.0165 0.0100 0.0097

Evaporation factor 
A - Storage B 0.0080 0.0079 0.0139 0.0102 0.0094

Consecutive  
Restriction Months 0.0213 0.0228 0.0560 0.0251 0.0477

Reliability 0.2397 0.2472 0.2780 0.2481 0.2673

Upper RRC 0.0309 0.0307 0.0414 0.0341 0.0355

TDFs 0.0042 0.0047 0.0113 0.0054 0.0068
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