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EXTENDED ABSTRACT

Soil erosion is a serious problem in New-Caledonia
mainly due to the cyclonic tropical weather, bush
fires and human activities (openpit mining). Runoff
on stripped soils causes degradations for anthropic
laying out on high ultramafic terranes and pollution
(mobilized soil particles) which modifies the
coastal region and degrades the coral reefs by
hypersedimentation processes. All the human
activities chain that depend on natural resources
regularly suffer the effects or the consequences
of these phenomena. Geologists and geographers
need to identify and rank erosion parameters and
define sensitivity maps, particularly for decision-
makers. For a peculiar region of new-caledonia,
eight identified factors such as relief parameters, land
use, geological substrate type and precipitations are
available and the area of interest has been already
studied and classified by experts from very sensitive
to very robust at soil erosion.
We propose in this paper to study classification
methods in order to set soil erosion sensitivity maps.
The first step consists in data mining work for
knowledge discovery. A systematic cartography of
actually stripped soils is used in this work as learning
data. We have highlighted that used methods for
data analysis are really suitable tools for experts
because results are in closed correlation with their
terrain observations when results are average for only
mathematical analysis. These methods need very
important exchanges between geologists/geographers
experts and computer scientists to identify the real
gain that knowledge discovery methods can produce.
Several supervised classification methods such the
bayesian classifier, decision trees are then used to
predict erosion hazard on the basis of knowledge
discovery results. Predicting results are described
and compared to a linear combination of the factors
based on expert knowledge (cf. Fig. 1). The output
models (the soil erosion sensitivity maps) are then
examined and commented from a geologic point of
view. Once more we identify an improvement in
the results, especially in the spatial repartition of
erosion sensitive areas which are more similar with
terrain observations than actuals experts predictive

models. With these statistical approaches we are
able to propose improved prediction tools for soil
erosion sensitivity and on the top of that experts
can access to attribute ranking and association
rules with a confidence indicator, thing for which
classical expert models give reliable results with
difficulty. Knowledge discovery and prediction model
construction constitute very interesting new methods
of analysis for many specialists as in environmental
and natural sciences as in fundamental or applied
research.

a) Supervised classification

(b) Expert approach

Figure 1. Comparison between the two approaches.
In very black: the potentially erodible surfaces
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1 INTRODUCTION

1.1 Soil erosion

The ”Grande Terre” of New Caledonia is a vast high
island where many areas are made up of deeply
weathered geological materials. Soils develop on this
interface and are therefore the first target of erosion
in a cyclonic regime of precipitations. Particularly,
the effect of runoff increases when degradations of
protective plant cover appear after bush fires or nickel
openpit mining, the two most common events on
the high terranes of this land. This disappearance
of plant cover causes all the more problems that
many endemic vegetables – this country is also a
hot spot of biodiversity – grow again very slowly
on specific soils, due to high levels of natural
phytotoxic elements like nickel, cobalt or manganese.
Runoff mobilized soils particles from high terranes
pass quickly through creeks and rivers, stay in the
cultural plain when inundations occur and stop their
way in the closed lagoon after just fewer 20 to 30
kilometers since soil removal. Then coral reef and
lagoon life is disrupt too by sporadic episodes of
hypersedimentation. All human activities chain that
depend on natural resources are regularly affected by
soil erosion and consequences of this phenomenon.
Experts are very often consulted about the relation-
ships between soil erosion and mining activities but
if few events are good examples of a direct relation,
many others cases of erosion are more difficult to
be interpreted and many others prove indisputably a
natural origin of erosion. These different ways of
erosion evolve at different timescale too and human
degradations very intensify erosive processes that
naturally occurs at geological scale. Erosion issues
in New Caledonia actually need fundamental studies
to understand how soil loss impacts environment and
landscape evolution and the very quickly development
of the country and conversely what is the part of
human responsibility in erosion phenomena.

Up to now, general experts knowledge and local
studies are available but no regional approach
have been designed. We present in this paper a
methodology that can be useful for processing the
potential soil erosion mapping at a regional scale.

1.2 Knowledge discovery and prediction for soil
erosion

Knowledge Discovery in Databases (KDD) is a
complex interactive and iterative process. Past studies
enlightened several Data Mining tasks. In our context,
we will focus on association rules mining task and
prediction model construction. Note that our model
does not take into account spatial dependance in data

but provides preliminary results using well-known
data mining and machine learning techniques.

2 DATA AND METHODS

2.1 Physic parameters

Experts have determined 8 physic parameters [6]
like erosion factors in New Caledonia: 4 relief
parameters, geological and vegetation factor, trails
and precipitations.
Relief parameters have been calculated with numeric
topographical map 1/10000 [2]. The first step
consists in processing pseudo-continuous spatial data
(Digital Elevation Model) that give regular values of
elevation. Slope, planform and profile curvatures
are then computed with morphometric formulas on
DEM for each location. Flow accumulation is
another parameter derived from DEM, calculated with
application of a 3x3 kernel to know how precipitations
are drained on the topographical surface.

Geological factor is based on lithology information
obtained from the geological map 1/50000 [8].
Vegetation data have been designed by aerial photo-
interpretation and remote sensing analysis ([2], [3]).

Finally, trails are made using the topographic map
1/10000 [2] and precipitations data are simulated by
Meteo France during the 1991-2000 period.

All of these raster data take place into a Geographical
Information System (GIS) in order to easily cross,
analyse and visualize the various information.

2.2 Field data

In order to proceed to the classification, we need
training data able to specify the repartition of breaked
out erosion phenomena.

At this time, only one type of data is available
and gives a real indicator of soil erosion for each
location of the study area The New Caledonia stake
holders have order an inventory of mining impact on
soil denudation in ultramafic terranes of the ”Grande
Terre” with satellite SPOT 5 data. These particular
rocks represent one of the biggest global nickel ore
reservoir. It covers around 1/3 of the island and is
being intensively mined. A process has been defined
([7], [10]) to extract an indicator of soil denudation
and a systematic aerial photo-interpretation proved
that results give a good indicator of erosion locations
for any origin of the phenomenon. This information
stands for a good erosion indicator which represents
reality of soil erosion in our area of interest.
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All data (physic parameters and field data) are
processed to appear as grids of 30 x 30 meters
homogeneous cells. Each cell can then be classified
as an object described by attributes.

2.3 Knowledge discovery

The different steps of our KDD-based methodology
for erosion data analysis are detailed in Figure 2. In
this subsection, we give further details on each step of
the process.

Figure 2. Knowledge discovery process

2.3.1 Pre-processing data

Raster data consist in 1659 × 1708 points. When
focusing on working data (removing data concerning
sea, clouds and missing values) and translating the
nine layers into table data, we obtain about 9.105

objects (lines) described by eight attributes (columns)
and a binary class (erosion/no-erosion). A brief
descriptive summary of data is given in Table 1. Data
are clearly unbalanced: there are about 870 thousand
points (∼ 97%) considered as not erodible and only
30 thousand erodible points (∼ 3%).

Attributes Range of values
precipitations [829; 3487]

Profile Curvature [−35.26; 8.179]
Planform curvature [−26.22; 20.088]

geology nominal (28 values)
DEM30 [5; 1604.99]

vegetation nominal (9 values)
slope [0; 349.137]
trails binary
class binary

Table 1. Erosion table data description.

2.3.2 Discretization

Erosion data contains both continuous and nominal
attributes. Relief parameters and precipitations
attributes are continuous and others (vegetation
and geological factors and trails attributes) are
nominal ones. While nominal attributes are trivially
translated into binary ones, numerical attributes are
first discretized with Fayyad & Irani entropy-based
method [4] then binarized.
To discretize a continuous attribute A, Fayyad & Irani
recursively choose the best cut point in range values
of A w.r.t. class entropy criterion (i.e. the one that
minimizes class entropy) until information gain goes
under a certain threshold (see [4] for more details).

Definition 1 (Entropy, class Entropy). For a table
data M , an attribute A and a cut point T in range
values of A, entropy function and class entropy are
defined as follows :

E(M) = −
∑j=nbc

j=1 P (j|M)× log2(P (j|M))
cE(A, T,M) = |M1|

|M | E(M1) + |M2|
|M | E(M2)

where P (j|M) is the proportion of objects of M
classified as j and nbc the number of classes.
Intuitively, entropy is minimal when all objects of M
are in the same class and is maximal when objects of
M are equi-partitioned in classes.

2.3.3 Attributes ranking

We are interested in confirming experts opinions about
following questions :

• Which ones of the attributes have an important
role in the erosion process ?

• Which one is the most relevant ?

As a preliminary task, attributes ranking w.r.t.
objective measures gives elements for answering. We
used Information Gain (IG), Gain Ratio (GR) as useful
objective measures for attributes utility.
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Definition 2 (Information gain). Information Gain
(IG) is an entropy-based objective measure for
attributes defined as follows :

IG(M, I) = E(M)−
n∑

k=1

(Pk × E(Mk))

whereM is the data matrix, I a k-values attribute, Pk

the proportion of objects of M satisfying kth value of
I andMk the submatrix of objects ofM satisfying kth

value of I .

Intuitively, higher values of IG(M, I) mean that
Mk is well partitioned into classes and I shall be
considered as an interesting attribute.
GR is based on IG. GR is weighted by Split
Information function that gives more importance to
attributes with less different values (see [9] for more
details).

2.3.4 Association rules mining.

From a binary database, we can mine frequent
patterns to discover trends in databases. We can also
mine frequent associations between different sets of
attributes of a database. In this paper, we are interested
in frequent associations between a set of attributes and
a class label. This will help us to answer questions
such as:

• What are the most significant features of an
erodible area ?

• Are there typical erodible/non-erodible areas ?

Definition 3 (Association rule). An association rule
π is an implication of the form X ⇒ Y where X
(condition) and Y (consequence) are different sets of
attributes. When Y is a class attribute, π is a class
association rule.

The set of extracted association rules could be huge
and among them, a few are interesting. Association
rules interest can be estimated with two measures :
Support (the frequency in data) and confidence
(frequency of π over frequency of X in data).
Intuitively, π : X ⇒ c with support 10% means that
10% of objects match the rule, and with a confidence
0.7 indicates that whenX is verified, c is verified with
confidence degree 0.7 (at most 30% of violations of
the rule). Since [1], given support and confidence
thresholds, extraction of such rules can be managed
efficiently with A-PRIORI algorithm.

2.4 Prediction model construction

Given a labeled training database M , the goal in
prediction task is to build a classifier that classify well

novel unseen objects. In this paper, we focus on two
well-known methods : (1) Naı̈ve Bayes classification
rule (NB [5]), (2) C4.5 decision tree [9]. Prediction
task will help expert to build new maps for study and
will allow them to compare learning model to their
own expert model.

Naı̈ve Bayes classifier. NB classification rule is
defined as follows :

CBayes(t) = argmax
j=1,...,nbc

∏
i=1,...,m

P̂ (ti | j)× P̂ (j)

where t = {t1, . . . , tm} is an unseen object, nbc is the
number of classes, m the number of attributes. P̂ (j)
is the proportion of objects of class j inM . Assuming
independence of attributes, P̂ (ti | j), the proportion
of objects of class j having ti value for ith attribute, is
an estimation of probability P (ti | j).

Decision tree. Decision tree is made of leaves and
nodes. A leaf indicates a class label and a node
(test node) is a fork with a threshold applied to an
attribute value that defines the two possible branches.
To classify an unseen object, one starts from the root
and moves down (with respect to the test nodes) until
reaching a leaf. The class label of the leaf is the
prediction.

Decision tree construction process is recursive: at
each step the most class-discriminant attribute A is
chosen with respect to a certain measure (GR for
C4.5), then data is split with respect to the values
of A into as many groups as values of A. Next and
recursively, for each group, a new relevant attribute
is chosen to further separation until a certain stop
condition is reached (depending on algorithms and
options).

3 EXPERIMENTS

We used WEKA platform [11] to perform our
experiments. Erosion database is made of a set of
numerous data (∼ 9.105 described by 8 attributes).
When all attributes binarized, we obtain about 139
binary attributes. The attributes ranking are performed
on the whole database and the results can be seen in
Table 2 (original group). It emerges that attributes
vegetation, slope and geology are more important with
respect to both IG and GR measure.

But some data mining tasks (such as association
rules mining) become hard on such a database.
Let Dn be the set of objects of the major class
(non-erodible) and De the set of objects of minor
class (erodible). D = Dn ∪ De. We know that D
is huge and unbalanced (Dn � De. To face up
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vegetation (0.05995) vegetation (0.03129)
slope (0.03705) trails (0.02821)
geology (0.03506) geology (0.02227)
DEM30 (0.02617) slope (0.01286)
rainfall (0.0158) DEM30 (< 0.01)
Profile curvature (< 0.01) rainfall (< 0.01)
trails (< 0.01) Planform curvature (< 0.01)
Planform curvature (< 0.01) Profile curvature (< 0.01)

w
ith

sl
op

e
>

15
vegetation (0.039883) trails (0.02922)
geology (0.01641) vegetation (0.02131)
rainfall (0.00859) geology (0.01116)
slope (0.00829) slope (0.00317)
trails (0.00707) rainfall (0.00299)
DEM30 (0.00402) DEM30 (< 0.001)
Profile curvature (< 0.001) Planform curvature (< 0.001)
Planform curvature (< 0.001) Profile curvature (< 0.001)

Table 2. Attributes ranking results.

to the database size, we built 10 smaller databases
Di, i = {1, 2, . . . , 10} such that Di = Dn,i ∪ De.
Now, |Di| ' 60000 and data mining tasks can
be efficiently performed. Class association rules
extraction are then processed on each Di (in Table 3
where only non-redundant rules appearing in ten
extractions are reported with average confidence). It
shows an unexpected association : π : slope[0; 7]⇒ e
which is not intuitive.

X ⇒ e(rodible) X ⇒ n(on erodible)
veg = 14⇒ e(0.97) veg = 1⇒ n(0.85)
geol = 20⇒ e(0.96) veg = 2⇒ n(0.77)
slope[0; 7]⇒ e(0.96) geol = 19⇒ n(0.69)

. . . . . .

Table 3. Frequent (10%) and confident (0.5) class
association rules. The term veg denotes vegetation
and geol denotes geology

Many points of learning data have very gentle slopes,
due to remote sensing method which do not make
valley floors different from stripped grounds, because
objective was to consider all erosion phenomena
(removal, transport and deposit). The main attribute
values which characterize X ⇒ e in our first
experiments are controlled by valley floors in this
landscape: any vegetation (vegetation = 14),
alluvial areas (geology = 20) and very gentle
slopes. In this paper, we essentially focus on potential
removal occurrences.

In a second phase, only objects with slopes > 15 are
considered. Attributes ranking results are reported
in Table 2 (group slope > 15). In this case,
main parameters in X ⇒ e change (see Table 4).
If lack of vegetation still first characterize erodible

areas, the two others are different: slope seems
not be as important as in first experiments and
alluvial areas turn into laterites (geology = 2) even
if geology remains as the second main parameter.
The third main attribute value becomes presence of
trails (trails = 1). It has to be noted that if
slopes values have an important impact on erodible
characterization (slope < 15 or > 15 for X ⇒ e),
there is any change for X ⇒ n (non erodible areas):
presence of vegetation (dense forest = 1, maquis
forest =1) is the most important parameter to prevent
erosion, especially in the case of harzburgites outcrop
(geology = 19).

X ⇒ e(rodible) X ⇒ n(onerodible)
veg = 14⇒ e(0.97) veg = 1⇒ n(0.86)
geol = 2⇒ e(0.73) veg = 2⇒ n(0.76)
trails = 1⇒ e(0.86) geol = 19⇒ n(0.67)

. . . . . .

Table 4. Frequent (10%) and confident (0.5) class
association rules.

For prediction task, we used 10 folds cross-validation
on each Di and reported average estimated accuracy
overDi and per class average accuracies (see Table 5).
The no-erodible class is particularly sensitive. For
example, an estimated error of 18.89% for the class
means that 151120 erodible pixels (18.89% of 800000
pixels) are misclassified.

4 COMPARISON WITH AN EXPERT AP-
PROACH

The expert model used to compare results of
classification methods is recent model proposed for
neo-caledonian ultramafic terranes. It is based on
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NB Real no-erodible Real erodible All
Predicted no-erodible 81.11% 18.89% 83.49Predicted erodible 14.14% 85.86%

C4.5 Real no-erodible Real erodible All
Predicted no-erodible 84.91% 15.09% 86.44Predicted erodible 12.05% 87.95%

Table 5. Confusion matrix for NB and C4.5 classifiers.

expert segmentation for each parameter which is
considered as relevant for erosion occurrence by
geographers, geologists and hydrologists. Parameters
ranking comes from knowledge of this experts. Physic
attributes are weighted in relation with their ranking: 1
for the main parameters (slope and rainfall), 1/2 (flow
accumulation, geology, vegetation), 1/5 (profile and
horizontal curvatures) or 1/10 (trails) [6].

Classification methods used in this frame can predict
potential erosion and provide erosion hazard results.
First, they identify physical configurations for erosion
occurrences (and non erosion too) and then highlight
this sites into the entire region. So resulting models
contain more points in erodible class than the learning
data which only give effective erosion, not potential
erosion sites.

NB Expert ne Expert e All
classif ne 86.72% 70.18% 77.59classif e 13.28% 29.82%

Table 6. Confusion matrix for the
Classification approach versus the
Expert approach. The term e (resp. ne)
denotes erodible (resp. non erodible)

From the comparative assessment (Table 6) between
classification methods and expert model, it emerges
that it exists a poor overlapping for the erodible class
(30% of common surface).

We may logically announce that we are very
disappointed by this results. Yet many signs let
us suppose that classification methods can be used
for erosion prediction. Attribute ranking and main
association rules show that vegetation always control
occurrence or lack of erosion (only 1/2 for expert
model) whereas slope > 15 (1 for experts) appears
just at the 4th rank (IG and GR) and do not
comes up as a main attribute in the association
rules. Moreover, when the precipitations factor is
weighted 1 by the experts, the classifiers moderate
its position (3th). Finally, the geology attribute is
ranked to a similar place by the expert approach
and the classification methods and their values
highlighted by association rules correspond to the
ground measurements. Similarly, the same kind of

relationship for curvatures can be deduced, even if it
is considered for both methods as a lesser important
attribute.

The case of trails is also interesting. The main
association of factor for erodible surfaces appears
to be the stripped ground / laterite / trail which
is perfectly known by terrain workers as the critic
configuration for erosion occurrence. So despite
the fact that the trail by itself does not emerge
as a important factor, it appears in a association
well identified. Conversely, the association rules for
non erodible surface: unweathered hard rocks under
dense or maquis forest never eroded, seems also very
pertinent.

In order to understand the spatial repartition of success
and failures, four types of surfaces have been studied:
(a) points are classified as erodible for all methods, (b)
points are estimated as non erodible for all methods,
(c) points are considered as erodible for classifications
but not for the expert model, (d) points are considered
as erodible for expert model but not for classifications
(see Figure 3). This spatial analysis allows to give
some hints about the observed differences: results
(a) mainly correspond to known eroded points, (c)
points are mostly isolated while (d) points lie in
homogeneous areas.

(a) Supervised classification (b) Expert approach

Figure 3. Comparison between the two approaches.
In very black: the potentially erodible surfaces

5 CONCLUSION AND FUTURE WORK

These work present new opportunities for experts to
improve their knowledge of erosion occurrence by
non cognitive methods. Indeed, the apparent poor
global results not illustrate the benefits that experts
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can gain from the classification methods. We have
seen how association rules results are pertinent and
cartographic representation of comparison results can
suggest over/underestimations of parameters in the
expert model. Many points of comparison allow
us to think that using classification methods for
erosion prediction is an interesting way to contribute
to the improvement of our knowledge on erosion
phenomenon in specific land, particularly when only
general knowledge exists for understanding erosive
processes.

This first prospective results would help experts to
adjust their erosion hazard model (weighting and
decision rules) to subsequently propose optimized risk
maps for decision-makers.

As future work, we plan to investigate spatial
dependence in erosion data and build new models
with spatial data mining techniques. Another way for
future work is to mixe statical approach and expert
approach in order to converge toward a more robust
model..
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