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EXTENDED ABSTRACT 

The role of performance indicators is to give an 
accurate indication of the fit between a model and 
the system being modelled. This is done through 
comparison with observations from a particular 
viewpoint. Ideally, the performance indicator(s) 
employed should reflect the purpose of the 
modelling exercise (i.e. indicate how well a model 
answers the specific question being asked of it). 
Consequently a standard performance indicator 
may not always be the correct choice; for example, 
a study investigating low flows should not 
necessarily employ the same performance 
indicator as one investigating flood events. 

All measurements have an associated uncertainty 
which determines the significance that should be 
given to the measurement. Therefore, by 
definition, performance indicators should take into 
account errors in the observed quantities being 
modelled as well as in the model predictions (due 
to errors in inputs, model parameters and model 
structure). Failure to adequately account for 
variations in the errors in the observed and 
modelled quantities means that the objective 
function is only giving a measure of how well the 
modelled values represent the observed values, not 
how well the model is representing the system 
being modelled (unless the uncertainties in the 
observed and modelled values are sufficiently 
small). 

Commonly-used objective functions comparing 
observed and modelled flows (e.g. the Nash-
Sutcliffe efficiency - NSE) do not explicitly take 
into account the uncertainties in the model input, 
or in the recorded flows. Rather, the uncertainty is 
often assumed to be homoscedastic (i.e. constant 
irrespective of magnitude). As a result high flow 
events, which are often the most uncertain, are 
given too much weight. There have been several 
attempts to overcome this limitation, from not 
using the highest n% of observed flows, to 
transforming the flow prior to calculating the NSE. 
Transforming the flow still assumes a particular 
distribution of uncertainties (for example, when 

using the logarithm of flows, the uncertainties are 
assumed to be a constant multiple of the flow). 
While this is better than the linear form of the 
NSE, the relative uncertainties in the high flow 
values are likely to be underestimated (e.g. when 
the rating curve is a power law, the log 
transformed NSE assumes negligible uncertainty 
in the power). 

This paper addresses how objective functions can 
be modified to include the influence of uncertainty 
in model inputs and outputs.  This includes 
discussion of the propagation of errors through 
functions (including the influence of thresholds) 
and the combination of errors from different 
inputs.  

Modifications to commonly used objective 
functions (RMSE, NSE, χ2, r2) are presented using 
both the ratio and optimal weighted average 
approaches. It is recommended that the optimal 
weighted average approach is used for most 
applications, with the advantage of both ensuring 
that the uncertainties are homoscedastic as well as 
producing the optimal signal-to-noise in the 
resulting objective function.. The exception is for 
situations where the magnitude of the uncertainty 
is important; in which case the normalisation 
employed in the optimal weighted average 
approach should not be used. 

How the uncertainties in streamflow data can be 
handled is also discussed, using a power law 
formulation for the rating curve. While the power 
law form is used as an example, the technique 
discussed is applicable for any form employed, 
though care needs to be taken regarding any 
thresholds introduced. 

Finally, an example of the technique is presented 
using synthetic streamflow data with induced 
uncertainty in the parameters of the rating curve, 
showing that the modified NSE giving reduced 
uncertainty in the parameter values of the 
IHACRES non-linear module. Further work is 
underway to include the effect of propagation of 
uncertainty in the rainfall through the model. 

2541

mailto:barry.croke@anu.edu.au


1. INTRODUCTION 

Most goodness-of-fit indicators do not take into 
account variations in the errors (i.e. they assume 
that the errors are homoscedastic). If the 
uncertainties in the inputs (including flow) are not 
adequately represented in the objective function/s, 
then the evaluation of the model’s performance 
may be biased, resulting in sub-optimal parameter 
sets (tracking the uncertainties in the data rather 
than the catchment response), and increased 
uncertainty in any model parameter regionalisation 
scheme for assisting with estimating flows in 
ungauged basins. This strongly suggests that all 
datasets need to include a realistic estimate of their 
uncertainty, and that this uncertainty needs to be 
taken into account when designing an objective 
function. This is particularly the case for stream 
gauges that do not have good control structures – a 
common problem in parts of Australia as well as in 
developing countries. 

The uncertainties in the inputs can be included into 
objective functions either analytically (by 
modifying the functional form of the objective 
function) or stochastically. For linear systems, 
only the standard deviation is required for 
analytical approaches. For non-linear systems, or 
when there are thresholds included in the model, 
both analytical and stochastic approaches require 
the information on the distributions of the 
uncertainties. 

The generally accepted standard objective function 
in hydrology is the Nash-Sutcliffe efficiency (NSE 
- Nash and Sutcliffe, 1970) and is referred to in the 
literature in a number of ways, including NSE, E, 
R2 and D. Following the convention used by Nash 
and Sutcliffe, the NSE will be referred to as R2

NS. 
with the NS subscript added for clarity. 

While R2
NS is a widely accepted performance 

indicator in hydrology, it assumes that the 
uncertainties are homoscedastic – i.e. that the 
magnitude of the uncertainties is independent of 
the quantity being measured. Thus it does not take 
into account errors in the observed or modelled 
flows which are highly heteroscedastic. This is a 
major limitation as R2

NS is dominated by the 
mismatch between observed and modelled values 
at high flows, even though these have the highest 
uncertainty due primarily to uncertainty in the 
rating curve. Chiew and Siriwardena (2005) opted 
to ignore the highest five flow values in calculating 
their objective functions in order to minimise the 
impact of the errors in the extreme high flows. 

One way to address this issue is through Monte 
Carlo techniques, and while this is a simple 

approach to the problem, there is a significant 
increase in the run-time. Another option is to 
modify an objective function through either 
transforming the data (e.g. using the logarithm) or 
through introduction of weights so that the 
heteroscedasticity of the uncertainties is reduced. 
Lichty et al. (1968) used the logarithm of the 
observed and modelled flow peaks in calculating 
the objective function. The latest version of the 
IHACRES rainfall-runoff modelling software 
(Croke et al., 2006) allows a range of 
transformations to aid in calibration and testing of 
the model. However, it should be remembered that 
such transformations are ad hoc and are based on 
assumptions of the nature of the heteroscedasticity 
rather than from an analysis of the errors (e.g. a log 
transformation assumes that the uncertainties are 
approximately constant in a multiplicative sense.  

Objective functions can be further modified for 
specific purposes by introducing a significance for 
each time step.  For example, for flood studies, 
higher significance might be placed on high flow 
events, whereas studies focusing on baseflows may 
need to put increased significance on the low 
flows. The introduction of a significance term in 
the weights is subjective, and will not be explored 
further in this paper. 

Flow measurements are based on rating curves to 
convert stage height (h) into discharge rate (Q), 
typically using a power law form: 

( )ohhaQ −= b     (1) 

which has 3 parameters a, b and ho. A rating curve 
often comprises segments, each of the form shown 
in equation 1, due primarily to the complex nature 
of the cross section. The log transformation 
assumes that the b and ho parameters do not 
contribute significantly to the uncertainty and as a 
result, the uncertainties at very high and very low 
flows are underestimated. 

A comparison of the performance of different 
models using objective functions is especially 
difficult due to the difference in the number of 
parameters, and data used. In terms of the number 
of parameters, one approach is to scale the 
objective function by the degrees of freedom; for 
example, (n-1)/(n-p-1), where n is the sample size, 
and p is the number of parameters. Care should be 
taken regarding the value of n. The naïve approach 
would be to use the number of time steps. 
However, this doesn’t take into consideration the 
amount of information contained in the time series. 
For a catchment with relatively few rainfall events 
in a given period, the information contained within 
the time series will be less than that for a 
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catchment with more frequent rainfall events. Thus 
n should reflect more the number of events (ne) 
than the number of time steps (nt). A better 
estimate for n would logically be αne, where α is 
an estimate of the amount of information the 
typical event will provide. 

Another naïve view is that models which utilise 
additional datasets are expected to perform better 
than models that use minimal data. This is true 
providing that the information contained in the 
additional datasets is significantly larger than the 
uncertainty that is added. It is important to 
consider the information-to-noise ratio when 
evaluating the advantages of using additional 
datasets. For example, Andréassian et al. (2007) 
presented results of a study of the effectiveness of 
subdividing a catchment and running their model 
on each part separately, concluding that the 
additional information on the spatial distribution of 
rainfall had negligible impact on the model’s 
performance (information-to-noise ratio was 
approximately 1).  

Aside from time series based forms, performance 
indicators can also be based on transformations of 
the observed and modelled values. Examples of 
these include cumulative probability distributions 
(flow duration curves used in hydrology), cross 
correlation functions and power spectra (e.g. 
Croke, 2005). Such performance indicators have 
the same problems discussed above for the 
untransformed series, but can yield information 
useful in assessing the performance of a model, or 
in comparing the performance of two or more 
models. These transformations can also be useful 
in developing graphical performance indicators. 

An alternative may be to adopt a wavelet 
approach, where the fit to the data is measured for 
a range of scales across all available time periods, 
for example, the DYNIA approach of Wagener et 
al. (2003). This produces a 2-D image 
representation of the model performance, thus 
giving the user much more information at the cost 
of potentially making comparisons between 
models more difficult. In all cases, objective 
functions should take into account the errors in the 
quantities being compared. 

This paper will investigate the use of weights in 
modifying a range of objective functions. The 
following definitions will be used: 

• observed value at timestep i: xo,i 
• modelled value at timestep i: xm,i 
• model residual at timestep i: ei = xo,i - xm,i 
• observed deviation from mean: 

oioo,i xxd −= ,  

• modelled deviation from mean: 
mimm,i xxd −= ,  

2. THEORY 

Typically, an objective function gives an 
aggregated measure of how well a model matches 
the data. The objective function may produce a 
single value (e.g. Nash-Sutcliffe efficiency (NSE), 
root mean square error (RMSE), Chi-squared) or 
can be constructed to give a measure of how the fit 
changes through the data set (e.g. Lane, 2007). 
Typically, objective functions assume that the 
uncertainties are homoscedastic; that is, the 
uncertainties are independent of the value. As 
discussed above, this is rarely the case.  

While the uncertainty in a calculated value 
depends on the uncertainty in all the values used in 
the calculation, only the uncertainties that are 
significant contributors need to be quantified. 
Consequently, the first step is to provide an order 
of magnitude estimate of the various uncertainties. 
The formula used is then studied to determine 
which of the inputs will significantly contribute to 
the uncertainty in the calculated value. The 
uncertainties of these quantities then need to be 
more accurately estimated. 

If a calculation is likely to be significantly 
dependent on the estimated uncertainty of the 
inputs (e.g. SIMEX, Sharma and Shahadat, 2007), 
then the influence of the probable range of 
uncertainties needs to be considered. If this 
significantly affects the result, then this needs to be 
considered. While consideration of the uncertainty 
in the uncertainty may be regarded as frivolous, if 
it significantly affects the result, it needs to be 
considered (though not necessarily calculated). 

2.1. Error propagation 

Generally, the propagation of an uncertainty 
through a function is considered only at the first 
derivative – that is, the response is assumed to be 
linear over the interval of interest. The Taylor 
series expansion of y=f(x) about the mean of x is: 

(
( )

)

( )
( )∑ −

+=
n x

n n
xx

dx
fdxfy

!

nn
  (2) 

The number of terms needed to reproduce the 
function f will depend on the degree of non-
linearity, the accuracy needed in the expansion and 
the range of x values over which the expansion is 
required to meet that accuracy. Considering an 
ensemble of N measurements of x and considering 
only the first derivative gives: 
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However, if f(x) is non-linear over the range Δx 
then we may need to either consider higher order 
terms, or use an effective gradient over the region 
of interest (e.g. fitting a line to the function over 
the interval x+Δx). Considering the second 
derivative, the mean value of y will not be given 
by ( )xf , rather the mean will be given by: 

( ) 2
2

2

2
1

x
xdx

fd
xfy σ+≈    (4) 

assuming N is sufficiently large. Consequently, the 
variance of y will be given by: 
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Figure 1. Monte Carlo estimation of the mean, 
standard deviation and 95% confidence bounds for 

y=x2 when the uncertainty in x is a uniform 
distribution with width 1 (n=8000 for each point). 

The linear case (equation 3) applies for any 
distribution and any definition of the uncertainty 
(e.g. 1σ, 95% confidence). However, introducing 
the second derivative term in the Taylor expansion 
introduces higher moments (3rd and 4th moment 
about the mean), thus requiring information 
regarding the distribution of the uncertainties (e.g. 
uniform, normal, logarithmic, etc). Whether the 

higher order terms are needed depends on both the 
degree of non-linearity of the function f and the 
magnitude of the uncertainty in x (see Figure 1). 

The presence of a threshold inside the uncertainty 
bounds will require separate treatment of each side 
of the threshold, with the results then combined to 
give the final distribution. This is the case where 
the relationship at the threshold is continuous or 
discontinuous as the Taylor series expansion will 
not be valid on both sides of the threshold. The 
existence of thresholds may mean that a Monte 
Carlo approach is the only viable option (see 
Figure 2). 
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Figure 2. Monte Carlo estimation of the mean, 
standard deviation and 95% confidence bounds for 

y=|x| when the uncertainty in x is a uniform 
distribution with width 1 (n=8000 for each point). 

2.2. Combination of errors 

Let z be the sum of x and y. The variance of z is: 

222 2 yxyxz σσσσ ++=    (6) 

where σxy is the covariance of x and y. The 
uncertainty in z is then given by: 
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where ζΔxΔy is the covariance of the uncertainties 
(not the actual values of x and y). When multiple 
measures of x and y are not available, an estimate 
of ζΔxΔy is needed based on an understanding of the 
measurements made (e.g. two independent 
observations of the same quantity are likely to 
have a covariance of 0, even though the covariance 
of the observations will be close to 1). 
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3. MODIFIED FORM OF OBJECTIVE 
FUNCTIONS 

As has been stated, objective functions need to 
inform how well the model is fitting the system 
being modelled. In the presence of heteroscedastic 
uncertainties, an objective function must either 
account for the heteroscedasticity, or the values 
used in the objective function must be transformed 
so that the uncertainties are homoscedastic. Two 
approaches will be considered here. 

3.1. Ratio method 

This method of modifying the objective function is 
based on scaling the model residuals by the 
uncertainty in the residual ei. This means that the 
uncertainty in the scaled residual is constant 
(homoscedastic) provided that the estimated 
uncertainty reasonably accounts for the actual 
variation in uncertainty. If the magnitude of the 
estimated uncertainty is sufficiently correct, then 
the uncertainty in the scaled residual is 

approximately 1. While it is not necessary that the 
magnitude of the uncertainty be correctly 
estimated in order for the scaled residuals to be 
homoscedastic, for comparison between models 
and/or sites, a consistent estimate of the 
uncertainty is needed. 

3.2. Optimal weighting method 

An alternative to the ratio method is to adopt 
optimal weighting in order to obtain the best 
signal-to-noise ratio in the objective function. 

The optimal weighting of the average a of 2 values 
b and c with uncertainties Δb and Δc is given by: 

cb

cb cba
ωω

ω
+
ω+

= , 

( ) ( )22 c
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b
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Δ

=
Δ

= ωω ,   (8) 

 

Table 1. Modified versions of RMSE, NSE, χ2 and Coefficient of determination 
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For objective functions that use the sum of square 
residual (e.g. RMSE, NSE), this differs from the 
ratio method only through the introduction of the 
normalisation term (ωb + ωc - see Table 1). The 
advantage of the normalisation term is that the 
mean value of the objective function is not affected 
by the introduction of the weights. The 
disadvantage is that the resulting objective 
function is sensitive only to the variability in the 
errors, and not the mean error over the entire data 
period (if weights are equal, then equation 8 
reduces to a standard mean). 

The result is that the optimal weighting approach 
gives a modified objective function that is 
insensitive to the scale of the weighting factors. 
Thus, only the variation through the data series is 
needed. Thus the optimal weighting approach only 
requires an estimate of the relative uncertainty. 
Consequently the optimal weighting approach is 
easier to implement, but cannot be used to 
discriminate between different models. 

Objective functions that use absolute values (e.g. 
Legates and McCabe, 1999), need special care (see 
Figure 2). Which approach is better (i.e. ratio or 
optimal weighting) will vary according to what the 
objective function is attempting to measure, but 
generally, the optimal weighting method is 
preferred. 

4. UNCERTAINTY IN STREAMFLOW 

Care must be taken when evaluating the 
uncertainty in recorded streamflow values. 
estimation of streamflow is often based on 
measurement of stage height and a rating curve 
relating stage height with discharge. Assuming a 
power law form for the rating curve: 

( oio hhaQ −=, )b     (9) 

Ignoring higher order terms, the uncertainty in the 
observed flow is given by: 
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assuming that the uncertainties in a, b, h, and ho 
are independent (there are likely to be significant 
covariances between a, b, and ho). If the 
uncertainty in the rating curve is sufficiently large 
(often the case), then most of the information 
contained in the shape of the stage height data is 
masked by the uncertainty in the rating curve. This 

can be overcome by considering the ratio between 
observed flows at timesteps i and j: 
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Assuming that the true values of the parameters a, 
b, and ho do not vary significantly between 
timesteps i and j, the uncertainty in the ratio ro,ij is: 
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If the hj ~ hi, then Ro,i=1, and the first two terms in 
equation 12 can be ignored and the uncertainty in 
the ratio depends only on the uncertainty in the 
stage heights for the two timesteps. For high 
values of ro,ij, the uncertainties in b and h0 become 
important, but the uncertainty in a does not 
contribute (compare with the log-transformed 
NSE, which assumes that all the error is in the a). 

5. APPLICATION 

To test the use of the optimal weighting average 
approach, a Monte Carlo trial of the influence of 
heteroscedatic uncertainty in synthetic flows has 
been carried out using the IHACRES rainfall-
runoff model (Croke et al. 2006), using rainfall 
timeseries for the Murrindindi River catchment, 
located in northern Victoria, Australia. The 
“observed” streamflow was generated using the 
non-linear parameter values: c=100; τw = 2; f = 0; 
l=0 and p=1, and linear module parameter values: 
τq = 1.2; τs = 60; vs=0.3. Uncertainty was 
introduced into the “observed” flows using a 
uniform distribution scaled by a separate preset 
magnitude of uncertainty for each timestep. In 
order to minimise the effect of uncertainty in the 
parameter values, all model parameters were fixed 
at the values used to derive the original flow time 
series, except for c and τw.  

Table 2 shows that the modified NSE gave a much 
smaller standard deviation between the 100 trials 
for both parameters being tested. Furthermore, the 
extreme values were much closer to the nominal 
values for the modified NSE. 
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Table 2. Calibrated parameter values for c and τw 
using the standard NSE objective function, and the 

modified NSE (using the optimal weighted 
average method). 

 Standard NSE Modified NSE 
 τw c τw c 
mean 2.03 102.7 2.04 101.6 
stdev 0.36 12.8 0.11 3.83 
max 2.79 129.5 2.31 112.7 
min 1.58 79.9 1.81 93.3 

Further work is needed in order to propagate the 
uncertainty in climate data (particularly rainfall) 
through the model to obtain an estimate of the 
uncertainty in the modelled flow. This must also 
include the influence of uncertainty in parameter 
values.  It should be noted that during calibration, 
some model parameters may not have any 
uncertainty. This is the case for the non-linear 
module parameters in the IHACRES modelling 
methodology. The non-linear module parameters 
do however have uncertainty during simulation. 

6. CONCLUSION 

Indicators of model performance must take into 
account the uncertainties in the quantities being 
compared in order to give an accurate appraisal of 
the model’s ability to represent the behaviour of 
the system. Most, if not all, objective functions 
used either assume homoscedastic uncertainties or 
make some assumption about the 
heteroscedasticity in the uncertainties. The nature 
of data available for rainfall-runoff models means 
that, generally, these assumptions do not hold, and 
as a result, the objective functions are poor 
measures of a model’s performance. The 
suggestion made here is that the objective 
functions be modified to explicitly include 
estimates of the uncertainty, preferably using the 
optimal weighted average approach. 
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