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EXTENDED ABSTRACT 

The problem of estimating runoff in ungauged 
catchments remains an important but elusive one. 
Previous studies suggest that there is an important 
property common to rainfall-runoff models: over-
parameterisation, leading to parameter covariance 
and the existence of multiple parameter sets which 
reproduce the streamflow adequately. This reduces 
parameter identifiability, impeding identification 
of relationships between model parameter values 
and catchment characteristics that would otherwise 
be useful for regionalisation. This study continues 
the development of a model averaging framework 
to circumvent this problem for application in 
Australia.  

The model averaging framework is based on a 
selection of gauged catchments which fall within 
some threshold of “similarity” to a target ungauged 
catchment. A number of streamflow predictions 
are generated, using forcing data for the ungauged 
catchment and the parameter sets from the 
“similar” gauged catchments. These streamflow 
predictions are then combined, via a weighting 
based both on each catchment’s physical similarity 
to the target ungauged catchment, and on each 
catchment’s calibration quality. This combination 
is the predicted streamflow time series for the 
ungauged catchment.  

The aim of this study is to inform development of 
multiple-attribute similarity measures. A number 
of catchment attributes are collected, which are 
considered by the hydrological community to be 
important in catchment-scale rainfall-runoff 
processes. The 29 attributes fall into four broad 
groups: Geomorphic; Soil; Climatic; and 
Vegetation. The results of model averaging 
experiments are examined, using each of the 
attributes individually as indicators of catchment 
similarity. Ungauged prediction results are 
presented here in terms of the Nash-Sutcliffe 

Efficiency (E). The correlation matrix between 
each of the attributes is used to reduce the list of 
catchment attributes as far as possible from the 
original 29. The purpose of this is to attempt to 
remove a double-dipping effect in the more 
complex similarity measures. For example, the use 
of mean winter precipitation in addition to mean 
annual precipitation, usually strongly correlated, 
would not add much useful information, and if 
anything would ‘smear’ the results and make them 
difficult to interpret. Strongly correlated attributes 
are eliminated from the study based on the E value 
they return in the model averaging runs.  

The study is carried out using the conceptual daily 
rainfall-runoff model SimHyd, calibrated to a 
selection of 95 catchments across Australia. 

A very small deterioration is seen when increasing 
the number of contributing catchments; however it 
is minor and does not affect the conclusions. 

Regional effects are also discussed: when using 
catchments from the whole of Australia, 12 
attributes returned median E values greater than 
the 0.42 for random catchment selection 
(considered uninformative and the basis for 
comparison). In the Köppen Climate Type Cfa 
region 27 attributes exceeded the random value of 
0.46, and in the Type Cfb region 23 attributes 
exceeded the random value of 0.31. These 
differences justify the development of separate 
similarity measures for the three regions.  

Deterioration from calibration remains significant 
for each attribute, however, based on the results of 
previous studies (Reichl et al. 2006, McIntyre et 
al. 2005) it is expected that when used to develop 
multiple-attribute similarity metrics the model 
averaging method will be able to provide good 
estimates of ungauged streamflow. 
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1. INTRODUCTION 

The ability to estimate streamflow time series in 
ungauged catchments is important to natural 
resource management, but has to date been elusive. 
Attempts at applying ‘regional’ information to 
infer ungauged hydrological behaviour have met 
with little success. Recent focus has been on 
finding correlations between conceptual rainfall-
runoff model parameters and catchment physical 
characteristics, be they measured or estimated 
(Chiew and Siriwardena, 2005; Merz and Bloschl, 
2004). This approach (referred to as ‘parameter 
regression’) has been thwarted, largely due to the 
many sources of error and uncertainty in the 
modelling of complex natural systems, and the 
implications of this for estimation of meaningful 
parameter values. Errors typically arise from input 
data, model structure, parameter choice and 
observed output data. Together these uncertainties 
combine to hamper attempts at predicting 
ungauged streamflow. 

This paper continues the development of a model 
averaging approach to the problem. Rather than 
searching for a single relationship between optimal 
parameter values and catchment physical 
characteristics, the model averaging approach 
relates gauged catchments to ungauged based on 
measures of physical similarity (McIntyre et al., 
2005; Reichl et al., 2006). This paper investigates 
the usefulness of catchment attributes in assessing 
catchment similarity within the model averaging 
context. The implication of the selection is that 
these attributes can be considered important in 
controlling catchment-scale rainfall-runoff 
processes. The study is designed to inform the next 
stage of the development of the model averaging 
framework, namely the development of multiple-
attribute spaces, enabling reliable assessment of 
catchment similarity to be used within this 
framework. 

2. UNGAUGED STREAMFLOW 
PREDICTION 

Various approaches have been used to predict 
hydrological behaviour in ungauged catchments.  
Most are based on the idea of common physical 
properties.  Merz and Bloschl (2004) conducted a 
thorough study of 308 catchments in Austria, 
comparing 8 regionalisation techniques, including 
the use of parameter sets from the closest upstream 
and downstream catchments, a parameter 
regression approach and the use of a ‘global’ 
parameter set.  They found that, “apparently, 
spatial proximity is a better surrogate of unknown 
controls on runoff dynamics than catchment 
characteristics”, since the upstream/downstream 

approach performed significantly better than the 
parameter regression approach.  

Peel et al. (2000) in a study of 331 catchments in 
Australia found statistically significant (but not 
strong) correlations between most SimHyd model 
parameters and catchment characteristics.  Chiew 
and Siriwardena (2005) investigated the potential 
for regionalisation of SimHyd model parameters 
based on these correlations, and found that the 
simulations were not consistently better than those 
using parameter values from the nearest gauged 
catchment. 

Vogel (2005), in addition to a thorough review of 
regionalisation techniques, described a variation on 
the regression approach, whereby the calibration of 
individual catchments aimed at optimising local 
streamflow reproduction while at the same time 
optimising the regional relationships between 
parameter values and catchment characteristics.  
This approach was also unsuccessful. 

McIntyre et al. (2005) and Reichl et al. (2006) 
describe an alternate approach to the problem of 
regionalisation. This approach uses intact 
parameter sets from gauged catchments to infer 
hydrological behaviour at ungauged sites. Each 
gauged catchment is assigned a prior likelihood of 
accurately predicting streamflow in the ungauged 
catchment, based on physical similarity. This 
allows for retention of information about 
parameter inter-relationships contained in an intact 
parameter set.  This approach shows some success, 
achieving regionalisation results which are far 
better than the regression approach. 

3. SIMILARITY 

A review of the literature produced a list of 
catchment attributes that are considered important 
by the hydrological community. These attributes, 
in addition to some considered important (and 
convenient to collect) by the authors (Table 1), are 
used individually as similarity measures in model 
averaging experiments.  

In Table 1, Cos of the Aspect (CosA) is used to 
avoid wrap-around effects; ERR is the Elevation-
Relief Ratio (equal to the hypsometric integral); X 
and Y are projections onto the x-y plane of the unit 
normal vector to the surface; X-Y is a combination 
of the two; Links is the number of network links 
(1:250k blue lines map); MWP, MSP and MAP are 
the mean winter (April-September); summer 
(October-March) and annual precipitation; Aridity 
is the Mean Annual Areal Potential 
Evapotranspiration divided by the MAP; Fr refers 
to fraction; PAWHC is plant-available water-
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holding capacity; and A_KSAT is the A-horizon 
saturated hydraulic conductivity. 

Table 1. Attributes to be used in development of 
similarity measures 

 

4. MODEL AVERAGING STUDY 

4.1. Data 

The precipitation, potential evapotranspiration 
(PET) and streamflow data used for this study are 
a subset of the NLWRA dataset (Peel et al., 2000). 
Since the full set of NLWRA data are of varied 
lengths and periods a common period was sought 
in order to eliminate potentially confounding 
effects of using disparate time periods, for example 
differences in climate signals from catchments in 
close proximity. Following the report of Jakeman 
et al. (1993) on the data requirements of models of 
varying degrees of parameterisation, it is 
considered that 10-15 years of monthly data are 
adequate for determination of SimHyd’s 
parameters, allowing for significant instances of 
missing data. A requirement of this data period is 
that it contain, for the majority of catchments, both 
wet and dry periods, in order to adequately 
exercise the model parameters (Gupta et al., 1983). 
The period 1972 – 1985 fulfils this requirement, 
whilst maximising the number of available 
catchments. This reduction comes at the risk of a 
loss of generality of conclusions, however the 
authors consider this to be a small risk, given that 
(i) the spatial extent of the reduced lists are not less 
than that of the full data set (Figure 1); and (ii) the 
reduction in number of catchments is not overly 
significant. The full data set has 329 catchments. 
This is split into two, one set for development and 
one for testing of the method (although the Test set 
is not used in this preliminary study). The 
Development set is reduced from a possible 165 to 
95 and the Test set from 164 to 89. This is the 
result of both reducing the time period and 
removing catchments due to inconsistent data 
(approximately 10 catchments). Figure 2 shows the 

distributions of the areas of the Development and 
the Test catchment sets. 

The soil data are from McKenzie et al. (2000), the 
vegetation data are from ANZLIC (2005), and the 
geomorphic data are from ANZLIC (2002). 

 

Figure 1. Map of Australia, showing the spatial 
distributions of catchments from the Development 
set (red), the Test set (blue) and the full set (green) 

Figure 2. Histograms showing the distribution of 
the areas of the Development catchments and Test 

catchments 

4.2. SimHyd rainfall-runoff model 

SimHyd is a lumped conceptual daily rainfall-
runoff model.  It is driven by daily precipitation 
and PET, and simulates daily streamflow and ET.  
It has been tested and used extensively across 
Australia. See Chiew et al. (2002) for a full 
description of the seven model parameters and the 
model algorithms. SimHyd is calibrated against 
monthly streamflow using a quasi-Newtonian 
optimisation routine. The standard 3-way bootstrap 
cross-validation was attempted, however many of 
the validation results were quite poor, leading to 
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the conclusion that 2/3rds (9 or 10 years) of the 
available period is not enough to adequately 
calibrate the model. This conclusion was 
confirmed when the second attempt at validation 
was carried out, this time using the full period for 
calibration and a separate but contiguous 10 year 
period for validation. This time the results were 
more satisfactory. Apart from a few outliers, 
validation deterioration is quite small. 

4.3. Model Averaging 

In this study each catchment is treated as being 
ungauged in turn, with information from the other 
94 catchments used to infer hydrological 
behaviour. 

McIntyre et al. (2005) and Reichl et al. (2006) 
demonstrated the potential for using the model 
averaging framework for estimating ungauged 
streamflow. The framework involves these 5 steps: 
similarity definition; streamflow time series 
generation; weighting; averaging; and assessment. 

Similarity: 

The similarity of each catchment to other available 
catchments is assessed in terms of some metric. In 
this study this will simply be individual catchment 
attributes, however in future work these will be 
combined to form some multiple-attribute space, 
such as described by the Euclidean Distance 
Metric (Equation 1): 
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where Di,j is the dissimilarity of catchment j to 
catchment i, Aa,j is the value for attribute a of N for 
catchment j, and wa is some weight associated with 
attribute a. Note that N is equal to 1 in this 
preliminary study, but in general is more than one.  

Once assessed, the catchments’ similarities can be 
subjected to some form of threshold, whereby 
those that are most similar to the target ungauged 
catchment are selected for the following steps. 

Streamflow time series generation: 

Forcing data for the target catchment are used to 
generate streamflow time series using model 
parameter sets from those catchments which fall 
within the aforementioned threshold. 

Weighting: 

Those catchments which fall within the similarity 
threshold are assigned weights. These are based 
both on the similarity to the target catchment 
(Equation 2) and the quality of the gauged 
catchments’ calibration (Equation 3): 
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where Wsi,j is the similarity weight assigned to the 
ith gauged catchment, and Di,jmax is the maximum 
dissimilarity of M catchments falling within the 
threshold; and 
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where Wci is the calibration weight assigned to the 
ith gauged catchment, and Ei is the Nash-Sutcliffe 
Efficiency (Equation 5). In Equation 2 the value 
1.3 was used instead of 1 so that the least similar 
of the M selected catchments would not receive a 
weight of zero. The value 1.3 is a neutral choice, 
resulting in the differences in weightings from 
least to most similar catchments being reasonably 
separated, but not severely. 

 

Figure 3. 5th, 25th, 75th and 95th percentiles (bars) 
and median (marker) E for all attributes, with 

increasing numbers of contributing catchments. 

Averaging: 

The streamflow time series are combined to form 
the estimation for the ungauged catchment 
(Equation 4): 
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where St is the output streamflow at time t and 
h(θi,Xt,j) is the model output given parameters θ 
and forcing data X. 

Assessment: 

In this paper the model performance is presented in 
terms of the Nash-Sutcliffe Model Efficiency 
(Equation 5): 
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where E is the model efficiency and Yt is the 
recorded response data at time step t of n. An E 
value of 1 indicates that the estimated response is 
the same as the recorded response for all time 
steps, and smaller values (negative values are 
possible) indicate greater disparity between 
recorded and estimated responses. 

5. RESULTS AND DISCUSSION 

5.1. Number of Contributing Catchments 

A brief investigation into threshold effects was 
carried out in this study, in order to ascertain how 
the choice of threshold would affect the 
conclusions. Three groups of model averaging 
experiments were carried out, using 5, 10 and 15 
contributing catchments for each ungauged 
catchment. Reichl et al. (2006) found a very slight 
deterioration in performance when the number of 
contributing catchments was increased, and this is 
seen again in this study. Figure 3 shows the 5th, 
25th, 50th, 75th and 90th percentiles of the Nash-
Sutcliffe Efficiency for every catchment for every 
attribute. There is a slight deterioration in the 
median when increasing the number of 
contributing catchments; however, the variance 
also decreases slightly. It may be that for different 
applications it would be desirable to decrease the 
variance at the cost of a slight loss of overall 
performance. More important for the present study 
is whether changing the number of contributing 
catchments affects which attributes are retained for 
the next stage of the research. There are some 
changes seen, and, although few and minor, the 
results of all three groups of experiments are used 

instead of any one experiment group in 
determining attribute performance. 

5.2. Individual Attribute Performance 

The performance of each attribute when used 
individually in model averaging experiments is 
shown in Figure 4. All attributes show large 
variance, with mean and median E values close to 
0.5. The distribution of E values for the calibrated 
catchments is shown for reference. 

Of note is that 15 of the attributes have median E 
values lower than that achieved when catchments 
are chosen at random, with no weighting 
(“Random” in Figures 4 and 5). 

This result appears to indicate that there are 
attributes which actively lead to inappropriate 
catchments, rather than merely being 
uninformative.  

 
Figure 4. E percentiles for all individual attributes, 
as well as the random approach and the calibration 

results 

5.3. Regional effects 

It is probable that, given the large variation in 
climate, vegetation, soil and geomorphology 
across Australia, better results would be attained if 
similarity measures were developed within specific 
regions. An obvious way to distinguish regions is 
to use a Köppen climate map, which delineates 
regions based on temperature and precipitation. 

A recently updated Köppen-Geiger Climate Map 
(Peel et al., 2007) has been made freely available 
in digital form. This map is used here to group 
catchments into climate types. 

27 of the 95 catchments fall into the Cfa climate 
type, 56 into Cfb, 4 into Aw, 1 into each of Am 
and Cwa, and 6 into Csb. Of these, only the Cfa 
and Cfb types have enough catchments for 
meaningful interpretation of a model averaging 
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experiment. These are temperate, without a dry 
season, and are distinguished by being hot and 
warm climates respectively. Tasmania and Victoria 
are predominantly of Cfa type, and coastal NSW 
and southern Queensland of Cfb type.  

The results of the model averaging experiment 
using only Cfa-type catchments are, 
unsurprisingly, far better than those using 
catchments across the country. Those using the 
Cfb-type catchments return results of similar 
quality to those from the whole country, although 
with different dominant attributes. 

The Cfa-type catchments all show far better results 
than the random approach (Figure 5 top), but for 
the Cfb-type catchments four attributes performed 
worse than the random approach (Figure 5 
bottom). 

One possible reason for the poorer results from the 
Cfb region is that there is a tail (~25 %) of 
catchments that did not calibrate well for that 
region, compared to the Cfa region; another is that 
among the attributes collected, the important 
runoff controls for the region were not captured as 
well. 

 
Figure 5. E percentiles for Köppen climate type 

Cfa (top) and Cfb (bottom), for all attributes. The 
horizontal line is the median Random E. 

The difference between the results for the country 
and those for the two climate regions justifies 

separate development of similarity measures for 
the three regions. 

5.4. Correlation Between Attributes 

The list of attributes available for construction of 
multiple-attribute space must be reduced (Table 2). 
First, those attributes with poorer performance 
than the random approach are removed. Next, 
those attributes which correlate strongly 
(correlation coefficient>0.5) with another, but 
which show poorer performance than it, are 
removed. In order to restrict the computational 
demands of the problem, the five best performing 
attributes for each region were chosen of those 
remaining, plus proximity, since proximity is a 
commonly good performer for all three regions, 
and that it is reported in several studies as being as 
good as more complex regionalisation techniques.  

Table 2. Reduced list of attributes for each region, 
in order of decreasing performance 

 

The three regions each have remaining at least one 
climatic, geomorphic and soil attribute. None have 
a vegetation attribute. Although vegetation is 
strongly affected by land use and is known to 
affect runoff (Brown et al., 2005), it is usually 
strongly correlated to climate and certain 
geomorphic attributes, since these are important 
determinants of land use.  

MeanCosA, StDevCosA and MeanY are all 
indicators of slope direction and/or magnitude. 
These influence both the exposure to the prevailing 
weather and the amount of radiation the slopes are 
exposed to, and thus the drying that the catchment 
will experience.  

The density of network links and the soil 
properties are important in terms of the 
partitioning of flows, however, timing effects are 
not important when reproducing monthly data. 
More important is the influence of the groundwater 
on the streamflow time series. The elevation-type 
attributes and the proximity indicate climatic 
influences on the catchment, and possibly are 
surrogate indicators of the influence of such things 
as alluvial groundwater systems. 
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6. CONCLUSIONS 

With the aim of informing selection of predictive 
attributes for development of multiple-attribute 
catchment similarity metrics, results of 
experiments using individual attributes within the 
model averaging framework are shown. A random 
experiment is used as the basis against which 
results are compared. Results of experiments are 
discussed using catchments from the whole of 
Australia, and for two Köppen climate types. The 
differences in results between regions justify 
development of separate similarity measures for 
different regions. 

A process for selecting attributes for multi-
dimensional catchment similarity measures is 
outlined. First, attributes which perform better than 
a random approach are retained. Next, attributes 
which correlate strongly to a better-performing 
attribute are eliminated. From those remaining, the 
best 5 attributes plus proximity are retained. 

Deterioration from calibration remains significant 
for each attribute, however, based on previous 
studies (Reichl et al. 2006, McIntyre et al. 2005) it 
is expected that when used to develop multiple-
attribute similarity metrics the method will be able 
to provide good estimates of ungauged streamflow. 
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