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EXTENDED ABSTRACT 

Channel seepage has been identified as a 
significant loss from the irrigation channels from 
both water quantity and environmental degradation 
perspectives. Recent studies have indicated that 
estimates of channel seepage are an essential 
component in the management of earthen channel 
systems. Seepage losses from channel or drains 
must be located and quantified to establish their 
economic and environmental importance. Because 
of drought scenarios and environmental concerns, 
there is much pressure on existing water resources 
in Australia. Seepage from earthen channels has 
therefore become an important issue in Australia 
for several reasons including the loss of an 
economically valuable resource and of channel 
assets and accession to groundwater. 

Artificial Neural Networks (ANNs) have been 
recently employed for the solution of many 
hydraulic, hydrologic, and water resources 
problems but ANNs do not seem to have been 
applied for analysis of seepage from irrigation 
channels. In the present study ANNs have been 
applied to analyse channel seepage in the 
Murrumbidgee region of New South Wales, 
Australia. It is predicted by ANN that if channel 
seepage is not remediated, over 42 GL of water 
can be lost from 500 kilometres of channel in the 
Murrumbidgee Irrigation Area (MIA) each year as 
seepage and 12.5 GL will be lost through 
evaporation for the measured length of the 
channels. The traditional seepage estimate methods 
such as inflow-outflow and ponding tests are only 
useful in providing bulk estimates of losses from 

the studied channel reaches. The distributed 
qualitative methods using EM-31 and local 
quantitative methods using the Idaho seepage 
meter were an improvement in the estimation of 
seepage losses. However, due to varying soil 
properties and underlying groundwater 
characteristics it was not possible to effectively 
determine spatial distribution of channel seepage 
which is necessary for cost-effective lining of 
channels. Due to the complexity and the non-
linearity of the seepage phenomenon and 
impossibility of building linear relationship 
between seepage and EM data an ANN method 
was developed to overcome this limitation. This 
helped spatially map the seepage extent along the 
supply channels of the MIA and therefore guide 
the most cost effective investments for reducing 
seepage losses.  

Results from this study clearly show that ANNs 
can be successfully applied to analyse distributed 
channel seepage by using key input variables since 
the ANN method is capable of handling non-
linearity due to quick adaptation and parallel 
computation power. The channel seepage study in 
the Murrumbidgee Irrigation Area in Australia 
indicates that most significant seepage (> 20 
mm/day per unit area) occurs in less than 32 
percent of the surveyed channel length, therefore it 
is important to initially target channel lining 
investments to the leakiest parts, “hotspots” of the 
channel system. The approach using ANNs has 
proven its advantages in this paper, it may be the 
most effective way of ascertaining seepage 
hotspots. 
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1. INTRODUCTION 

Australia is the driest inhabited continent (in terms 
of runoff per unit area) on the planet and requires 
most efficient water use management due to highly 
variable rainfall and runoff. Agriculture is the 
primary consumer of water in Australia much of it 
through irrigation. Irrigated agriculture contributes 
approximately 50% of the total net returns from 
agriculture each year on less than 0.5 percent of 
the total area under agriculture. In producing these 
returns, it consumes over 70% of the total water 
use. Because of recurring droughts and growing 
environmental concerns, there is much pressure on 
existing water users to improve their productivity 
per unit of water consumption. The available 
surface water resources are being used to meet the 
competing consumptive water demands, and most 
river basins, e.g. Murray Darling Basin, are now at 
the limit of meeting all such water demands. There 
is thus a growing scarcity and competition for 
water among agricultural, industrial, commercial 
and residential sectors forcing water resources to 
be used more efficiently or reallocated through 
trading mechanisms. Since the existing resources 
are virtually fully committed, minimising any 
losses may be the only fair way to find water to 
reallocate. In 2007 the Prime Minister of Australia 
announced the Commonwealth's $10 billion 
National Plan for Water Security. The plan aims to 
improve water efficiency and to address the over-
allocation of water in rural Australia, particularly 
in the Murray-Darling Basin.  In particular this 
plan aims to invest $6b to save on-farm and off-
farm water losses including reduction in channel 
seepage.  There is need for “hotspots” analysis 
using innovative techniques such as the one 
described in this paper which can become 
prerequisites for targeting infrastructure upgrades 
in the leakiest parts of the irrigation areas. 

The main mechanism for the conveyance of water 
to farms is through earthen channels. Recent 
surveys have indicated that a significant amount of 
water (10 to 30 percent) is lost in conveyance to 
farm (ANCID, 2006). Losses from on-farm 
channel systems to the ground water system have 
been variously estimated to contribute about 15-25 
% of total ground water accessions (Van der Lely, 
1995). Watts and Thompson (2001) estimated 
seepage loss along the Mulwala 20 channel in 
Victoria Australia, which diverts water from the 
main Mulwala Supply Canal, was 81 ML over 
three seasons (807 days). Akbar (2003) carried out 
a study on seepage from on-farm channels and 
drains, where he concluded that 1 to 4% of the 
allocated water to a farm is lost through seepage.  

The studies above indicate that the estimates of 
channel seepage are an essential component in the 
management of earthen channel systems and there 
is a need to identify and quantify off-farm and on-
farm channel seepage and deep drainage under the 
farm. This paper deals with the channel seepage 
analysis.  

Channel seepage is hard to analyse and model 
using conventional techniques due to its non-
linearity, rapid change in amount of seepage along 
the channels and complexity. ANN’s capability of 
handling non-linear relationships make them 
suitable for complex applications such as 
forecasting water allocations, industrial control 
systems, financial forecasting, pattern and voice 
recognition, and in the health sector, where linear 
relationships do not exist. ‘Neural network 
practitioners generally tackle more complex 
problems, the dimensionality of the models tends 
to be much higher, and methodologies are hand 
tailored to particular applications’ (Holger et al, 
2000). Artificial Neural Networks (ANNs) have 
been recently employed for the solution of many 
hydraulic, hydrologic, and water resources 
problems (Tayfur et al, 2005). Tokar and Johnson 
(1999) and Rajurkar et al. (2002) applied ANNs 
for rainfall runoff while Jain (2001), Tayfur (2002) 
and Nagy et al. (2002) applied them to sediment 
transport and Aziz and Wong (1992) and Lu et al. 
(1998) applied them to solute transport studies. 
Tayfur et al (2005) applied ANNs for predicting 
seepage through the body of the Jeziorsko earthfill 
dam in Poland. However, ANNs do not seem to 
have been applied for analysis of seepage from 
irrigation channels. In the present study ANNs 
were applied to analyse channel seepage in the 
Murrumbidgee region of New South Wales.  

2. DESCRIPTION OF STUDY AREA 

The Murrumbidgee River (Figure 1) has a 
catchment area of around 84,000 km2 and a length 
of 1600 km from its source in the Snowy 
Mountains to its junction with the Murray River. 
The geographic boundaries of the Murrumbidgee 
catchment include the Great Dividing Range in the 
east, the Lachlan River Valley to the north and the 
Murray River Valley to the south.  

The main irrigation areas in the Murrumbidgee 
catchment are the Murrumbidgee Irrigation Area 
(MIA), Coleambally Irrigation Area (CIA) and the 
Lowbidgee Irrigation Area (Figure 1). The MIA 
consists of the Yanco, Mirrool, Benerembah, Wah 
Wah and Tabbita irrigation districts. The natural 
drainage-way of the MIA is the Mirrool Creek. 
The topography is a flat open plain at an elevation 
of 100-135 m above sea level. Water for the MIA 
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is diverted from the Murrumbidgee River at 
Berembed Weir and further downstream at 
Gogeldrie weir. From Berembed Weir water 
moves into Bundidgery storage which is the start 
of the system owned and maintained by 
Murrumbidgee Irrigation Ltd. Water is measured 
onto farm properties and farmers pay for the water 
supply charges. From Gogeldrie Weir water is 
directed to the Sturt canal to supply farms on the 
western side of the MIA. Drainage water from 
irrigation farms flows through Mirrool Creek to 
Barren Box Swamp and then flows into the 
irrigation districts of Benerembah, Tabbita and 
Wah Wah. 

 

Figure 1. Location of the Murrumbidgee Irrigation 
Area (MIA) and Coleambally Irrigation Area 

(CIA) 

3. METHODOLOGY 

Commonly used methods for identifying seepage 
are: 

 Local quantitative seepage estimates 
using the Idaho seepage meter; 

 Ponding test to determine bulk seepage 
from a canal reach; and 

 Inflow-outflow tests to determine bulk 
seepage from channel reaches. 

A problem with these methods is their labour 
intensive nature and inability to quantify 
distributed seepage losses along the length of 
canal. An alternative to these approaches is the use 
of geophysical techniques (Electromagnetic – EM 
and electrical resistivity - ER) for qualitative 
distributed assessment of relative seepage along 
the channels. These qualitative measurements 
combined with the local quantitative seepage 
estimates (as described in dot points 1 to 3 above) 
allows the development of a workable distributed 
quantitative technique as described in this paper. 

Some of the reasons why ANNs was used as  a 
preferred technique are given below (Cancelliere 
et. al, 2002): 

• In opposition to Artificial Intelligence 
approach, ANNs require no 
programming: they can be trained directly 
from the data; 

• ANNs are massively parallel: this allows 
them to gain high speed performance in 
decision making;  

• ANNs have, under some hypotheses, the 
ability to generalize, i.e. to extend their 
decision making to novel data not seen by 
the network during the training. 

ANNs can be successfully applied when multi-
criteria decision support is required: for example in 
classification or pattern recognition. 

The ANNs could learn from a range of input 
variables against seepage for a range of soil 
properties since the ANN method is capable of 
handling non-linearity due to quick adaptation and 
parallel computation power. The study conducted 
in the Murrumbidgee Irrigation Area for 
monitoring seepage losses in irrigation channels 
involved four phases:  

 Electromagnetic (EM 31) survey of the 
channels for identifying critical sections of the 
irrigation supply channel system, for 
qualitative seepage analysis.  

 Water flow measurements (using Flow 
Tracker) in selected channels to determine 
bulk water losses, including evaporation, 
leakage and seepage. Inflow-Outflow methods 
were used to measure bulk water losses in 
measured lengths of channels.  

 Quantitative measurement of local seepage 
rate using an Idaho Seepage Meter at selected 
spots, particularly the spots identified as 
having potentially high seepage because of 
low electromagnetic conductivity. These spots 
were likely “hotspots” because of higher water 
losses in these sections reflected by Inflow-
Outflow measurements. 

“Training” of an ANN model by using all the data 
collected by the above methods. EM31 data 
(surrogate for the bulk response of the porus 
media), hydraulic conductivity, salinity and depth 
to watertable are inputs into the model with actual 
seepage results from the Idaho seepage meter 
compared to predicted seepage rate as outputs. The 
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trained ANN was subsequently used to convert 
qualitative distributed seepage data (collected in 
step-1) to quantitative distribute seepage rates. 

Channels of the Murrumbidgee Irrigation system 
were surveyed using a combination of methods to 
measure seepage, identify seepage sites and 
quantify the extent of the losses as described 
above. The data collected were also used to 
determine statistical relationships between EM and 
local seepage rates. Measurements were made over 
700 kms of channel, which when accounting for 
overlapped measurement comprised over 500 
kilometres length of reaches for loss detection. The 
measurements were taken from the larger channels 
in MIA, CIA and the Lowbidgee districts covering 
80% of the total flow in the system. The selected 
channels were surveyed using EM31 meters in a 
boat. These meters use electromagnetic induction 
to measure the average electrical conductivity of 
the soil from the surface to a depth of 6 metres 
including the water layer. This average reading is 
known as “apparent conductivity” (ECa). This 
meter provides a quick way of gathering a large 
amount of data without any ground intrusion but is 
susceptible to electrical or magnetic interference. 
Low conductivities indicate potential seepage sites. 
Once the EM31 surveys were completed, maps 
were prepared using SURFER 8 from the imaging 
data using GPS references (Figure 2).  

 

Figure 2. EM31 Map of surveyed channels in the 
Murrumbidgee Irrigation Area (MIA) 

These maps helped to identify the parts of channels 
with low EM values where higher seepage was 
likely to be occurring. Doppler flow meters were 
then used to measure inflow and outflow of 
particular reaches of channels to determine gross 
water losses. Large differences in flows at each 
end of the channels indicated seepage losses. For a 
range of channel EM values Idaho seepage meters 
tests were conducted. A relationship was 
determined between measured seepage rates and 
ECa values using EM31 surveys (Figure 3) to 
quantify the seepage rates along the surveyed 

sections of the system. A preliminary 
approximation was obtained using this relationship 
recognising that the accuracy of such estimated 
seepage rates has limitations. 
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Figure 3. Correlation of Seepage measurements 
and EM31 results for the surveyed channels in the 

Murrumbidgee Irrigation Area (MIA) 

All the data collected was used to “train” a model 
known as an ANN model (Figure 4). The 
particular ANN architecture of 4 hidden layers was 
chosen to solve the non-linearity within 4 inputs 
(EM31 data, hydraulic conductivity, salinity and 
depth to watertable) and output. 

 

Figure 4. A typical neural network with 4 hidden 
layers. Each layer has one or more processing 

elements 

3.1. Artificial Neural Network (Ann) Model 
for Seepage Studies 

EM31 data, hydraulic conductivity, salinity and 
depth to watertable were used as inputs into the 
model with actual point seepage results from the 
Idaho seepage meter provided as outputs. These 
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data were collected from across the region and was 
used to train and develop the ANN network.  

Data was organised into row and columnar wise 
matrices labelling input and desired columns 
followed by setting up training and cross 
validation data files. The training data file was 
assigned for network learning whilst the cross 
validation data was designated to prevent possible 
over training, which may result in abnormal 
learning behaviour. A test data file was used to test 
the validity and performance of the learnt network. 
A data set of 470 input and output records was 
obtained from different channels in the 
Murrumbidgee region, these were used to train and 
develop a suitable network. The entire dataset was 
divided into 3 sets 70%, 20% and 10% for the 
training, cross validation and testing respectively. 
Neural networks with different topologies were 
attempted and at last a hybrid network called 
Radial Basis Function (RBF) was found to be most 
suitable for the training purposes. The established 
network was trained by several iterations. 

Prediction from this network, has given promising 
results providing a correlation of 0.86 between 
actual and predicted seepage values as shown in 
Figure 5. 
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Figure 5. Performance of the test dataset that was 
used by the trained network 

The results in Figure 6 show the capabilities of a 
network in learning and predicting by using the 
entire data set. The correlation coefficient between 
actual and forecast seepage values has been 
improved to 88%. 
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Figure 6. Comparison between actual and forecast 
seepage values used in the training and cross 

validation data sets 

4. RESULTS AND DISCUSSION 

Using the ANN the estimated total losses from 
509.5 km of channels are 54.3GL over 270 days, 
of which 41.7 GL can be attributed to seepage 
(Table 1). 

The ANN predicted seepage data was plotted to 
map seepage extent to show the spatial variations 
of seepage rates (Figure 7). The calculated seepage 
data was also analysed to present the distribution 
of seepage rate classes across the irrigation area 
(Table 2). This analysis shows that around 7% of 
seepage losses occurred at the rate of 30-70 
mm/day, 25% of seepage losses occurred at a rate 
of 20-30 mm/day, 46% of seepage losses occurred 
at a rate of 10-20 mm/day while remaining 22% of 
seepage losses occurred at a rate of less than 10 
mm/day. 

 

 

Figure 7. ANN predicted Seepage Map of 
channels in the MIA (mm/day) 

This analysis clearly indicates that most significant 
seepage (> 20 mm/day) occurs in less than 32 
percent of the surveyed channel length (Figure 7), 
therefore it is most important to target investments 
to this area which is the leakiest parts of the 
channel system. 
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Table 1. Seepage Losses using ANN 

Location 
 

Length
(km) 

Seepage 
(ML/270d) 

Evaporation 
(ML/270d) 

Total Loss 
(ML/270d) 

Benerembah Channel 2 15.7 765 225 991 
Northern Branch Canal 36.6 1422 568 1990 
North Kooba 24.1 1368 343 1711 
Sturt Canal 36.8 3528 773 4301 
Benerembah Canal 18.7 1256 387 1643 
Gogeldrie Channel No. 
3 

11.2 386 156 542 

Lake View Canal 16.8 576 281 858 
Gogeldrie Main + 
Gogeldrie Branch 2 

33.2 2431 752 3183 

Lateral 235 12.5 468 186 654 
Lateral 284 26.8 1281 421 1701 
Mirrool Creek Branch 
Canal 

31.9 1740 550 2290 

South Gogeldrie 16.7 1106 290 1397 
Warburn  18.4 823 237 1060 
Wah Wah 29.4 1150 460 1609 
Channel No. 1 13.9 659 205 864 
Channel 3, 10 and 18 14.0 312 205 517 
MIA Main Canal (Start 
- Bundidgerry Reg) 

42.3 8345 1810 10156 

MIA Main Canal 
(Narrandera – Nonells 
Reg) 

52.8 8476 2635 11111 

MIA Main Canal 
(Nonells Reg - East 
Mirrool Reg) 

34.1 3594 1315 4908 

MIA Main Canal ( East 
Mirrool Reg- Penfolds) 

23.6 2070 775 2845 

Total MIA 509.5 41756 12574 54330 
 

Table 2. Proportion of ANN predicted seepage rate 

Seepage Range %age Seepage 
(Ml/270d) 

Assoc. 
Channel 
Length  
(Km) 

Less than 10 mm/day 22.76 9504 134.14 

10 - 20 mm/day 46.33 19347 257.68 
20 - 30 mm/day 24.15 10083 85.89 
30 - 40 mm/day 1.74 725 8.39 
40 - 50 mm/day 0.95 396 5.05 
50 - 70 mm/day 4.08 1702 18.32 

5. CONCLUSIONS 

The traditional seepage estimate methods such as 
inflow-outflow and ponding tests are only useful 
in providing bulk estimates of losses from the 
studied channel reaches. The distributed 

qualitative methods using EM-31 and local 
quantitative methods using the Idaho seepage 
meter were an improvement in the estimation of 
seepage losses. However, due to varying soil 
properties and underlying groundwater 
characteristics it was not possible to effectively 
determine spatial distribution of channel seepage 
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which is necessary for cost-effective lining of 
channels. Due to the complexity and the non-
linearity of the seepage phenomenon and 
impossibility of building linear relationship 
between seepage and EM data an ANN method 
was developed to overcome this limitation. This 
helped spatially map the seepage extent along the 
supply channels of the MIA and therefore guide 
the most cost effective investments for reducing 
seepage losses.  

Results from this study clearly show that ANNs 
can be successfully applied to analyse distributed 
channel seepage by using key input variables 
since the ANN method is capable of handling 
non-linearity due to quick adaptation and parallel 
computation power. The channel seepage study in 
the Murrumbidgee Irrigation Area in Australia 
indicates that most significant seepage (> 20 
mm/day per unit area) occurs in less than 32 
percent of the surveyed channel length, therefore 
it is important to initially target channel lining 
investments to the leakiest parts, “hotspots” of the 
channel system. The approach using ANNs 
proven advantages in this paper may be the most 
effective way of ascertaining these hotspots.  
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