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EXTENDED ABSTRACT 

Neural Networks have the capability to 
approximate nonlinear functions to a high degree 
of accuracy owing to its nonlinear processing in 
the hidden layer neurons. However, the optimum 
network structure that is required for solving a 
particular problem is still an active area of 
research.  In the past, several network pruning 
methods based on weight magnitude or sensitivity 
have been proposed and some example are 
magnitude based pruning (MBP) (Hagiwara, 
1993); optimal brain damage (OBD) and its 
variants (Cun et al., 1990); and variance nullity 
(Engelbrecht, 2001). For example, in MBP, 
weights that are small are removed. How small is 
‘small’ is a subjective decision.  In OBD, weights 
that are not important for input-output mapping are 
found and removed.  This is based on a saliency 
measure, si of a weight, as given in Eq. 1, that is an 
indication of the cost of setting it to zero.  The 
larger the si, the greater the influence of wi on 
error.  It is computed from the Hessian (H) which 
is the matrix containing the second derivative of 
error with respect to a pair of weights in the 
network.  

2 / 2i ii is H w=   (1) 
 
Saliency threshold however, is a subjective 
decision.  Variance nullity measure proposes a     
variance analysis of the sensitivity of the output of 
the network to perturbation of weights.  It is based 
on a hypothesis test using χ2 (chi square) 
distribution to test statistically if a weight should 
be pruned.  Here, null variance threshold must be 
defined.  Teoh et al. (2006) proposes singular 
value decomposition (SVD) of hidden neuron 
activation to determine correlated neuron 
activations in order to select the required number 
of hidden neurons; however, the method requires 
heuristic judgment in setting up of a threshold 
parameter in the criteria for determining the 
optimum number of neurons.  Xian et al. (2005) 
proposes an approach that utilizes the knowledge 
of the shape of the target function to determine the 

optimum number of neurons.  This approach is 
efficient for 2- or 3-dimensional data where the 
shape of the target function can be ascertained 
relatively easily.  However, the method cannot be 
applied to high-dimensional data as the target 
function cannot be visualized for such data.  
Another approach for optimising network structure 
is genetic and evolutionary algorithms (Castillo et 
al., 2000; Yao, 1999) that involve extensive and 
time consuming search, and in comparison to other 
network optimisation methods, these provide the 
least insight into the operation of a network.  
 
In this paper, a new method based on the 
correlation of the weighted activation of the hidden 
neurons combined with the Self Organisation 
Feature Maps is presented for obtaining the 
optimum network structure efficiently.   In an 
extensive search for internal consistency of hidden 
neuron activation patterns in a network, it was 
found that the weighted hidden neuron activations 
feeding the output neuron(s) displayed remarkably 
consistent patterns.  Specifically, redundant hidden 
neurons exhibit weighted activation patterns that 
are highly correlated.  Therefore, the paper 
proposes identifying hidden neurons with weighted 
activation patterns that are highly correlated and 
using one neuron to represent a group of correlated 
neurons.  The paper proposes to automate this 
process in two steps: 1) Map the correlated 
weighted hidden neuron activation patterns onto a 
self organising map; and 2) Form clusters of SOM 
neurons themselves to find the maximum likely 
number of clusters of correlated activity patterns.  
The likely number of clusters on the map indicates 
the required number of hidden neurons to model 
the data.   
 
The paper highlights the approach using an 
example and demonstrates its application to 
solving two problems including a realistic problem 
of predicting river flows in a catchment in New 
Zealand.     

 

2278



  

1. INTRODUCTION 

Multi-layer feed forward neural network is the 
most powerful and most popular neural network 
for nonlinear regression (Samarasinghe, 2006).  A 
neural network with enough parameters can 
approximate any nonlinear function to any degree 
of accuracy due to the collective operation of 
flexible nonlinear transfer functions in the 
network.  However, finding the adequate 
complexity of network structure that is the 
optimum for a particular problem is still an active 
research problem.  Neural networks are still treated 
as a black box due to lack of transparency in the 
internal operation of networks.  This paper 
demonstrates that there is internal consistency of 
networks at the level of output layer processing 
and shows that it can be used for removing 
redundancy in a network.  Here, the approach is 
highlighted and its validity is demonstrated 
through application to solve two problems.   

2. OBJECTIVES 

The goal of this paper is to demonstrate the 
possibility of optimising the structure of multilayer 
perceptron networks using internally consistent 
and correlated neuron activation patterns at the 
output layer level to remove redundant neurons.  
Specifically, it has the following objectives:  
 
1. To demonstrate through an example that 

redundant neurons in a network show 
correlated activity patterns which can be used 
to obtain the optimum structure by clustering 
these patterns using self organizing maps.  

 
2.   To demonstrate the application of the above 

method to solve two more problems: Sine 
function approximation; and predicting river 
flows.    

3. BACKGROUND 

Feed forward networks have been applied 
extensively in many fields.  In many training 
cases, a network with larger than required number 
of neurons are trained and stopped early when the 
level of required accuracy is achieved 
(Samarasinghe, 2006).  Some pruning methods 
based on magnitude of weights or sensitivity, such 
as magnitude based pruning (Hagiwara, 1993), 
optimal brain damage and its variants (Cun et al., 
1990) and variance nullity (Engelbrecht, 2001) 
have been proposed to prune networks to obtain 
the optimum network structure.  However, they 
require considerable judgment on the part of the 
user in setting threshold levels for parameters used 
as pruning criteria.   

 
 Xian et al. (2005) proposes an approach that 
utilizes the knowledge of the shape of the target 
function to determine the optimum number of 
neurons.  This approach is efficient for 2- or 3-
dimensional data where the shape of the target 
function can be ascertained relatively easily.  
However, the method cannot be applied to high-
dimensional data as the target function cannot be 
visualized for such data.  Another approach for 
optimising network structure is genetic and 
evolutionary algorithms (Castillo et al., 2000; Yao, 
1999) that involve extensive and time consuming 
search, and in comparison to other network 
optimisation methods, these provide the least 
insight into the operation of a network.  
 
Teoh et al. [10] proposes singular value 
decomposition (SVD) of hidden neuron activation 
to determine correlated neuron activations in order 
to select the required number of hidden neurons.  It 
is a step toward meaningful investigation into 
hidden neuron activation space; however, as 
authors point out, the method requires heuristic 
judgment in setting up of a threshold parameter in 
the criteria for determining the optimum number of 
neurons  

4. METHODS 

Figure 1 (a) (solid line) shows a one-dimensional 
nonlinear function used in this paper to 
demonstrate that redundant neurons in a network 
form highly correlated activity patterns.   This 
function has the form  
     

0.3 0Sin x If x
t

Sin x otherwise
<⎧

= ⎨
⎩

                   (2) 

 
A total of 45 observations were extracted from this 
function and these were modified further by 
adding a random noise generated from a Gaussian 
distribution with 0 mean and standard deviation of 
0.25 as depicted by dots in Fig. 1(a).   
 
This data requires 2 neurons to model the regions 
of inflection.  A larger network of 4 hidden 
neurons, as shown in Fig. 1(b) was used for the 
purpose of investigation.  In this network, the 
hidden neuron activation functions are logistic, 
output neuron is linear, the bias and input-hidden  
weights of neuron j and input i are depicted by a0j 
and aij, respectively, and hidden-output weights 
and the corresponding bias are denoted by bj and 
b0, respectively.   
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(a)  

 
(b) 
 
Figure 1.  (a) Target data and its generator and 
(b) 4-neuron network to model the data 
 
Network was trained with second order Levenberg 
Marquardt method with: 3 random weight 
initialisations; 3 randomly extracted data sets; and 
both early stopping and Regularization methods to 
stop training (Neural Networks for Mathematica 
(2003)).  In all these cases, the internal structure of 
the networks was critically examined at the hidden 
layer level as well as the output layer level in 
search of consistent patterns of neuron activations.  
This revealed a very consistent and correlated 
patterns of weighted hidden neuron activations 
feeding the output layer, which is the contribution 
of each neuron j to output generation depicted by:  
 
             

jweighted j jy y b=                           (3)  
 
where yj is the output of hidden neuron j and bj is 
the corresponding weight linking neuron j with the 
output.  This is shown, for one of the tested 
conditions mentioned above, in Figure 2 which 
clearly demonstrates that some weighted 
activations are parallel to each other and are highly 
correlated with values indicated in the correlation 
matrix found below the figure.  The other 
conditions displayed similar correlated activity 
patterns.  When trained with 5 neurons, similar 
display of strong parallelism among groups of  
correlated weighted hidden neuron activation 
patterns were found as shown in Figure 3.   These 
correlated neurons point to redundancy where  
only one neuron would be enough to represent 

each cluster of correlated neurons, thus revealing 
optimum number of neurons for the network.   

 
Figure 2. Weighted hidden neuron activations 
and their correlations for 4- neuron network 
 
 
 

 

 
Figure 3. Weighted hidden neuron activations 
and their correlations for 5-neuron network 

This process can be automated by using self 
organizing maps (SOM) to cluster correlated 
neurons using correlation as the distance measure 
(Samarasinghe, 2006) and then cluster the map 
neurons using a method such as ward clustering to 
automatically determine the number of required 
neurons for the final network.   This is illustrated 
in Figures 4 and 5 for the 4- and 5- neuron 
networks.  In these figures, the top graphs indicate 
the ward likelihood index (Samarasinghe, 2006) 
for various cluster sizes.  The higher the index, 
more likely the corresponding number of clusters.  
Both these figures indicate the highest index for 
two clusters of correlated neurons, indicating that 
the optimum network in this case requires two 
neurons, which agrees with the reality.   The  
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Figure 4  Clustering of Self organising map 
neurons by Ward clustering method (4- neuron 
network) 

Figure 5  Clustering of  SOM (5-neuron net) 

bottom figures are the SOMs clustered according 
to the optimum number of clusters determined by 
the ward method .  Both 4- and 5- neuron 
networks now display 2 clusters that correspond to 
the required number of neurons to model the 
function in Figure 1.   

 
4.1 Application 2:  Sine function Approximation 
 
In this paper, the above idea is extended to two 
larger applications to demonstrate its robustness.  
First of these is the approximation of the Sine 
function from the data shown in Figure 6.   
 

 

Figure 6  The data from Sine function 

 

The Sine function requires 4 hidden neurons in the 
optimum model.  A network with 10 hidden 
neurons with logistic activation was selected and 
Levenberg Marquardt method was used to train it 
and Regularization to stop training.  Due to the 
large range in the weighted activations, all patterns 
cannot be shown together graphically but the 
correlation matrix is given Figure 7 that indicates 
that some activations are highly correlated and 
some are weakly or moderately correlated.  It also 
shows that it is not easy to discern the optimum 
number of clusters when the number of neurons is 
large.   
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Figure 7. Correlation matrix of the 10 weighted 
hidden neuron activations 

 
Figure 8 (top) shows the Ward likelihood index 
which indicates 3 and 6 clusters as the most likely 
with 6 clusters having the highest likelihood.  The 
trained SOM map divided into 6 clusters using the 
Ward method is shown in bottom Figure 
8(bottom).    

 

 

Figure 8 Ward likelihood index against number 
of clusters (top) and clustered SOM map 
according to highest likelihood index (bottom) 

 

 
Figure 8(bottom) reveals that although map has 
been divided into 6 clusters, effectively there are 
four clusters represented by yellow, red, dark blue 
and light blue colours.  Neurons in these clusters 
have labels depicting the weighted activations of 
the neurons in the original neural network.  The 
other two clusters, indicated by light green and 
dark green colours, do not represent any of the 
activation patterns.  
 
Thus, from the map, it can be discerned that the 
original Sine function requires four neurons to 
model it effectively.  The optimum model output 
superimposed on data is shown in Figure 9.   

 

Figure 9. Optimum network output 
superimposed on data 
 

4.2 Application 3:  Predicting river flows in a 
catchment 
 
Reliable estimates of river flows are important for 
planning and managing water resources.  For this 
purpose, flow gauges are used to measure river 
flows.  However, in difficult to reach catchments, 
this is not always possible and some river flows 
need to be estimated using other methods such as 
modeling.  In this example, 8 river basins in the 
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Canterbury region in the South Island of New 
Zealand are selected for a case study.  Reason for 
selecting this case study was that it has been 
modeled previously by Vieira (2006) using neural 
networks and therefore, the proposed method can 
be compared against it.   
 
There were roughly three rainfall gauge stations 
per catchment.  River flow and Rainfall time series 
for over 5 years were obtained from Environment 
Canterbury (Ecan, 2006) records.   One of the 
main variables influencing river flow is 
precipitation whose effect on flow depends on the 
drainage area.  Another factor affecting flow is 
forests and vegetation that delays run-off or limits 
it.  This is further impacted by soil type- 
specifically, its   permeability.  Flow also depends 
on ground slope and drainage density; the latter is 
the total channel length to watershed area 
indicating fraction of the watershed occupied by 
channels.     
 
The required physical characteristics of the 
catchments were obtained from a GIS database and 
these comprised of Drainage area, Average ground 
slope, Drainage Density, Basin form, and Land use 
(Open, cultivated, Forest, Wetlands).  Basin form 
is an indication of shape of the basin and was 
introduced to account for the fact that long narrow 
forms on average produce lower flows at river 
mouth.  Larger the form lower the flow.  The 
objective of the study was to develop a neural 
network to estimate monthly average flow in a 
river from known flows in other rivers in the 
region, rainfall and basin characteristics.  For this 
purpose, Waipara river was selected as the one 
requiring estimation.  Its measured flows are used 
to validate the estimates.   
 
Before building the model, a rigorous pre-
processing and input selection method was 
followed.  Simple and partial correlation analysis 
was conducted in three stages, refining the input 
selection in successive stages.  Fourteen input 
variables including flow and precipitation lags 
were considered.  The final analysis revealed that 
the current monthly average flow was influenced 
by current month’s precipitation (correlation coeff 
(CF) = 0.557), previous month’s flow (CF = 0.352) 
and a compound factor computed as (Total 
catchment area- Forested area) (CF = 0.331) and 
these inputs were used to build a network. 
 
Combined catchment training data consisted of 
1079 records, calibration set for testing model 
accuracy during training had 269 records.  The 
validation set contained 63 records.   
Vieira (2006) tested various model architectures on 
NeuroShell 2 (1997) and found that the optimum 

network was a 3- layer network trained with 
backpropagation with momentum.  After this 
training with selected inputs, a series of different 
networks were built again with the addition of 
secondary variables, and watershed form came out 
as a significant secondary variable.  The final best 
model produced training R2 of 0.94 and validation 
R2 of 0.729.  The contributions of inputs to the 
output were:  Precipitation (42.6%), Previous flow 
(32.7%), compound factor (21%), and form (3%).   
 
Vieira’s (2006) model architecture was: 4 inputs, 
one hidden layer with 70 neurons with logistic 
activation, output neuron with logistic activation.  
In the present study the same inputs were used to 
obtain the optimum network using the proposed 
approach.  
 

5. OPTIMISATION OF STRUCTURE 
USING CORRELATED ACTIVATION 
PATTERNS AND SOM 

 A 3-layer network with 100 hidden neurons was 
trained with backpropagation with momentum for 
predicting the river flow and the weighted hidden 
neuron activation patterns were projected onto a 
100-neuron SOM.  The Ward likelihood index for 
possible clusters of map neurons is shown in 
Figure 10 which reveals that 2 and 3 clusters have 
the highest likelihood index followed by 11.  This 
was much smaller than that reported by Vieira 
(2006) and immediately there was doubt as to the 
ability of the proposed method in optimising the 
network structure for complex problems.  The 
SOM structure itself was then carefully reviewed 
for the spread of activation patterns.  It revealed 
that 100 patterns have been grouped into 59 
neurons.  The map and the two clusters formed by 
the Ward method are shown are in Figure 11.  A 
network with 2 hidden neurons were then trained 
for investigating if this were true and it in deed 
was found to be the optimum number of neurons  

 
Figure 10  Ward likelihood index for possible 
SOM neuron clusters 
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giving training R2 of 0.88 and validation R2 of 
0.71. Predictions (Figure 12) and contribution of  
variables were similar to those of Vieria (2006).  
Results were similar for 59 and 70 neurons.   
 
Thus, the projection of correlated weighted hidden 
neuron activations onto an SOM followed by 
clustering of map neurons revealed the required 
number of neurons with certainty.   These results 
indicate that the proposed approach is useful in 
optimising network structure for solving even 
complex realistic problems.    

Figure 11.  SOM Clustering of weighted hidden 
neuron activation patterns in a network 
predicting river flow 

Figure 12. Predicted flow superimposed on 
actual flow in validation dataset 

6. SUMMARY AND CONCLUSIONS 

This paper presented the results from a study to 
optimise the hidden layer neurons in multilayer 
perceptron network by using the internal 
consistency of hidden neuron activation patterns.  
Through three example applications- two nonlinear 
functions and a realistic river flow prediction- it 
demonstrated that redundant weighted hidden 
neuron activations became strongly correlated 
when there were too many hidden neurons in the 
network and these patterns were easily mapped 
onto an SOM.  Furthermore, SOM neurons 
themselves were further clustered by assembling 
map neurons that are closer together based on 

Ward clustering and the highest likely number of 
clusters on the map indicated the optimum number 
of neurons required in the network.  In the river 
flow prediction, it successfully revealed the 
required number of 2 neurons from the activation 
patterns of a 100-neuron network that was trained 
and further subjected to clustering using SOM and 
Ward methods.  The paper convincingly 
highlighted the robustness of the proposed 
approach in optimising the hidden layer through 
removing the redundant neurons indicated by the 
correlation of weighted hidden neuron activations 
feeding the output.  Therefore, it proposes a novel 
approach to structure optimisation that is 
meaningful and logical.   
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