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EXTENDED ABSTRACT 

Persistence of threatened species relies heavily on the 

effectiveness of conservation decisions. Yet, 

conservation strategies may generate positive and/or 

negative impacts on non-target species through direct 

(e.g. competition, predation), or indirect (e.g. habitat 

use) species interactions. Accounting for such 

interactions rarely occurs in conservation planning 

due to high biological uncertainty as well as the 

computational challenge of solving problems of this 

magnitude. Consequently, the simultaneous 

implementation of single-species management 

strategies for species that interact may jeopardize the 

recovery of one or more of the threatened species. 

Here we address these obstacles using a simulator 

and reinforcement learning approach. Reinforcement 

learning simplifies the representation of complex 

stochastic processes, and provides an intelligent way 

of exploring the solution search space. We apply this 

approach to two threatened species and compare 

optimal management strategies for ensuring species 

recovery and coexistence through their ranges. 
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INTRODUCTION 

Recovery of threatened species relies in part on the 

effectiveness of management decisions. However, 

determining the most effective strategy remains a key 

challenge. Many recovery plans under relevant 

legislation focus on single species (Clark and Harvey 

2002). In cases where threatened species interact 

directly through competition or predation and/or 

indirectly through sharing habitat, the recovery goals 

for one species may counteract those of another. A 

case in point is that of the sea otter Enhydra lutris 

and northern abalone Haliotis kamtschatkana, both 

listed under the Species at Risk Act 
 
(SARA).  

Abalones are the preferred prey of sea otters and 

conflicts between recovery goals of sea otters and 

abalone are recognized (Gardner et al. 2000, Watson 

2000, Gerber 2004). Yet to date, this conflict has not 

been examined quantitatively in an optimal 

management framework (e.g., Martin et al 2007). 

Here we employ a novel application of 

Reinforcement Learning to determine optimal 

management strategies for two threatened species 

which interact as predator and prey.  

1. MARKOV DECISION PROCESSES AND 

REINFORCEMENT LEARNING 

In the Artificial Intelligence community, Markov 

Decision Processes (MDP) and Reinforcement 

Learning (RL) are used to solve sequential decision 

making problems under uncertainty. In this paper we 

consider the case of non stationary Markov decision 

problems in a finite horizon. 

Given a state-space X and an action-space A, the 

dynamic of a Markov decision process is 

characterized as follows: as a result of choosing 

action at ∈  A in state xt ∈ X at decision epoch t ∈ N, 

the decision maker receives a reward rt(xt,at,) and the 

system state at the next decision epoch xt+1 ∈ X is 

determined by the probability pt(xt+1|xt,at). A Markov 

decision problem is defined by adding to that process 

a performance criterion to maximize over a set of 

decisional policies. This criterion is a measure of the 

expected sum of the rewards along a trajectory, and 

policies are functions that indicate the action at to 

execute given information about the past trajectory at 

time t. For stationary infinite-horizon Markov 

decision problems, most performance criteria lead to 

the existence of stationary optimal policies, i.e. 

functions π that map states in X to actions in A 

(Puterman 1994). In finite-horizon problems such as 

ours, trajectories are sequences of exactly N 

transitions. The performance criterion considered in 

this case is the finite total expected reward criterion 
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 where E 

is the expected value given the policy π and starting 

state x. 

When dealing with finite-horizon MDPs, the 

stationary assumption cannot be considered anymore; 

optimal policies are functions of time and state into 

action AXN →×:π . For this particular kind of 

MDP a policy π can be decomposed into a set 

{π1,π2,…,πN} of policies 
ttt AX →:π . For each 

decision step t, a value function associated to π is 

defined as 
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A policy π is optimal if it maximizes the value 

function V
π

1 on X1. For this criterion, the classical 

Bellman optimality equations that characterize 

optimal policies are:  
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x ∈ Xi, and V
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N+1=0. This optimality equation has a 

single solution V
*
={V

*
1,…,V

*
N} that can be computed 

by a dynamic programming algorithm in O(T.|A||S|²) 

complexity when transition probabilities and the 

reward function are known (Puterman, 1994). 

However, the complexity of these approaches 

precludes its use when state or action spaces are 

large. Moreover, it cannot be applied when the 

transition probabilities or rewards are unknown. Here 

we deal with a complex ecological system with a non 

stationary stochastic process where estimating the 

transition probabilities by simulation is time 

consuming if not computationally impossible. RL 

algorithms are designed to overcome these 

difficulties by applying two principles: unknown 

quantities are estimated by means of simulation; large 

state or action spaces are handled through function 

approximation. The learning process estimates the 

optimal value functions Vt
* and the corresponding 

policies πt
*
 from observed transitions and rewards.  

We use the Q-learning (Watkins 1989) and R-

learning (Schwartz 1993) algorithms adapted to non-

stationary and finite horizon problems (Garcia et al, 

1998). Both algorithms have similar general structure 

and can make use of function approximation. They 

iteratively compute the optimal value function: for 

each state x at each instant t, the optimal value Qt
*
(x, 

a) of each decision a is estimated on the basis of 

simulated transitions. When all these values have 

been correctly estimated, the optimal policy can be 

derived through ),(maxarg)(
**

axQx tt =π .  

Q-learning is based on the Bellman optimality 

equation, replacing the Vt(x) value function of a 

policy by a new function  

2210



∑
+∈ ++=

1

)(),(),(),( 1
iXy iiii yVaxypaxraxQ ππ  

and the optimality equation becomes 

∑
+∈ ++=
1

),(max),(),(),( *

1

*

iXy ibiii byQaxypaxraxQ

To estimate these state/action values, the algorithm 

performs Bellman’s updates on the basis of a sample 

of simulated transitions instead of the actual 

probabilities and rewards (Algorithm 1). If every 

action in each state at each instant is assessed an 

infinite number of times (Kmax) and if the learning 

rate (α) decreases, then Q → Q* with probability 1. 

The SelectAction function which handles the classic 

exploration-exploitation trade-off (Sutton & Barto 

1998) provides search efficiency by focusing on the 

most relevant state/action pairs.  

R-learning can be seen as a parallel version of Q-

learning. The updating rules take into account an 

estimate of the average expected reward per time step 

ρ defined as 
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Algorithm 2 presents the corresponding updating 

rules. Although both algorithms converge to optimal 

policies, R-learning learns faster than Q-learning 

(Garcia et al 1998). 

Algorithm 1  Finite horizon Q-Learning 

for k=0 to Kmax do 

    x ← StartingState 

    for t=1 to N do 

       a ← SelectAction() 

      (y, r) ← SimulateTransition(x,a) 

       Qt(x,a) ←  Qt(x,a) +  

                         αt(x,a) (r + maxb Qt+1(y, b) − Qt(x,a)) 

       x ← y 

Algorithm 2  Finite horizon R-Learning updating rules 

Rt(x,a) ←  Rt(x,a) +  

                 αt(x,a) [r -ρ + maxb Rt+1(y, b) − Rt(x,a)] 

If Rt(x,a)= maxa Rt(x, a) then 

      ρ ← ρ + β[r-ρ + maxb Rt+1(y, b) − maxa Rt(x,a)] 

2. ABALONE AND SEA OTTER MODELS 

In order to learn the best multi-species conservation 

strategy for abalones and sea otters we built a 

simulator that incorporates the population dynamics 

of each species, their interaction, and how 

management decisions influence their threat level. 

2.1. Abalone population model 

We use a general size-structured matrix model for 

abalone published by Bardos et al (2006). Population 

structure at time-step n is represented as a vector x(n) 

and is related to population structure at time n+1 

using the stage-structured projection matrix:  

 

 

 
 

This model reflects the fecundity, mortality and 

growth of seven abalone size classes, where the 

population of stage i at time n is represented by xi(n), 

the growth matrix g whose elements gi,j are transition 

probabilities from class j to class i and sj is the 

survival probability for an individual spending one 

time-step in class j. The fi represent the fecundity of 

class i multiplied by the probabilities of fertilization 

and larval survival. The fi are then multiplied by adult 

survival probabilities si, reflecting an assumption that 

spawning occurs at the end of each time-step. The 

resulting transition matrix is then modified to take 

into account density-dependent fecundity processes at 

various stages. We use Bardos et al (2006) fecundity 

values and the survival vector   

s=(0.207,0.689,0.771,0.804,0.824,0.838,0.848) to 

represent abalone dynamics in the absence of 

predation. For simplicity we express the abalone xi in 

the projection matrix as densities.  

 

Poaching of abalone is a key threat to population 

recovery (Gardner et al 2000, Jubinville 2000). In our 

model, we assume the pressure of poaching to be 

similar to that of commercial fishing, targeting only 

the largest size class (Bardos et al 2006). A stochastic 

process governs the probability of success of 

poaching removing 90% of class 7 with probability 

0.75 and 70% with probability 0.25 every year. 

Simulation with poaching threat leads to 0.31 abalone 

per m² in the absence of sea otter predation. 

2.2. Sea otter population model 

Sea otter population dynamics were modelled using a 

Beverton-Holt model described by Gerber et al 

(2004). This model includes an asymptotic 

relationship between density and recruitment: 

KNNe

KNe
N

tt

r

t

r

t
+−
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 where K is the carrying 

capacity, Nt current population size, and r, intrinsic 

rate of increase.  The parameters are based on a 

population of sea otters occurring in Washington 

State with K=612 and r=0.26 (Gerber et al 2004). 

While predators such as orcas, sharks and bald eagles 

do impact sea otters (e.g. Estes et al 1998), oil spills 

pose the single largest threat to sea otter populations 
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(Ralls & Siniff 1990).  In our sea otter model we 

implement a stochastic process by which oil spills 

may occur every 10 years on average with intensity 

varying from 0.4 to 0.2 reducing N by 20-40% 

(Gerber et al 2004).  

2.3. States definition 

We define X the set of states of our problem 

X={Xa,Xs} where Xa (resp. Xs) represents the set of 

states of our abalone population (resp. sea otter). 

It is not feasible to consider continuous state MDP 

because of the computational complexity required for 

this problem. We therefore model the adult abalone 

population using a finite set of 20 states (Xa). Each 

state represents a range of 0.05 density which 

corresponds to one of four hypothetical categories of 

threat (Table 1).  

We define Xs the set of states representing 10 

levels of the sea otter population. Each state 

represents a 10% increment of the population’s 

carrying capacity e.g. when K = 612, sea otter 

population is in state zero when its population 

abundance is in between 0 and 61 individuals. 

Additionally, sea otters are assumed to be in one of 

4 threat classes (Table 1).  

2.4. Decisions 

Five management actions are considered and define 

the set A of actions: do nothing, reintroduce sea 

otters, enforce anti-poaching, control sea otters and 

the combined action of sea otter control and anti-

poaching.  

Because sea otters have yet to colonize much of their 

former range our conservation action for their 

recovery is the re-introduction of 93 sea otters (state 

1 status endangered) into a hypothetical ecosystem. 

Subsequent to reintroduction, the population grows as 

described by our population model. This action can 

only occur once. 

Anti-poaching enforcement is one of our 

conservation actions for abalone recovery. We model 

the effects of anti-poaching enforcement by 

stochastically reducing the survival of size class 7 by 

either 10% (with probability 0.75) or 30% (with 

probability 0.25, rather than the 90 - 70% reduction 

in survival assumed when poaching occurs). Thus, 

even when anti-poaching measures are implemented, 

poaching still occurs but at a reduced intensity. 

We considered a third and more controversial 

conservation action; the direct removal of sea otters 

(Gardner et al. 2000), for example through the 

reinstatement of First Nation subsistence hunting. 

This action involves reducing the sea otter population 

by 3% of the carrying capacity each year, only when 

sea otters were in a not at risk state.  

2.5. Interaction between sea otters and 

abalone 

In the absence of a mathematical model describing 

the interaction between sea otters and abalone, we 

derived three hypothetical functional responses based 

on the literature. The first response assumes the threat 

from sea otters on abalone increases as abalone 

density increases. This response is assumed to be 

independent of sea otter density because at low sea 

otter densities, sea otters tend to prey heavily on 

large, high energy prey such as abalone (Table 1, F1). 

As sea otter density increases, individual otters tend 

to specialise on one of several prey species, however 

the impact on abalone remains significant (Estes et al 

2003). The second functional response assumes sea 

otter quantities not abalone density drives the 

response. Here the level of predation imposed on 

abalone irrespective of abalone density will increase 

with increasing sea otter abundance (Table 1, F2). 

The third function is influenced by the abundance of 

both sea otter and abalone. It resembles a sigmoid 

response where the predation rate accelerates at first 

as prey density increases and then decelerates 

towards satiation at high prey densities (Table 1, F3). 

Sigmoid functional responses are typical of generalist 

predators, like sea otters, which readily switch from 

one prey species to another and/or which concentrate 

Table 1. Threat levels and three hypothetical functional responses defined for different densities of 

abalone and sea otter abundance. Functional response of abalones to sea otter predation is defined by the 

decrease in abalone survival rate (s) of stages 3-7, as L (Low) 5%, M (Medium) 15%, and H (High) 25%.   
Abalone status  

(abalone m-2) 

Endangered (<0.1) Threatened (≥0.1-

<0.3) 

Special Concern 

(≥0.3-<0.5) 

Not at Risk (≥0.5) 

Functional Response F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

Sea otter status (% of K)     

Not at Risk (>60) L H L L H M M H H H H H 

Special concern (≤60->40) L H L L H L M H M H H H 

Threatened (≤40->30) L M L L M L M M M H M H 

Endangered (≤30) L L L L L L M L L H L M 
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their feeding in areas where certain resources are 

most abundant.  

2.6. Rewards 

To determine an optimal management strategy we 

describe a set of rewards that are achieved when 

certain states (i.e. threat levels) are realised (Table 2).  

Two types of arbitrary reward structures are used. 

The first provides a reward only when both sea otter 

and abalone populations are in not at risk or special 

concern states, with highest rewards when both are 

not at risk. Conversely the second reward structure 

provides rewards when at least one population is in a 

not at risk or special concern state and reflects a 

trade-off that may ensue if both populations cannot 

be maintained at levels outlined in the respective 

recovery strategies.  

3. RESULTS 

3.1. Management conditions under which 

both species can co-exist at various status levels 

We used Q-learning and R-learning algorithms to 

learn optimal conservation strategies over a 50-year 

time horizon. Both reinforcement learning algorithms 

were run 500,000 times with 10 time-steps each to 

learn near optimal policies. Decisions were taken 

every 5 years. For all the following results we set the 

starting state by simulating abalone population 

dynamics in the presence of poaching but absence of 

sea otters.  

Management scenario 1: Sea otter reintroduction 

and anti-poaching enforcement 

We first examine two management actions currently 

being utilized in the northeast Pacific Ocean: 

reintroduction of sea otters and anti-poaching 

enforcement.  

Under functional response 1, reward 1 and 2, we find 

it is optimal to introduce sea otters at the first time 

step (R). Anti-poaching enforcement (A) is then the 

optimal decision for the remaining time-horizon. For 

R1, only two valuable states are reached: when both 

species are at special concern (+14) or when 

abalones are at special concern and sea otters are at 

not at risk (+17). For R2, rewards are dominated by 

sea otter status. The abalone population oscillates 

between threatened and special concern due to 

changes in predation impact from low to medium at 

these threat levels (Table 1). Oil spills have no 

impact on the status of abalone.  

Under functional response 2, reward 1 and 2, the 

optimal strategy is to first increase the level of 

abalone to not at risk. This level can be reached after 

10 or 15 years of anti-poaching enforcement. Sea 

otters are then reintroduced. For reward 1 only, +14 

and +17 are obtained and occur when both species 

are at special concern or when abalones are at special 

concern and sea otters are at not at risk. Here, the 

abalone population fluctuates with changes in sea 

otter population density as a result of oil spills 

because under functional response 2 predation 

pressure is related to sea otter density.  

Under functional response 3, reward 1 and 2, the 

optimal strategy is always to introduce sea otters at 

the first time-step. Anti-poaching enforcement is then 

the optimal decision for the remaining time-horizon. 

Only two valuable states are reached: when both 

species are at special concern (+14) or when 

abalones are at special concern and sea otters are at 

not at risk (+17).  Abalone density decreases with 

increases in sea otter population until the former 

reaches threatened or endangered status, when it 

becomes less impacted by sea otters. As defined by 

functional response 3, abalone density fluctuates in 

response to changes in sea otter population 

abundance which are driven by oil spills.  

 

 

 

 

Table 2.   Two reward structures (R1, R2) for different combinations of species status. 

 Abalone status Endangered Threatened Special Concern Not at Risk 

Reward R1 R2 R1 R2 R1 R2 R1 R2 

Sea otter status     

Not at Risk 0 10 0 10 17 17 20 20 

Special concern 0 7 0 7 0 14 17 17 

Threatened 0 0 0 0 0 7 0 10 

Endangered 0 0 0 0 0 7 0 10 

Extirpated 0 0 0 0 0 7 0 10 
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Table 3. Comparative performance for three 

management scenarios of Q-Learning (QL) and R-

Learning (RL) algorithms.  

F. response 1 F. response 2 F. response 3 

 R1 R2 R1 R2 R1 R2 

QL1 66.06 111.85 19.90 98.96 53.63 108.28 

RL1 66.11 111.44 20.50 98.55 53.94 108.33 

QL2 66.29 111.36 19.47 99.11 53.07 108.72 

RL2 66.10 111.78 19.48 99.12 54.92 108.65 

QL3 66.17 111.56 25.39 100.06 84.67 119.95 

RL3 66.05 111.44 24.73 99.90 84.53 119.64 

Management scenario 2: Including actions of sea 

otter reintroduction and control 

Implementing sea otter reintroduction and removal 

does not improve the overall performance of optimal 

strategies (Table 3 QL2, RL2).  

Management scenario 3: Including action of sea 

otter reintroduction and control, and anti-

poaching simultaneously 

The combined actions of sea otter reintroduction, 

control and anti-poaching outperform all other 

management scenarios. After sea otters are 

reintroduced during the first time step, population 

control is implemented when sea otters are not at risk 

with functional response 2 and 3 (Table 3, QL3, RL3; 

Figure 1). This scenario does not change the 

performance with functional response 1 as the threat 

to abalone is independent of sea otter density.  This 

combined strategy allows abalone to increase in 

density until density-dependant effects come into 

play as defined under functional response 3.  

Figure 1. Simulation of optimal management under 

Functional response 3, reward 1. 

Expected cumulated rewards for three 

management scenarios 

The comparative performance of these strategies 

illustrates the differences between the different 

functional responses (Table 3). If our objective is to 

maintain both populations at the same time at special 

concern or better (reward 1) then strategies perform 

better with functional response 1. Optimal strategies 

under functional response 2 performed badly: it is 

unlikely that both species could be conserved at 

viable levels simultaneously. If our objective is to 

conserve at least one species and preferably both 

species (reward 2) best results are obtained with 

functional response 1 & 3.  

4. DISCUSSION 

We fail to find a management strategy which allows 

both species to co-exist at not at risk levels.  There 

are several possible reasons for this. Firstly our 

models and assumptions may be unrealistic. In the 

absence of published information on abalone and sea 

otter functional responses we have assumed three 

contrasting responses based on the literature.  

A second possibility for not achieving co-existence at 

not at risk levels is that the densities specified for 

recovery of abalone may be unrealistic in the 

presence of sea otters. Interestingly, Watson (2000) 

argues that sea otter recovery and abalone fisheries 

are mutually exclusive corroborating what we find 

here. We do find however, with anti-poaching 

enforcement and sea otter removal co-existence at not 

at risk (sea otter) and special concern (abalone) can 

be achieved and outperforms all other scenarios 

assessed here.  

To our knowledge this is the first application of 

reinforcement learning for optimal management of 

interacting species at risk. There is a need to develop 

these methods further in order to increase our 

capacity to solve the complex management problems 

arising from species interactions such as those 

described here.  
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