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EXTENDED ABSTRACT

When selecting a long-term silvicultural management
policy for a forest, a number of stochastic events
can be taken into account in order to improve the
management of the forest and thereby increase its
value. A stochastic event that has recently been given
a lot of attention to is the damage to forests due to
windstorms. This is an important event to take into
consideration as recent studies show that damage
due to storms may seriously influence the economic
value of the forest and that the risk of wind damage is
influenced by the silvicultural treatments.

When the risk of wind damage is taken into account
in the optimisation of the forest management policy
two major problems arise. First, the ensuing
management problem becomes spatial as a stand’s
risk of being damaged due to windstorms depends
on the state of the specific stand as well as the state
of its neighbouring stands. Second, for real-world
applications, the problem size may become intractably
large as forests containing hundreds of stands may
have to be considered.

To overcome these two difficulties, we propose the
use of the newly developed framework of Graph-
Based Markov Decision Processes (GMDP). With this
framework, the problem can both be modelled and
approximately solved by an optimisation of the forest
management policy. The optimisation is such that
the long term economic value of the forest (expected
net present value) is maximised, under the constraint
that the management policy is legal according to a
number of regulations in the Swedish Forestry Act.
The output of the GMDP model is a state-dependent
management policy that specifies for each stand which
silvicultural treatment should be applied to the stand.
Advantages of the proposed model are that it can both
take stochastic wind and growth events into account.
The risk of wind damage can also be modelled
realistically to be dependent on aspects such as: the
state of the stand; the state of the neighbouring stands;
the spatial structure of the forest; the geographical

orientation of the forest; and the topography of the
area. Furthermore, as recent development in GMDP
solution methods has produced algorithms that only
grow linearly with the number of stands, it is likely
that the proposed method can successfully be applied
to forest areas containing a large number of stands.

The main objective of this article is to present a
GMDP approach for optimising a forest management
policy when the risk of wind damage is taken into
account. We will describe the theoretical aspects
of the framework and how a model of this problem
can be built. A second objective of this article is to
analyse the value of taking the risk of wind damage
into account in the selection of the forest management
policy. This by comparison of the value of a forest
when it is managed according to policies taking or not
taking the risk of wind damage into account.

For a case study, a forest estate in the southern part of
Sweden was selected. This is a work in progress and
the work has so far been concentrated on a section
of the estate. The selected section consisted of 39
forest stands to a total of 99 ha. Sub-modules for
projection of the state of the forest developed for the
Swedish forestry were used together with a model for
estimation of the probability of wind damage. The
GMDP model showed which stands were at risk of
being damaged, their individual risk levels and what
silvicultural treatments should be applied to maximise
the expected NPV of the forest. Treating the stands
according to the management policy specified by the
GMDP model increased the expected NPV (103 SEK)
of the whole forest only slightly by 2% from 1303 to
1323 However, for the stands at risk of wind damage,
the expected NPV increased by as much as 19% from
104 to 124.
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1 INTRODUCTION

In Europe and in Sweden, wind is a major concern
in forestry due to the massive amount of damage
it inflicts. For example, a storm in 2005 felled
approximately 75 million m3 of softwood in the
southern part of Sweden (Sondell (2006)). In Sweden
alone wind and snow damage on average 4 million
m3 of wood per year (Valinger and Fridman (1997)).
In all of Europe windstorms damage 18.5 million
m3 of wood per year, (Schelhaas et al. (2003)).
The economic effect of wind damage may be severe
as it not only leads to timber losses, but also to
departures from the forest management plan. This as
damage in a forest area may force the forest owner
to perform unscheduled and costly thinnings as well
as clear-cuttings. These activities are performed to
salvage damaged areas and prevent insect attacks on
broken and uprooted trees spreading to healthy trees
(Schroeder and Eidmann (1993)).

Several studies have shown that the probability
of wind damage is influenced by the silvicultural
treatments (e.g. Persson (1975), Lohmander and
Helles (1987), Quine et al. (1995), Valinger and
Pettersson (1996)). Wind damage is for example
most likely to occur in stands that have recently been
heavily thinned or that are located next to newly
created clear-cut areas (Gardiner et al. (1997), Peltola
et al. (1999)). This means that the risk level depends
on the forest management plan. It has also been shown
that it is feasible to take into account the probability
of wind damage in the optimisation of the forest
management plan. This may decrease the overall
risk level and increase the expected net present value
(NPV) of the forest. Meilby et al. (2001), optimise
a management plan while taking into account the
spatial interaction between the stands as well as the
geographical structure and orientation of the forest.
The risk of wind damage is explicitly modelled,
based on an empirical model (Lohmander and Helles
(1987)) that takes into account the sheltering effect
of neighboring forest stands. However, as the model
explicitly states all possible future scenarios of the
forest, it grows exponentially in the number of stands
and polynomially in the number of time periods. Their
model is therefore unsuited for forests containing a
large number of stands. Another model has been
suggested by (Zeng et al. (2007)), in which the
problem is modelled as an unconstrained optimisation
problem and where the decisions are which forest
management plan to use during three 10-year periods.
The objective of the model is to minimise the number
of vulnerable edges while keeping a high timber
harvest and an even timber flow over the planning
horizon. To evaluate the effects of a forest plan, a
forest growth model (SIMA, Kellomäki and Väisänen
(1997)), a mechanistic wind damage model (HWIND,
Peltola et al. (1999)) and a GIS software (ArcGis) are

used. An approximately optimal management plan is
found with the help of heuristic optimisation methods
such as simulated annealing, tabu search and genetic
algorithms (Heinonen and Pukkala (2004), Pukkala
and Kurttila (2005)). The method is evaluated on a
typical boreal forest in Finland containing 46 ha of
open terrain and 395 ha of forest divided into 266
stands. In the case study it was shown that the number
of vulnerable edges could be decreased while still
satisfying economic objectives. However, their model
is deterministic as it neither takes wind events and
stochastic development of the stand into account. It
can therefore not answer the important question of
how shall the forest be managed if it is damaged?

We propose the use of a Graph-based Markov
Decision Process model for the optimisation of the
management policy of a forest when the risk of wind
damage is taken into account. Note that the proposed
GMDP model computes a forest management policy
and not a forest management plan. In its classical
definition a management plan is time-dependent and
specifies for each time period what silvicultural
treatment shall be performed. A management policy
is state-dependent and specifies for each possible state
of the forest what silvicultural treatment shall be
performed. Management policies can therefore take
into account stochastic events and thereby answer
not only questions concerning the prevention of wind
damage, but also what shall be done after wind
damage has occurred.

This article is structured as follows. First, we describe
the GMDP framework. Next we present the GMDP
model of the forest management problem. Then,
we show how two sub-modules are used to specify
forest growth, yield from silvicultural treatments and
probability of storm damage. Finally, we describe an
area in the south of Sweden for which the model has
been evaluated and discuss the conclusions that can be
drawn from this preliminary study.

2 GRAPH-BASED MARKOV DECISION PRO-
CESSES

In this section we formalise the problem addressed in
this article within a new framework. This particular
framework was selected as it provides means of
modelling and solving the forest problem at hand. We
start by describing the theoretical framework which is
used and continue with a description of the solution
algorithms that have been suggested for solving a
problem expressed in this model.

In its classical formulation (Puterman (1994)), a
stationary Markov Decision Process (MDP) is a
system defined by a four-tuple < X ,A, p, r > where:
X is a finite set representing the admissible states of
the system;A is a finite set representing the applicable
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actions; p is a transition function p : X × X × A →
[0, 1] such that p(x′|x, a) represents the probability
of moving from state x ∈ X to state x′ ∈ X when
action a ∈ A is applied; and r is an ”immediate”
reward function r : X × A → R such that r(x, a)
represents the reward obtained in state x when action
a is applied. The MDP is defined so that at each
decision epoch, an action a is selected to be applied,
after which the system changes from state x to state
x′. The set of decision epochs is denoted by T , and
from now on it will be assumed that T is infinite,
T = {1, 2, . . . }. The time between two decision
epochs is known as a time period. For any decision
epoch t, the state x′ of the process at the following
decision epoch t + 1 depends (stochastically) only
on the state x and on the action a applied at epoch
t (Markov property). As the MDP is assumed to be
stationary, p(x′|x, a) and r(x, a) are independent of
the decision epoch t.

In this paper we focus on a special class of
MDP, known as Graph-based Markov Decision
Process (Chornei et al. (2006)). A GMDP differs
from a MDP in that the state and action spaces
are multidimensional and that there exist local
dependencies between the state and action variables.
A GMDP is defined by a five-tuple < X ,A, p, r,G >
where: X is a Cartesian product of finite sets X =
X1 × . . . × Xn; A is a Cartesian product of finite
sets A = A1 × . . . × An; p is a transition function
p : X × X ×A → [0, 1]; r is an ”immediate” reward
function r : X × A → R; and G is a directed graph
G = (V,E) expressing local dependencies among
state and action variables. The local dependencies
among the state and action variable make it possible to
compute the transitions and rewards from local terms.
A neighbourhood function N over V is defined as:

Definition 1 (Neighbourhood function) N : V →
2V is defined as: N(i) = {j ∈ V |(j, i) ∈ E}, ∀i ∈
V .

Transitions and rewards are local in a GMDP
according to the directed graph G:

Definition 2 (Local transitions) Let <
X ,A, p, r,G > be a GMDP. Transitions are
local iff:

p(x′|x, a) =
n∏
i=1

pi(x′i|xN(i), ai),∀x′ ∈ X , x ∈ X , a ∈ A

where: xI = {xj |j ∈ I},∀I ⊆ {1, . . . , n}.

Definition 3 (Local rewards) Let < X ,A, p, r,G >
be a GMDP. Rewards are local iff:

r(x, a) =
n∑
i=1

ri(xN(i), ai),∀x ∈ X ,∀a ∈ A.

The action to apply, given the state of the system,
is defined through a (stationary) policy. A policy is
a function δ : X → A that assigns at each time
epoch an action to every state. In the general case,
policies for a GMDP take the form δ = (δ1, . . . , δn),
where δi : X → Ai. Nevertheless, global policies
can take O(nασ

n

) space, where α = maxi |Ai| and
σ = maxi |Xi|. Except for problems of very small
dimension, this clearly prohibits the computation of
global policies. Some special policies, called local
policies are therefore of interest:

Definition 4 (Local policy) Let< X ,A, p, r,G > be
a GMDP. A policy δ : X → A, is said to be local iff
δ = (δ1, . . . , δn), where δi : XN(i) → Ai.

Even though the optimal policy of a GMDP may not
be local, it is interesting to look for ”good” local
policies. This since they are both easy to express
(space complexity in O(nασ)) and implement. From
now on we will consider only local policies.

Two algorithms for finding approximate solutions
to large GMDP have been suggested. One based
on Approximate Linear Programming (ALP) (Forsell
and Sabbadin (2006)) and one based on Mean-Field
Approximation (Peyrard and Sabbadin (2006)). Both
methods give an approximate solution to the problem
as a local policy, and have linear complexity in the
number of variables in the GMDP. The two solution
algorithms have been evaluated on small toy problems
for which they gave similar results in the value of the
policy. We have however in this work only been using
the ALP algorithm.

3 GMDP FOREST WIND DAMAGE MODEL

In this section we present the proposed GMDP model.
We show how the model is defined and how forest
aspects such as stand growth, stochastic wind events,
yield from silvicultural management and probability
of wind damage are taken into account.

A forest is commonly divided into a set of stands
where each stand is a ”geographically contiguous
parcel of land considered homogeneous in terms of
tree vegetation” (Lawrence et al. (2001)). In the
GMDP model, the state of each stand in the forest
is represented by the value of a state variable Xi. If
the forest consists of n stand’s, the state space of the
GMDP is the cross product of the domains of the
state variables Xi, i = 1, . . . , n, represents the state
of stand i. By representing the state of a stand as the
age of the stand, the state variables can both describe
the timber value in the stand and the risk of the stand
being damaged by wind. Damage to stands due to
wind can of course be defined in several different
ways. We chose to define a wind damaged stand as a
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stand that has been so severely damaged by wind that
the forest owner will always salvage harvest the stand.
More specifically, the state space of each state variable
Xi is the set {1, 2, . . . ,m,m+ 1},m ∈ N. If the time
periods are Y years long, the state of a stand is k and
k < m + 1, then the trees in the stand are between
Y (k − 1) and Y k − 1 years old. If the state of the
stand is m + 1, then the stand was damaged by wind
between Y and 1 years ago, after which the stand was
salvage harvested, and the current trees in the stand
are between 0 and Y − 1 years old. For simplicity, it
is assumed that once a stand is sufficiently old (above
Y (m−1) years), the state of the stand does not change
any more. The timber stock of the stand will no longer
grow and its characteristics will not change.

To keep the action space small, only two management
activities are free to select, ”don’t-clear-cut” and
”clear-cut”. These two management actions are
denoted by c1 and c2. Besides these two management
activities, the stands are also treated according to a
number of fixed management activities. These are
management activities that will always take place
and are not influenced by the two free management
activities. The fixed management activities are: site
preparation; planting; pre-commercial thinnings; and
thinnings. Each stand has an individual specification
of the fixed management activities and they are
incorporated when the revenues of the stand is
calculated.

The state and action spaces of the GMDP model can
then be formalised as: I) X = X1 × · · · × Xn, where
Xi = {1, 2, . . . ,m,m+1} and II)A = A1×· · ·×An,
where Ai = {c1, c2}. The local management policy
is a specification of when nothing should be done to a
stand or when it should be clear-cut.

For a specific time period, the probability of a stand
being damaged by wind depends on the state of the
stand and the shelter effect provided by other stands
in the forest. This as stands can block the wind
and thereby decrease the risk of other stands being
damaged. The geographical layout of the forest
specifies which stands can provide shelter and which
stands they provide shelter to. A directed graph G =
(V,E) is used to specify the pattern of sheltering
effects. The graph G specifies for each stand i, which
stands in the forest influence stand i probability of
being damaged by wind. Each stand in the forest
is thus represented by a vertex in V . There exists a
directed edge (j, i) ∈ E iff stand j can give shelter to
stand i. As the probability of a stand being damaged
depends on the state of the stand itself, each node in
the graph also has a loop: (i, i) ∈ E.

The time periods are modelled so that damage
to the stands due to wind always occurs before
any management activity is performed. As it is

assumed that a damaged stand will always be salvaged
harvested, the selected management activity will
never be performed on a stand damaged by wind. That
is, given that a stand will be damaged by wind during
a time period, the management activities ”don’t-clear-
cut” or ”clear-cut” are changed into ”salvage-harvest”.

The management activities and the damage inflicted
by wind affect the normal aging dynamics of the
stands and the rewards received. The probability of
a stand being damaged by wind is pi(x′i = m +
1|xN(i)). This transition probability is independent
of the action selected, increases with the age of the
stand and decreases with the age of the stands that can
provide shelter. The aging dynamics of the stands are
summarized in Table 1.

Table 1
The aging dynamics of the stands

State Action Damaged Next state
xi 6= m + 1 c1 No x′

i = min(m, xi + 1)
xi = m + 1 c1 No x′

i = 2
xi c2 No x′

i = 1
xi c1, c2 Yes x′

i = m + 1

As the rewards that are received are different if a stand
is damaged or not, the reward functions of the GMDP
has to be formulated as ri(xN(i), ai, x

′
i). However,

the GMDP framework requires them to be locally
formulated as ri(xN(i), ai). The previously described
reward functions are therefore transformed, leading to
an equivalent GMDP where:

r̂i(xN(i), ai) =
∑
x′

i∈Xi

pi(x′i|xN(i), ai)ri(xN(i), ai, x
′
i),

∀xN(i) ∈ XN(i),∀ai ∈ Ai, i = 1, . . . , n.

4 PROBABILITY OF WIND DAMAGE AND
REVENUES

The probability of wind damage, as well as revenues
generated by the silvicultural operations have to be
specified in the GMDP model. For evaluating these,
two sub-modules specially developed for the Swedish
forestry were used.

4.1 Probability of wind damage

To assess the probability of wind damage, a tool
developed and assessed in southern Sweden (Olofsson
and Blennow (2005)) was used. As wind damage is
usually concentrated at forest edges (Persson (1975)),
the tool evaluates a stand’s probability of being
damaged by wind, through a classification procedure
based on the state of the forest and on the geographical
location of the stand. More specifically, for a specific
edge of a stand, the tool uses a decision tree to classify
the edge of the stand as either having a high or low
annual probability of wind damage. In this way, all
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edges of a stand can be classified as either having
a high or low annual probability of wind damage.
The decision tree we use is taken from (Olofsson and
Blennow (2005)) and can be seen in table 2.

The edges that are classified as high probability edges
have a yearly probability of being damaged of 5%
or more, while low probability edges have a yearly
probability of being damaged less than 5%. The
decision tree is based on the following characteristics
of the forest stand. Stand edge height, the difference
between the mean tree height of the stand and its
neighbouring stand (m). Stem taper, the ratio of
mean tree height to mean diameter at breast height
(m/cm). Direction of exposure, the orientation of the
edge {0◦(N), 60◦, 120◦, 180◦(S), 240◦, 300◦}. Exp,
the topographical shelter of the stand in terms of large
and small scale variations of the terrain {exposed,
sheltered}. The stem density (no. of stems/ha). For
simplicity, we assumed in this study that the landscape
was completely flat. The stand edges were therefore
never classified as exposed.

Table 2
Decision tree for classification of edges

Edge height > 10
↓ ↘

Stem taper <= 0.98 Stem taper > 0.98
↙ ↓ ↓

Dir. of exposure Dir. of exposure High probability
= 240 = 60 edge
↓ ↓

Exp = exposed Stem density <= 863
↓ ↓

High probability Stem taper > 0.82
edge ↓

High probability
edge

The probability of the stand being damaged by wind
was defined as follows. First, the edge sections of
the stand were specified so that each section was only
neighbouring one other stand. Each edge section was
then classified as either being a high impact or a
low impact edge section, depending on the length of
the edge section and depth of the stand at the edge
section. All high impact edge sections were then
classified as having a high or low annual probability of
wind damage using the above described decision tree.
The annual probability of the stand being damaged
by wind was then defined as follows. If a least
one of the high impact edge sections was classified
as a high probability edge, the annual probability of
the stand being damaged was defined as 5%. If all
the high impact edge sections were classified as low
probability edges, the annual probability of the stand
being damaged was defined as 0%. This meant that
low impact edges had no effect on the probability of a
stand being damaged.

4.2 Revenues

The revenues generated by performing the silvicul-
tural management actions in the stands were specified
through production tables. These tables were
generated by a growth-and-yield simulator (Wikström
(2000)), and one table was generated for each stand.
Each table specifies the revenue generated by clear-
cutting or salvage harvesting the stand. It also
specifies the revenues generated by the fixed and
underlying management regimes.

Two additional forest aspects had to be taken into
account in the specification of the silvicultural
revenues: I) Thinning is never performed in the same
time period as a clear-cut and II) according to the
Swedish Forestry Act it is illegal to clear-cut young
stands. The first aspect was taken into account by
constructing the revenue from clear-cutting in a time
period so that it does not include any revenue from the
fixed management activities. The second constraint
was handled by setting the revenue from clear-cutting
to a large negative number in case a stand was clear-
cut too early. By setting this cost sufficiently high, no
stand would be clear-cut too early. For a summary of
the revenues, see Table 3.

Table 3
Revenue generated by a specific action and damage

to the stand
Action Damaged Revenue

Don’t-clear-cut No Fixed management
Clear-cut No Clear-cut

Don’t-clear-cut Yes Salvage harvest
Clear-cut Yes Salvage harvest

5 PRELIMINARY RESULTS

To evaluate the suggested method, it was tested on
a forest estate in southern Sweden called Björnstorp
(55◦37′N / 13◦24′E) which is located within the
Swedish temperate zone. The estate amounts to a
total of 2800 ha of which around 1200 ha is forest
mainly dominated by Norway spruce. This is the
same estate as the one used in (Olofsson and Blennow
(2005)) to build the decision tree described in 4.1. As
a preliminary study only a section of the Björnstorp
estate was considered. The selected area contained
39 forest stands to a total of 99 ha. We selected time
periods of 20 years. The GMDP model then contained
39 forest areas (n=39), each stand could take six
values (ages), and two actions could be performed in
the stands (|Xi| = 6, |Ai| = 2, i = 1, . . . , 39). An
annual discount factor of 2% was used and all results
were generated on an Intel Pentium 3.6 GHZ/ 1.00 GB
machine using a Scilab implementation.

In the selected section of the estate, only fourteen
stands had a stochastic development. For the other
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stands there were never any risk of wind damage as
there risk levels were lower than the thresholds used
in this study. The edge sections of these stands were
always classified as having a low annual probability
of wind damage. To assess the value of taking the
risk of wind damage into account, two silvicultural
management policies were compared. A ”storm”
policy taking the risk of wind damage into account and
a ”no storm” policy not taking the risk of wind damage
into account. The storm policy is the management
policy found by solving the GMDP model of the estate
with the ALP algorithm. The no-storm policy is the
policy found by applying the ALP algorithm to a no
risk version of the GMDP model of the estate in which
all risks of wind damage had been removed. That is,
the probability of a stand being damaged by wind was
always equal to zero. The two management policies
were evaluated on the original GMDP model of the
estate with standard Monte Carlo simulations of 400
trajectories of length 20 time periods and where the
current state of the forest was used as the starting
point. The expected NPV (103 SEK) of the estate
when it is managed according to the storm and no-
storm policies were 1323 and 1303. The expected
NPV of the areas having a stochastic development
when they are managed according to the storm and
no-storm policies were 124 and 104.

6 DISCUSSION

We have described a work in progress concerning
the management of a forest faced with risk of wind
damage. We have suggested a GMDP model that
can be used to optimise the silvicultural management
policy when the risk of wind damage is taken into
account. We have shown how the model is specified
and how it takes into account stochastic wind and
growth events as well as several important aspects of
wind damage. The probability of wind damage is
modelled as depending on the state of the stands, the
state of the neighbouring stands, the spatial structure
of the forest, the geographical orientation of the forest
as well as the topography of the area. The suggested
model is also suitable for modelling large forest areas
as the complexity of the ALP solution algorithm only
grows linearly in the number of stands.

Preliminary tests on a case study show that the
suggested model can be used to find a silvicultural
management policy that takes the risk of wind damage
into account. Even though only a third (14/39) of the
stands in the case study were facing risks of wind
damage according to the criteria used, the value of
the forest increased by managing it according to a
policy taking the risk of wind damage into account.
The expected NPV of the whole forest only increased
slightly by 2%. However, for the stands at risk of wind
damage, the expected NPV increased by as much as
19%. This shows that for stands at risk of being

damaged by wind it is important to find a management
policy that takes into account the risk of wind damage.

In this model we have assumed relatively low risk
levels of the stands. We have modelled the minimal
risk levels according to the tool used for characterising
the risk levels of the edges of the stands. It is likely
that the risk levels of the stands are substantially
higher than these. As the estimation of the expected
NPV of the forest is based on the risk levels, it is
likely that an increase in the risk levels will further
increase the value of managing the forest according to
the storm policy. Such an analysis is however left as
a future work but the proposed model is a useful tool
for such an analysis.

Considering the preliminary results on the Björnstorp
estate, further developments of the model will be
made. When the neighbouring graph in the GMDP
model was created only geographical constraints were
taken into account. Two stands were defined as
neighbours if they share a border. However, some
edge sections are always classified as having a low
annual probability of wind damage. If both edge
sections are always classified as having a low annual
probability of wind damage the two stands have no
influence on each other’s development and should not
be linked in the GMDP graph. As a result, some
stands are completely independent of their neighbours
and their optimal management policy can easily be
computed as it only depends on the state of the stand.
The size of the GMDP model may in this manner
be dramatically reduced, in the considered section
of the Björnstorp estate 25 of the 39 stands can be
computed individually. The same remark applies
to the computation of the no-storm policy that was
computed for evaluation of the suggested method.
The policy was computed by solving a GMDP
with independent vertices. When the risk of wind
damage is not considered the stands are independent
and individual and optimal management policies can
easily be computed. This in comparison to the ALP
solution method that in theory is approximate.

Further developments of the suggested model will
also be concentrated on the development of solution
algorithms for GMDP based on Reinforcement
Learning (Sutton (1991)). As a GMDP can be seen
as a multi-agent collaborative MDP, these solution
algorithms will be in line with the ones suggested
by (Guestrin et al. (2002), Kok and Vlassis (2006)).
We hope that such solution algorithms will make
it possible to shorten the time periods used in the
model. Shorter time periods would improve the
management options of the stands as well as the
possible interactions between the stands. This would
increase the management possibilities for the stands
at risk. Such improvements would give us further
knowledge of the value of taking the risk of wind
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damage into account in forest management policies.
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