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EXTENDED ABSTRACT 

The VRSAP (Vietnam River System and Plains) 
model is popular for modeling the hydrology of the 
Mekong Delta, Vietnam.  This is due to its highly 
complex internal dynamics that have been refined 
and built upon over several decades to reflect a 
unique and very complicated hydrological system.  
Annually updated data is often used to calibrate the 
model parameters to keep up with the changes in the 
Delta.  As the result, the VRSAP is a highly non-
linear and high-ordered system making the 
development of any control algorithm very difficult.  
This paper discusses the framework for analyzing 
the VRSAP’s governing dynamics to make the 
model suitable for supporting land-use decisions.  
This process can be applied toward similarly 
complex simulation model that requires 
simultaneous auto-calibrations to its parameters. 
Specifically, the paper reports on the following 
three analysis:  
 
1.  A linearization of the governing equations, the 
St. Venant system of equations for open channel 
flow, for an inner loop SISO (single-input single-
output) controller development.  The linearization 
combines external inputs into the canal segment and 
roughly cast as lateral inflow.   
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Dynamic property is given to the lateral inflow 
parameter R.  Practical conditions imposed on the 

new parameter ensures well-posedness of the 
hyperbolic non-linear partial differential equations.  
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The linear temporal logic statement r1.c expresses 
the rule for implementing r1.b to maintain well-
posedness of r1.a. 
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2.  An adaptive control scheme is presented to auto-
calibrate model parameters using an outer loop 
MIMO (multi-input multi-output) controller. The 
controller is developed through an eigenvalue 
analysis technique.  Result r2.a shows that flow 
characteristic is effected by the matrix eigenvalues.  
A sample adaptive law is developed, (r2.b), to prove 
as well as demonstrate feasibility of this technique. 
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3.  An algorithm to recognize and eliminate almost-
uncontrollable/unobservable modes of the model.  
This is achieved by introducing auxiliary input for 
balanced truncation.  
 
The author suggests an iterative algorithm to arrive 
at desired truncated result.   
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1. INTRODUCTION 
 
The Mekong Delta – The Mekong Delta of Southern 
Vietnam is integral to the country’s economy and 
politics.  Almost all land-use in the Delta is for 
agriculture and aquaculture.  In addition, the Delta 
is home to many rare species of birds, fish, 
mammals and complex ecological systems that are 
essential to the global environment.  These different 
factors impose multiple demands on the river 
system. Therefore, effective hydrology management 
in the Mekong Delta is one of the top priorities for 
the Vietnamese government today. 
 
1.1. The VRSAP Model  
 
Since its development several decades ago, the 
VRSAP has been continuously updated to better 
reflect the ever-changing conditions in the delta.  
The VRSAP is popular and is used by governmental 
agencies [1].  Though widely used, the model has 
several shortfalls that reduce its effectiveness such 
as using previous year’s data to make management 
decisions on the current year. Furthermore, 
parameter adjustments to the model (necessary due 
to the delta river system constantly changing) based 
on previous year’s data may not reflect the current 
delta conditions.   
 
1.2. The Control Problem 
 
To address the issue of system efficiency and 
accuracy outlined above, the author proposes 
applying a real-time feedback control to the 
VRSAP.  The feedback control loop is implemented 
with two specific goals: (1) control system actuators 
at real-time in response to current data, (2) auto-
calibrate system parameters to adapt the model to 
changes in the system.  Since it was designed as a 
simulation model, the VRSAP currently exhibits 
many limitations that render it unsuitable for the 
application of automatic control.  The limitations 
can be divided into two main issues: (a) The model 
is governed by complicated non-linear dynamics 
convoluted data types, and (b) lack of clear 
algorithm for parameter calibration.   
  
This paper is organized as follows:  Section 1 
motivates and introduces the problem, Section 2 
outlines a linearization of the governing St. Venant 
system of equations with input consideration, 
Section 3 discusses an outer loop MIMO adaptive 
control scheme, and Section 4 discusses a scheme to 
identify and eliminate superfluous parameters, and 
Section 5 concludes the paper.   

 
2. INNER SISO LOOP SETUP AND 
ANALYSIS BASED ON STEADY STATE 
LINARIZATION WITH DYNAMIC INPUT 
 
The VRSAP model, as it is being used, produces a 
prediction of the behavior of the hydrology through 
a schematization scheme (Figure 2).  That is, the 
model predicts water flow and level of the area 
under study – though level is considered to be the 
more essential control variable.  Consider the single 
feedback loop in Figure 1 below.  The controller, 
derived from a linearized model, automatically 
generates a schedule for the river sluice gates based 
on minimizing the error difference with the 
controlling variable.  

 
Figure 1 – Inner SISO control loop. 

 
The most common approach to develop a controller 
for the model is to linearize the governing dynamics 
at a certain operating condition.  Current literature 
reports effectiveness in linearization of the VRSAP 
at steady state and steady flow [4], [5], [6].  
However, past linearization of the dynamics has 
been done without consideration for dynamic input.   
 
Dynamic input – Equations (1),(2) below has been 
revised from a similarly formed system of equations 
used by the VRSAP model [7] to include dynamic 
input parameter (‘R’). 
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Where: 
Q   =   water flow (m3/s) 
Z   =   water level (m) 
B   =  canal width at free surface (m) 
Bc  =  canal width averaged over segment (m) 
α0, α   = adjustment factor (see [2]) 
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Chezy parameter. 
 
and 
R   =  )(θf  
R represents the input parameter (such as lateral 
inflow).  Practical conditions, described by c1, are 
imposed on R and θ to maintain simplicity to the 
problem.  
 

θ
θ

⊆=
⊗⊗⊗=

},...,,,{:
)()()()(:

321 irrrrR
tQxQtZxZ

 (c1) 

 
That is, all inputs to a canal segment, cast as θ, can 
only be single dimensional (w.r.t. x or t) and only 
one of two already existing parameter (Q or Z) – all 
are “or” conditions are exclusive.  R can be a vector, 
all elements of R must be of the same type. 
 
It is appropriate at this point to reaffirm well-
posedness of the system of equations.  Conditions 
imposed by (c1) guarantees that no new variable is 
introduced to the system of equations.  However, in 
order to maintain well-posedness, R, it is necessary 
to implement operational rules described by the 
linear temporal logic statement below.  Note: The 
VRSAP simulates the canal network successively 
segment-by-segment.  It is not dissimilar to a 
spanning tree in graph theory; therefore, it is 
appropriate to use temporal logic to describe rules 
for the VRSAP operation. 
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c2 stipulates that: All elements of R must be of the 
same type for a given segment with the option of 
changing in a different segment.  R, θ, and their 
relationship must be globally true. 
 
Linearization – There exists several options of 
linearization based on available data and intended 
purposes – i.e. around steady state or at steady flow.  
Since boundary conditions are determined 
empirically and should be updated as often as 
possible, steady state linearization is chosen.  
 
Replacing Q = Q0 + Q’, and Z = Z0 + Z’ into 
equations (1), (2) with approximation w= BcZ and 
apply the partial derivative: 
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Where the partial derivatives with respect to (Z) and 
(Q) are evaluated at reference point. 
 
Fr  =  Froud number, a parameter describing flow 

condition, defined as 3

2
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Taking the Laplace transformation of (3), and (4) 
yields: 
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Which can be reformulated as: 
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The equation is now in the control state space form 
with: 
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The eigenvalues of (A) can be calculated as: 
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Since (A) is scalar in (x), the matrix exponential 
solution to (7) can be calculated from: 
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Where P(.)P-1 diagonalize A. 
 
The result matrix exponential solution to (7) is 
denoted asΦ , 
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so on for 12φ , 21φ , 22φ where calculation is similar 
and straight forward.  
 
With the result of (9), one can see that elements of 
Φ  yield the direct transfer functions between 
upstream (subscript x) and downstream (subscript o) 
water level and flow.   
 
Remark:  Different engineers manipulate the 
structure of Φ in (9) to better reflect their choice of 
input/output parameters (for example, Baume et. al. 
[6] reports the effect of upstream water release on 
downstream discharge and the influence of 
downstream water level on upstream water level).  
 
3. ADAPTIVE CONTROL OUTER 
FEEDBACK LOOP FOR AUTO-
CALIBRATION OF MODEL PARAMETERS 
 
3.1. Eigenvalue Analysis 
 
Over many years of being used and built upon, the 
VRSAP model includes many extraneous 
parameters that make the computation heavy and 
extensive.  Furthermore, the ambiguous relationship 
between these parameters and the model’s behavior 
make any calibration difficult.  Before any adaptive 
control rule can be applied, the relationship between 
the model parameters (roughly cast as input) and the 
model’s states (output) must be clearly established.   

 
Analysis is performed on the homogenous form of 
the system of equations (natural/unforced response).   
 
Consider: 
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Applying the same treatment outlined in previous 
section, a similar result as (9) is obtained.   
 
Let us now apply further analysis of the transfer 
function, 
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Which captures the effect of upstream water flow 
on downstream flow. 
 
Examination of the formulation of a12,21,22 shows 
that the resulting eigenvalues of A, formulated by 
(8), takes the form:  
 

sc 2,12,1 =λ     (13) 
 
Where c1,2 are constant coefficients determined by 
system parameters. 
 
Subsequently, 11φ in (12) takes the form: 
 

sxcsxc ececs 12
4311 )( −=φ   (14) 

 
Taking the inverse LaPlace transform yields: 
 

)()()( 142311 xctcxctct +−+= δδφ  (15) 
 
Note: in the flow regime known as sub-critical flow, 
the sign of c1 is negative and c2 is positive. 
 
It is easy to see from the time delays of the time-
domain transfer function that flow at a given point 
is effected by its upstream (positive time delay) 
flow and downstream (negative time delay) flow – 
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characteristic of a sub-critical flow regime.  
Intuitively, the delay is characterized by the 
eigenvalues of A and augmented by the canal 
length, x.   
 
The formulation of result (15) shows the 
relationship between each parameter and flow 
characteristics at a given point.  Reversing this 
relationship, the engineer can wisely choose 
effective candidate parameters for model calibration 
to match flow condition at hand. 
 
We are now ready to develop the adaptive control 
law to auto-calibrate the model. 
 
3.2. Adaptive Law Formulation 
 
To show that the eigenvalue analysis approach 
presented above can be used to effectively 
formulate an adaptive control law, an example 
formulation is provided as proof. 
 
Consider the feedback diagram in Figure 3 below. 
 

 
Figure 3 – Implementation of the popular model-

reference adaptive system (MRAS) 
 
For demonstration purposes, the author opted for 
the model-reference adaptive system technique.  
This is also known as a direct method because the 
controller parameters are directly adjusted to 
minimize error between the actual system output 
and the reference model output.  The difficulty is, of 
course, in selecting the right controller parameter 
for adjustment.  A priori information from the 
engineer’s experience aids in this parameter 
selection. 
 
Remark:  It is important to recognize that the outer 
adaptive auto-calibration feedback loop can not be 

implemented concurrently with the inner feedback 
loop while it is implementing control on the 
physical system.   
 
Let us revisit the earlier formulation of equation (7): 
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Where the A matrix includes the lateral inflow 
parameter R = f(Zt) 
 
Let R=φ  denote the lateral inflow parameter 
available for adjustment. 
 
Let )(φJ  be a cost function defined as  

2

2
1)( eJ =φ  

Where myye −=  is the error difference between 
the actual system output and the reference model 
output.   
 
In minimizing )(φJ , the well-known MIT negative 
gradient rule can be used: 
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Where 
φd

de
is also known as the sensitivity 

derivative. 
 
A priori knowledge indicates that the primary 
control actuator for the system is the opening and 
closing of sluice gates on the river network.  As the 
gates are opened, at steady state the system operates 
normally.  The effect of the controller at steady state 
can then be modeled as a constant gain ( 10 ≈k ).  
Hence, the system transfer function and reference 
model transfer function are, respectively, 
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The system control input is now:  
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The transfer function between yc and uc is: 
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In setting up the lateral inflow parameter, one can 
choose to set it up in the form:  
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Where zξ  is a scalar value of lateral input water 
level (Z) at the time of evaluation.   
 
The error and sensitivity terms are (respectively): 
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Applying the MIT negative gradient rule, we arrive 
at the adaptation law: 
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This adaptation law is straight forward and 
intuitively sensible.  The parameter φ  should be 
adapted in proportion with the error, the estimated 
model output and scaled by the efficiency of the 
model vs. actual system.   

Since we defined above )(
0

mod
zk

k ξφ = , adjusting 

the parameter φ  in this case can be conveniently 
achieved by tuning kmod constant.   
 
So far, only the case of single adjusting parameter is 
discussed.  For multiple parameters, φ can be 
treated as a vector.  This investigation is left as 
future work. 
 
4. BALANCED TRUNCATION OF 
INPUT PARAMETERS 
 
The final treatment to be applied to the VRSAP 
concerns input parameters.  Though thus far input 
parameters are treated as a single input, it does not 
have to be the case.  Especially with the VRSAP 

model, many extraneous data types are considered 
in its calculation.   
 
Difficulties arise when not all data have the same 
contribution, or even contribute at all, to the model 
calculation.  Highly ambiguous relationships exists 
between the model and its parameters making their 
elimination non-obvious.  The author proposes 
using balanced truncation to eliminate unnecessary 
data types to make the model less computationally 
extensive.   
 
The balanced truncation method relies on teasing 
out the contribution of a certain parameter to the 
model by looking at its controllability and 
observability index.   
 
Remark:  Every auxiliary input into the model are 
assumed to effect either the flow parameter (Q) or 
level parameter (Z).   
 
Denoting inputs with subscript (i), system states (Q 
and Z) are reformulated as: 
Qtotal = Q + Qi  and  Ztotal = Z + Zi   
 
Equation (7) can be rewritten in full state-space 
system as: 
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This formulation allows the engineer to check 
controllability and observability of the system using 
grammians. 
 
The procedure may be computationally extensive 
but conceptually fairly straight forward.  Matrices B 
and C are of scalar values and is up to the 
engineer’s choice.  An algorithm for choosing B and 
C is outlined in Figure 4. 
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Figure 4 – Balanced truncation implementation. 

 
5. CONCLUSIONS 
 
The VRSAP model, though popular and proven 
to work as a simulation tool, is not very 
efficient and is not suitable for the 
implementation of automatic control.  This 
paper reports the three separate treatments to 
the system toward this purpose. First, a 
linearization around steady state is shown. This 
scheme takes into account the lateral inflow of 
the system.  The result can be generalized for 
other types of input.  Secondly, an adaptive 
feedback scheme is presented and an example 
was demonstrated to develop the adaptation 
law for the controller inflow parameter.  
Finally, brief discussion addressed using 
balanced truncation as a method to reduce 
model complexity.  Though the results are 
preliminary, the method reported should be 
applicable to other similarly formed models.  
Future development should yield further 
interesting properties and insights. 
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