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EXTENDED ABSTRACT 

Decision making in environmental management 
requires a reliable prediction of the ecosystems 
dynamics. The ecological objects, however, belong 
to the class of complex dynamic systems whose 
behaviour in general and responses to human-
caused impact in particular are determined by the 
interplay of a number of factors, constituting 
components and processes as well as by the 
interrelated positive and negative feedbacks 
spanning multiple spatial and temporal scales. 
Given also obvious restrictions on the experiments 
with ecosystems, it becomes clear that the problem 
could only be dealt by means of quantitative 
models.  

There is a great deal of discussions among the 
researchers on the issue of 
advantages/disadvantages of simple or 
parsimonious models versus large and 
comprehensive models in ecosystem science.  

The paper presents an approach (Fig. 1) to the 
construction of a simple model based on the 
complex simulation model developed for a 
particular environmental problem. The approach 
suggested does not eliminate the necessity to build 
a complex model. Moreover, a complex model 
plays an important role in the approach. But 
parameterisation and other required in the model 
building steps are performed only once for a large 
model and are not needed in order to apply a 
simple model to various management tasks related 
to the investigated real world system. 

The approach is based on an idea of classification 
of the components of the model state vector into 
primary and secondary variables. The former are 
used as the factors in response surface design 
aimed at the construction of a resulting function as 
a statistically valid approximation of the solutions 
delivered by the complex model. The resulting 
response surface equation serves as a simple model 
suitable for practical calculations. It is important to 
note that the simple model so obtained retains the 

descriptive power of the initial comprehensive 
simulation model because it does not ignore 
secondary variables and, thus, does not introduce 
additional uncertainty to the modelling results.  

 

Figure 1. Model simplification process. 
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1. INTRODUCTION 

In environmental decision making, we are dealing 
with ecological systems whose behaviour is highly 
complex, with dynamics and feedbacks spanning 
multiple spatial and temporal scales (e.g., Levin 
1999). In addition, all ecological systems are now 
impacted by human actions. As noted by Vitousek 
et al. (1997), human alteration of Earth is 
substantial and growing. Thus, according to the 
most recent estimates by the World Wildlife Fund 
(WWF 2006), the demand on planet’s ecosystems 
(the so-called ecological footprint index) has more 
than tripled since 1961 and now exceeds the 
world’s ability to regenerate by about 25 percent. 
There is an obvious and urgent need to carefully 
foresee the likely consequences of societal 
development for the planetary leaving systems 
(e.g., Clark et al. 2001).  

Predictions of this kind are, however, possible only 
if there is an adequate model describing ecosystem 
dynamic behaviour and its variations as a result of 
anthropogenic stresses. It is true that quantitative 
models play now an important role in all of the 
sciences. But the importance of models in 
environmental management, where experiments on 
real world objects are significantly limited, if not 
entirely forbidden, is hard to overestimate. Models 
in ecosystem science serve a number of functions. 
They allow the investigators to test hypothesis, to 
uncover patterns embedded in observation data, to 
synthesize data on disparate components into an 
integrated view of ecosystem functions, and 
ultimately to predict the future behaviour of some 
aspects of the ecosystem under given scenarios of 
future external drivers (Canham et al. 2003). 

There is a great deal of discussions among the 
researchers on the issue of 
advantages/disadvantages of simple or 
parsimonious models versus complex models in 
ecosystem science. In this paper, we review the 
main pros and cons of either approach to 
modelling philosophy.  

The main issue is to provide practitioners with a 
model of a descriptive and forecasting power 
sufficient for the purposes of environmental 
decision making and management. In this 
connection, a problem of the transition from 
complex sophisticated models to their simplified 
versions has a practical significance for ecological 
science. The paper presents an approach to the 
development of a simple model based on the 
methods of the theory of experimental design. It is 
demonstrated that using the response surface 
method enables to preserve the descriptive 
capabilities of a complex simulation model.  

The problem of environmental management in a 
forested watershed and simulation model “Forest 
hydrology” (SMFH) are used as a case study and 
illustration to the approach suggested.  

2. DEFINITIONS 

The state of an ecological system at a given 
moment in time, t, can be described by a phase 
vector x(t) = (x1(t),…, xn(t)). The coordinates of 
vector x represent quantitatively the components 
(or sub-systems) of the ecosystem, such as species 
numbers, concentrations of substances, biomass, 
primary production/destruction/respiration, 
dissolved oxygen, nutrients, etc. Following a 
unified notation proposed by Ide et al. (1997), a 
model for the natural evolution of the system is 
governed by an equation: 
 

0],)(,[ =px ttM                                              (1) 

with the initial conditions x(0) = x0. Here M is the 
model dynamics operator and p is the vector of 
model parameters. Depending on the aim of the 
research, a particular ecosystem being modelled 
and observation data available, the operator M may 
be in a form of an algebraic expression, or 
differential or integral operator. In many cases, the 
operator M of the system evolution (1) in a 
computer simulation or prediction is nonlinear and 
deterministic, while the true trajectories of the 
modelled system may differ from Eq. (1) by 
random or systematic errors. 

3. STEPS IN MODEL BUILDING  

Any model in environmental management is 
expected to represent a real world ecological 
system or some of its aspects of a particular 
interest. At the same time, a model is unavoidably 
a simplification of objective reality (Straškraba and 
Gnauck 1985). Due to the complexity of the real 
ecological systems, the model always reflects only 
substantial properties of the system rather than all 
its details. Generally, model development involves 
the sequence of required stages (Fig. 1). The stage 
of model design includes: (1) development of a 
conceptual model (i.e., selection of major variables 
and processes); (2) the model mathematical 
description in the form of equations; (3) 
parameterization (i.e., determination of 
quantitative values of model parameters); and (4) 
coding (i.e., translation of the mathematical 
equations into computer based software). The 
model testing stage includes: (1) simulation runs; 
(2) verification (i.e., comparison of results 
obtained from model simulation with values 
observed in the system); (3) validation (i.e., a 
proof that the reactions and dynamics generated by 

2070



the model are similar with the behaviour of the real 
system); (4) stability analysis of simulation results 
(i.e., investigation of model reactions to 
perturbations of initial values  of  model variables), 
mostly in a sense of the Liapunov stability; (5) 
sensitivity analysis to major parameter (i.e., a 
series of tests in which the modeller varies the 
values of model parameters to see the 
corresponding changes in model outputs); and (6) 
uncertainty analysis (i.e., a measure of an error in 
model simulation of  given observations due to 
parameters, state variables and model structure).  
 

 

Figure 1. Model building stages. 

4. PROBLEM OF MODEL COMPLEXITY 

4.1. Large vs. small models 

Environmental modelling deals with complex 
dynamic systems whose behaviour is determined 
by many interrelated phenomena. A modelling 
description of such a system may require hundreds 
of equations using more than thousand parameters. 
The main drawbacks of huge simulation models 
are: (1) their high cost and long term of 
development and (2) difficulties with 

communicating to and understanding by decision 
and policy makers and general public. There is 
also a fundamental problem of parameterization of 
models (Jørgensen 1994) which becomes even 
more complicated the larger the model is and the 
more parameters it, therefore, involves. Many 
parameters are usually unknown, or their literature 
values are highly variable (Van Nes and Scheffer 
2005). In addition, a non-linear model has more 
than one steady state solution. Different values of 
parameters can alter the stability properties of the 
solutions making the application of automatic 
parameterization procedures difficult or even 
impossible. On the top of uncertainty in 
parameters (Lindenschmidt 2006, Snowling and 
Kramer 2001), validation of large models is also 
problematic (Oreskes et al. 1994; Rykiel 1996). 
The uncertainty in the initial and boundary 
conditions, though being usually neglected (Van 
der Molen 1999), also contributes to the overall 
model uncertainty. The interplay between model 
complexity and overall uncertainty delivered by all 
model components should also be taken into 
account (Erechtchoukova 2005, Reichert and 
Borsuk 2005).  
 
Interestingly to note that ecological models are 
often validated only by comparison with empirical 
data. However, the ability to predict independent 
past or future data alone does not mean that the 
model adequately describes the cause and effect 
relations of the real system (Rykiel 1996).   
 
In contrast to the large models that are meant to 
represent many features of the complex dynamics 
of real world ecosystems, small simple models 
often focus on a single aspect or phenomenon of 
the system in study and are based on clear 
assumptions. They usually consist of a few 
equations with little parameters (e.g., Lotka-
Volterra model to describe the predator-prey 
dynamics of biological systems).  It is, of course, 
easier to present and explain the results generated 
by minimal models. The main problem with small 
models in environmental simulation modelling, 
however, is that they are too generic and neglect 
many essential aspects of the real ecosystems. As a 
consequence, minimal models are usually very 
hard to test and to validate with empirical data as 
noted by Van Nes and Scheffer (2005). In this 
connection, an opinion had been expressed that 
complex systems need complex solutions (Logan 
1994).  Therefore, the task is to find a way to 
retain a descriptive power of a large complex 
model when replacing it by a simplified version. 
The latter goal can be achieved using, for example, 
methods of the statistical design of experiments 
(Lorenzen and Anderson 1993) as will be further 
demonstrated in this paper. 
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4.2 Design of experiments and simplification  

Application of a simulation model requires 
multiple computer experiments with various initial 
values of the input variables x0 and model 
parameters p in Eq. (1) as well as computations 
over a number of modelling steps. This 
circumstance leads to the necessity to store huge 
sets of intermediate simulation results and their 
subsequent processing.  
 

 

Figure 2. Model simplification process. 
 

The complexity of simulation models can be 
reduced. Usually, there is no practical need to store 
all the values generated in each simulation run, but 
only some aggregated data of particular interest. 

Moreover, in many practical cases of 
environmental decision-making, it is important to 
trace and predict a certain integral indicator of an 
ecosystem in study denoted hereafter as A. For 
example, in the lake ecosystem management when 
dealing with the eutrophication problem, such an 
integral indicator is water turbidity.  

It can be further concluded that, depending on the 
task of modelling, some of the state variables are 
more important for the decision makers while 
others play a secondary role. In the already 
mentioned problem of lake eutrophication, 
concentrations of nutrients (first of all, phosphorus 
and nitrogen) or total phytoplankton biomass are 
important state variables while hydrodynamic 
characteristics of water flow are secondary factors. 
We may always assume that the first l components 
of vector x are primary state variables. It is 
possible to consider the integral indicator A as a 
resulting function of just a limited number of the 
most important (primary) state variables:  

nlxxfA l <= ),,...,( 1                                     (2) 
 
Such a resulting function can be determined using 
the methods of experimental design as a response 
surface in the space of selected primary state 
variables: xs = (x1,…, xl)T, l < n. In this case, from 
the mathematical point of view, the problem is to 
choose the response surface which will best 
approximate the model outputs generated by the 
initial large simulation model (1). 
 
Statistical techniques of orthogonal designs, 
introduced by Box and Wilson (1951) for second-
order response surfaces, can be used in 
environmental simulation modelling. The logical 
scheme of the approach is shown in Fig. 2. 
 

5. CASE STUDY: FOREST HYDROLOGY 

5.1. Background 

 
It is important for environmental management to 
predict the possible changes in the hydrological 
regime of a given forested watershed that may 
occur as a result of projected anthropogenic 
activities.  
 
Ideally, in order to address this problem, it is 
necessary to compare the differences between the 
components of the water balance in an 
experimental watershed before and after a 
particular management practice has been carried 
out.  But it is clear that such data cannot be 
obtained for most forested watersheds, since each 
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one is unique in terms of its morphology, 
hydrology, landscape, and vegetation. Hence the 
results obtained on some experimental watershed 
are not always directly applicable to other 
watersheds even if they are located within the 
same geographical zone, on comparable soils and 
are approximately of the same size. 
 
The only way to overcome this methodological 
obstacle is to use a comprehensive simulation 
model of the processes of moisture transformation 
in a studied forested watershed (Khaiter 1993). 
 
We consider the simulation model “Forest 
hydrology” (SMFH) as a case study to illustrate 
the suggested approach to simplification in 
environmental modelling.  
 

5.2. Model description 

The SMFH takes as its inputs a limited set of 
parameters and initial values of the state variables, 
such as forest vegetation type and age, percent 
forested area, meteorological data, soil properties, 
and projected management activity. Based on this 
input information, the model simulates the 
processes of moisture transformation in a boreal 
forested watershed and calculates precipitation 
interception, evaporation from snow and water, 
throughfall, snowmelt, water release from snow, 
freezing and thawing of soil-grounds, infiltration, 
transpiration and the formation of all kinds of 
runoff. These processes are modelled at three 
levels: tree crown, forest floor, and a specified soil 
layer. The model produces as outputs the values of 
the water balance components and provides a 
quantitative assessment of the hydrological role of 
forest as a result of the management activity being 
studied. 

The SMFH represents the distribution of 
precipitation using the following water balance 
equation:     

PR = EVC + EVF + EVS + QSUR + QSUB + TR + 
∆SM + QGR                                                           (3) 

where PR is atmospheric precipitation; EVC, EVF, 
and EVS are evaporation from canopy, floor and 
soil, respectively; QSUR, QSUB are surface and sub-
surface fluxes, respectively; TR is transpiration; 
∆SM is the variation of soil moisture contents; and 
QGR is water recharge to the groundwater table. 
The model considers moisture transformation at 
three levels (or hydrological niches): (1) tree 
crown, (2) forest floor, and (3) soil layer of a given 
thickness, Z. The balance condition should 

obviously be satisfied for each of the hydrological 
niches: 

∑∑ −=
k
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dN                   (4) 

 
where j denotes a hydrologic niche (j = 1, 2, 3); Nj 
is the moisture contents in the jth hydrological 
niche; INCi

j,  OUTk
j  are the ith income and kth 

outcome water balance item, respectively, for the 
jth hydrological niche. 

The formulation of the notion of the hydrological 
function of a forest and its estimate, ∆QUSE, was 
proposed (Khaiter 1993) in the form of the 
following expression: 
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where the superscripts f and o denote forested and 
open (forestless) watersheds, respectively; t is the 
time variable; T is duration of a specified time 
interval. 

The SMFH described above computes the values 
of major components of the water balance (3), and 
in the current implementation has an iteration step 
∆t = 1 day.  

5.3. Model simplification 

In many practical cases, management of a forested 
watershed requires to predict the changes of the 
integral annual indicator ∆QUSE from (5) that 
might result from one anthropogenic impact or 
another. To achieve the necessary aggregation, 
∆QUSE can be considered as an integral function 
of the primary state variables as described in (2): 

).,...,( 1 lxxfQUSE =Δ                                  (6)                              

These primary state variables have been used as 
factors in the design of computer simulation 
experiments with the SMFH. Two factors (soil 
density, SD, and percent forested area, F%) were 
taken into account from the practical point of view. 
This selection was determined by the fact that 
forest-management activities will first affect these 
two characteristics of an ecosystem (cf. Khaiter, 
1991). The algorithm developed builds the 
response surface [i.e., function f from (6)] which 
summarizes the data generated by simulation 
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experiments with the large initial model in the best 
possible way. First- and second-order models with 
and without autocorrelation of factors have been 
investigated as a suitable approximation to the true 
response surface. For statistical evaluation, the 
series of parallel simulation runs have been done 
for each design point by varying an input variable. 
The order of the best suitable polynomial, m*, was 
selected using the condition: 

⎭
⎬
⎫

⎩
⎨
⎧ <=

∧

),()()(min 21
2* kkFmFmSArgm resm α

                                                                             (7) 

where 2
resS  is the residual variance;  

∧

F and Fα are 
the sampling and the critical values of the F-test, 
respectively, with Fisher’s distribution; k1 and k2 
are degrees of freedom; and α is the significance 
level. As a result, the following response function 
was obtained: 

∆QUSE = -542.9SD + 31.8396F% - 14.378 SD F% 
+ 922.9                                                                 (8)   

The resulting response surface is shown in Fig. 3. 

 

Figure 3.  Response surface of the function 
ΔQUSE.  

Eq. (8) can be recommended as a simplified model 
for practical calculations. 

6. CONCLUSION 

In the paper, we discussed the application of 
simulation modelling for the practices of 
environmental management and the stages in a 
simulation model design and development. It is 

expected from any model used in environmental 
decision making to represent the real world 
ecological systems.  

The accuracy of simulation results is important for 
an informed decision making and in many cases 
can only be achieved through the experiments with 
a sophisticated model involving a large number of 
state variables and even larger number of 
parameters. At the same time, there are serious 
drawbacks of the large simulation models which 
we analysed in the paper. Because of these 
problems with the sophisticated models, decision 
makers very often prefer to rely on simpler models 
as they are easier to utilize and present to the 
general public, of course, if a smaller model is able 
to describe the behaviour of the real world systems 
sufficiently well. Therefore, one of the key issues 
in the transition from a complex model to its 
simplified version is to retain the descriptive 
capabilities of the large simulation models.  

The study presented an approach to the 
construction of a smaller model based on the 
complex simulation model developed for a 
particular environmental problem. The approach 
suggested does not eliminate the necessity to build 
a complex model. Moreover, a complex model 
plays an important role in the approach. But 
parameterisation and other required in the model 
building steps are performed only once for a large 
model and are not needed in order to apply a 
simple model to various management tasks related 
to the investigated real world system. 

 The approach is based on the idea of classification 
of the components of the model state vector into 
primary and secondary variables. The former are 
more important for a given practical task of 
environmental decision making and are used as the 
factors in response surface design aimed at the 
construction of a resulting function which is a 
statistically valid approximation of the solutions 
delivered by the complex model. The resulting 
response surface equation serves as a simple model 
suitable for practical calculations. It is important to 
note that the simple model so obtained retains the 
descriptive power of the initial comprehensive 
simulation model because it does not ignore 
secondary variables and, thus, does not introduce 
additional uncertainty to the modelling results.  
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