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EXTENDED ABSTRCT 

The medical measurements for preterm babies 
manifest instabilities because of their 
under-developed biological systems. These 
physiological instabilities raise the question of 
whether a preterm baby is simply premature or 
is likely to develop long-term health 
complications. Because instabilities are of 
concern, useful information about the health 
state of preterm infants can be expected to be 
contained in the variations of the medical 
measurements. However, instantaneous 
variations are not observed directly along with 
the physiological measurements, and so suitable 
models must be employed to estimate them.    

Volatility models derived from the finance area 
are used to find the underlying variations for 
blood oxygen concentration of preterm babies. 
Although volatility models are not commonly 
used in medical applications, they have been 
widely discussed in the finance literature, for 
example, models such as ARCH, GARCH and 
SVM. This paper considers two latent volatility 
models - a Stochastic Volatility Model (SVM) 
fitted using Bayesian inference and a particle 
filter, and the EGARCH model. An alternative 
Realized Volatility estimator, which is recently 
widely discussed in finance area and regarded 
as an approximation of realized variance based 
on high frequency intra-period data, is used as a 
benchmark to compare the two latent volatility 
estimators. 

The relative performance of the two latent 
volatility models is first evaluated using the R2 
measure from a linear regression analysis 
involving realized volatility and each of the 
latent volatility models separately. Several other 
numerical measures of closeness between the 
latent volatility estimates and realized volatility 
are also computed. They all show the SVM 

estimates to be closer to realized volatility than 
the EGARCH estimates. Finally, the bootstrap 
method is used to obtain point-wise confidence 
intervals for realized volatility, to further assess 
the latent volatility estimates.  

The empirical results show that, consistent with 
return volatility in finance, the volatilities of the 
oxygen level of preterm babies, estimated by 
stochastic volatility and realized cumulative 
volatility, are very similar for high frequency 
data without structure noise. The results suggest 
that volatility at high frequency can be captured 
instantaneously for the medical measurements 
by using the Stochastic Volatility Model.
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1. INTRODUCTION 

Physiological measurements from preterm 
infants can display instabilities because of their 
under-developed biological systems. Besides 
considering the normal level of a physiological 
measurement, the variability of the 
measurement also supplies additional 
information about the underlying state of health. 
Estimation of the variability of certain 
physiological measurements from preterm 
infants is therefore of medical interest. When 
the medical preference is to acquire an 
instantaneous index of variability along with the 
measurement, the underlying variability has to 
be estimated with the aid of a suitable model. 
Although this seems to be uncommon in 
medical applications, it has been widely 
discussed by financial economists in the 
literature over the last two decades and referred 
to as volatility models.  

The Stochastic Volatility and Autoregressive 
Conditional Heteroskedasticity class of models 
have become widely established and successful 
approaches to the modeling of the return 
variance process in financial time series. A 
variety of volatility models have been discussed 
by financial economists, such as the 
Autoregressive Conditional Heteroskedastic 
(ARCH) model of Engle (1982), the generalized 
ARCH (GARCH) model of Bollerslev (1986) 
and Taylor (1986), the exponential GARCH 
(EGARCH) model of Nelson (1991), and the 
stochastic volatility (SV) models of Melino and 
Turnbull (1990), and Harvey, Ruiz, and 
Shephard (1994). These models provide the 
latent volatility of the underlying financial 
product returns, as the volatility is not directly 
observable. With the move towards the use of 
high frequency data recently, there is interest in 
alternative volatility estimators, such as realized 
volatility (or integrated volatility). Particularly, 
French, Schwert and Stambaugh (1987) use 
daily returns to estimate monthly volatilities. 
Andersen and Bollerslev (1998) show that 
realized volatility computed from 
high-frequency intraday returns is effectively an 
error-free volatility measure. It is therefore 
natural to treat the consistent estimation of the 
realized volatility as observed. 

This paper uses alternative volatility estimation 
approaches with an application on the oxygen 
concentration of preterm infants. Specifically, 
we apply the Stochastic Volatility Model (SVM) 
estimated by particle filters, the EGARCH 
model, and the method of Realized Volatility 

(RV) to get the observed volatilities as the 
approximation to the true volatility. We consider 
the observed integrated volatility as a 
benchmark to evaluate the performance of the 
latent volatility models.  

2.  ALTERNATIVE VOLATILITY                         
ESTIMATIONS 

2.1 SVM Model 

In the paper, the stochastic volatility model is 
defined as the following: 
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where zt is the measurement term and defined as 
log(oxyt/oxyt-1);The volatility xt is defined as 
log(σ2) of the log(oxyt/oxyt-1) to ensure the 
positiveness of the conditional variance. Noise 
terms, εt and ξt, follow a standard normal 
distribution. The coefficient, c is a real number, 
b is a positive scale factor, and a is in the range 
(-1, 1). 

Introducing the additional innovation term in 
the conditional mean process increases the 
flexibility of the model but it also increases the 
difficulty in parameter estimation because each 
shock is now described by two innovations, εt & 
ξt. Another difficulty with the SVM is the 
non-linear feature of the model. In this paper, 
the SVM is estimated using a particle filter 
algorithm, which is based on approximations in 
the representation of the desired distributions by 
discrete random measures. The standard 
assumptions are that the distributions of the two 
noise processes in the model are known, and 
continuous distributions are approximated by 
discrete random measures, which are composed 
of weighted particles of the unknown states 
(volatility x) and coefficients, with the weights 
computed using Bayes theory. Particle filters are 
particularly attractive for applications requiring 
on-line estimation. 

2.2 EGARCH Model 

Following the introduction of ARCH processes 
by Engle (1982) and their generalization by 
Bollerslev (1986), there have been numerous 
modifications of this approach to modeling 
conditional volatility. Nelson (1991) proposes 
the exponential GARCH (EGARCH) model, 
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which allows for asymmetric effects between 
positive and negative values to overcome some 
weaknesses of the GARCH model in handling 
financial time series. We use the EGARCH 
model for comparison with SVM and RV. The 
following EGARCH process is used to model 
the relationship between the oxygen 
concentration changing measurements and their 
conditional volatilities: 

[ ] )1-t( d)( c1-t xbatx

2/tx
e   t

  t

11 δδδ

δε

ε

+−++=

=

+=

−− tt E
t

tuz

      (2) 

As with the SVM, where zt is the measurement 
term and defined as log(oxyt/oxyt-1) and εt serves 
as the shock from mean; The volatility xt is 
defined as log(σ2) of the log(oxyt/oxyt-1); δt is 
standard Gaussian iid sequence and: 
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Maximum likelihood estimation is used to 
estimate the parameters.  

2.3 Realized Volatility 

As demonstrated by Andersen and Bollerslev 
(1998), Andersen (2001), and Barndorff-Nielsen 
and Shephard (2002), the sum of squared 
intraday returns is an approximation to the daily 
realized variance. This version of variation is 
named realized volatility (RV) and regarded as 
an estimation of integrated volatility. Unlike 
latent volatility as described above, RV is based 
on the information within a time window rather 
than all previous information until time t. RV 
can be built up easily as an integrated 
measurement of the z2 at low frequency using 
high frequency intra-window data, and is a 
consistent estimator of observed volatility when 
high frequency data are available without 
structure bias and serial correlation. Forecasting 
and modeling volatility is equivalent to 
forecasting and modeling Realized Volatility.  

However, this model-free estimation may not 
always be available as medical practitioners 
may require volatility estimates at a higher 
frequency than can be estimated reliably at the 
available data rate. In this paper, RV is used as a 
benchmark to evaluate the performance of 
alternative latent volatility models. At the same 
time, the empirical results can be used to 
evaluate the usefulness of this simple volatility 

method should large amounts of high frequency 
medical data be available in the future. 

3. DATA 

Three main types of time series are involved: 
raw oxygen data at every 2 second; estimated 
volatilities at every 2 seconds from the SVM 
and EGARCH model; observed volatility per 
minute from RV Method and cumulative latent 
volatility based on estimated volatilities over the 
same time window as RV under the two latent 
volatility models. 

The raw oxygen dataset, comprising 
measurements every 2 seconds, was supplied by 
Christchurch Women’s Hospital and was 
originally collected for an earlier study entitled, 
“Normal variation in oxygen levels in preterm 
babies”. A segment of 4070 observations was 
taken for analysis. The variable zt for 
log(oxyt/oxyt-1) is calculated based on the raw 
oxygen data and used by both latent volatility 
models and realized volatility. Using this dataset, 
the time varying conditional volatilities at 
2-second intervals are estimated based on the 
discrete-time EGARCH and stochastic volatility 
models.  

The RV is obtained for every minute using the 
2-second data, giving 135 volatility estimates. 
We also looked at different time-frequency to 
check the robustness of the estimated realized 
volatility. Unlike financial data, the medical 
data do not have microstructure bias but still has 
slight serial correlation problems for 
intra-period data.  

In order to compare time-varying volatility 
under SVM and EGARGH model with RV, 
cumulative volatility per minute is calculated 
based on the estimated volatility per 2 second 
for both latent volatility models. Table 1 gives 
the summary statistics of the results. 

Table 1. Descriptive Statistics 

Volatility (per2second) 

  
Zt(oxygen) 

SVM EGARCH 

Maximum 0.2315 0.1663 0.1923 

Minimum -0.1671 0.0011 0.0031 

Mean 0 0.0187 0.0190 

Std.Dev 0.0234 0.0160 0.0134 
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Table 1. Continued 
Volatility (per minute) 

  SVM EGARCH RV 

Maximum 0.3192 0.4148 0.3297 

Minimum 0.0192 0.0285 0.0229 

Mean 0.1142 0.1117 0.1071 

Std.Dev 0.0722 0.0616 0.0709 

4. PERFORMANCE OF ALTERNATIVE 
VOLATILITY MODELS 

Both the SVM and EGARCH use log(σ2) 
instead of σ2 to ensure positiveness of the 
conditional variance. Figure 1 shows the log(σ2) 
time series estimated under SVM using a 
particle filter. There are clear volatility clusters 
in the estimates. EGARCH estimation of log(σ2) 
has a similar pattern. 

The time series plot of volatilities (σ) from both 
latent volatility models is shown in Figure 2. 
Although the two sequences of estimates appear 
to be consistent over the entire time series, there 
are clear differences particularly for low and 
high volatilities. 

In order to compare the performance of the two 
latent volatility models, we use RV as a 
benchmark for comparison. Since RV is 
available only every minute, the 2-second 
estimates of latent volatility must be 
transformed to latent volatility per minute. The 
proportion of the total variation of RV that can 
be explained by the estimated latent volatility 
can then be measured using R2 from a 
least-squares linear regression analysis:  

tttt SVMRV δαα ++= −1/10          (4) 

tttt EGARCHRV δββ ++= −1/10      (5) 

The R2 value for SVM volatility is about 
93.95%, while for EGARCH, it is about 81.36%. 
Thus, the R2 for SVM is about 13% higher than 
for EGARCH. This suggests that SVM volatility 
describes the dynamics of RV better than 
EGARCH volatility.  

In addition to R2, we compute the mean absolute 
error (MAE) and root mean squared error 
(RMSE), as well as the 
heteroscedasticity-adjusted mean absolute error 
(HMAE) and root mean squared error 
(HRMSE), to measure how far the estimated 
latent volatilities are from the realized volatility.  

These measures are defined as follows:  
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These four performance measures are reported 
in Table 2. It is clear that both the MAE and 
RMSE of SVM are smaller than EGARCH. 
After the deviation between estimated latent 
volatility and realized volatility is adjusted for 
heteroscedasticity, SVM still outperforms 
EGARCH with smaller HMAE and HRMSE. 

Table 2. Performance of alternative volatility 
models 

  MAE RMSE HMAE HRMSE 

EGARCH 0.0206 0.0309 0.1829 0.2250 

SVM 0.0123 0.0191 0.1207 0.1546 

Further useful insight can be gain from Figure 3, 
which presents volatility per minute for SVM, 
EGARCH and RV together. SVM volatility is 
closer to RV than compared to EGARCH 
volatility. 

We further obtain approximate 95% confidence 
intervals for RV at every minute by a bootstrap 
method, to assess how close SVM volatility 
estimates are to RV. The results are shown in 
Figure 4. The dashed line with circles is the 
confidence interval for each time-point. The star 
symbol represents realized volatility every 
minute and the dashed line with plus sign is the 
SVM volatility per minute. There are few points 
outside the confidence intervals, and these occur 
within the first ten time-points, corresponding to 
the initial period where the particle filter has not 
yet converged. The estimates from the particle 
filter improve as more measurements are 
processed, and so the estimates are closer 
together as time progresses. HMAE and 
HRMSE are 0.1288 and 0.1577 for the first half 
of the data and smaller HMAE and HRMSE are 
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0.1062 and 0.1363 for the second half of the 
data.    

5. CONCLUSION 

This paper models the conditional volatility of 
oxygen concentration of preterm infants using 
financial volatility models – SVM and realized 
volatility. The empirical results suggest that 
volatility estimation using SVM is consistent 

with observed volatility, and therefore may be 
used to estimate the instantaneous latent 
volatility for the oxygen concentration data.  
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          Figure 1. Time Series Plot of log(σ2) estimates for oxygen measurements based on SVM model  
with particle filter. Length of series is 4069, based on 4070 oxygen measurements at 2-second 

intervals. 
 
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

t

V
ol
at
ilit

y

Time Series Plot of Volatilies

 

 

EGARCH

SVM

 
   Figure 2. Time Series plot of estimated volatility (σ) based on SVM and EGARCH model. 
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      Figure 3. Time series plot of latent volatility by SVM and EGARCH with observed volatility RV. 
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     Figure 4. SVM volatility and Realized volatility with confidence intervals by bootstrap. 
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