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EXTENDED ABSTRACT

The penetration of wind energy into the South
Australian electricity market has been rapidly growing
in the past decade. To be able to bid in the
lucrative peak demand market, the wind farm industry
needs to be able to predict, with some certainty, the
amount of electricity that they can produce in the
next trading cycle. We present here a methodology
to model variability in the output from the various
South Australian wind farms, both individually and
combined, at the half hourly time interval.

This paper extends Boland’s (2005) [1] paper in
which he showed a methodology to determine the
overall correlation, known as correlative cohesion [3],
between wind farms. This correlative cohesion gives
us an indication of how the wind farms work together
so that the volatility effects of the individual turbine
and farms are minimised.

We show a method to model the wind farm
output volatility that shows the: estimation of the
deterministic and random components of each farm’s
half-hourly time series, calculation of the overall
correlative coherence between all of the farms and
development of a null distribution for the correlative
coherence between all the farms.

We begin by removing the cyclic component of the
time series using Fourier analysis. We then remove
the remaining deterministic structure using ARMA
processes. We finally model the random component of
the time series using a double exponential distribution
(also known as the Laplace distribution) [2]. In order
to smooth out the overall volatility of the wind farms,
we need to determine how correlated they all are to
each other. To begin with, we find the Spearman’s
correlation coefficient (non-parametric correlation) of
each pair of wind farms. We build a symmetric matrix
R using the pairs of Spearman correlations where
rij = Cor(Xi, Xj) = rji for i 6= j and rij = 1
for i = j. Getz [3] presents a well defined measure of
the diversity of the eigenvaluesλi of R:

C(Xn) = 1− 1
ln(1/n)

n∑

i=1

(
λi

n

)
ln

(
λi

n

)
(1)

Thisis a generalisation of the concept of coherence for
periodic signals and gives us a measure of the degree
at which the output from the farms vary in concert
with each other [3].

If all off-diagonal correlations have the same value
r ∈ [0, 1] (i.e. the overall correlation between all
of the farms) and the diagonal elements remain as 1,
then the eigenvalues of the correlation matrixR(r) are
λ1 = 1 + (n − 1)r andλi = 1 − r for i = 2, . . . , n
and Equation 1 reduces to

Cn(r) = (1+(n−1)r) ln(1+(n−1)r)+(n−1)(1−r) ln(1−r)
n ln n

(2)

Thecorrelative coherence of any system of farmsXn

is therefore the solution to the equation [3]

r = C−1
n (C(Xn)) (3)

We use Newton’s method to solve Equation 3 forr
and obtain an overall correlative coherence ofr =
0.209662 for the six wind farms. We also investigate
an initial method for developing the null distribution
of the correlative coherence.

A low r value is desired in the wind farm network
because it is much easier to integrate the output
into the grid if the farms are not acting in unison
(which tends to produce large spikes in the output).
Boland (2005) used wind data from the Bureau of
Meteorology (BoM) sites, rather than the actual output
from the wind farms, to estimate the correlative
cohesion value for the farms . His analysis yielded
a correlative coherence value ofr = 0.742 which
is much higher than the more recent analysis. The
analysis using actual output gives a more optimistic
view of the contribution that the wind farms produce
together.

The correlative coherence valuer can be used as an
indication of the way in which a set of farms follow
the same pattern. Adding a new farm into the analysis
is a quite straightforward process. Ther value can be
recalculated and then analysed to see what the effect
that the new farm has on the correlative cohesion
among all of the farms. Ther value can also be used
in a similar manner to determine likely locations for
new farms.
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1 INTRODUCTION

The penetration of wind energy into the South
Australian electricity market has been rapidly growing
in the past decade. Wind farms at six sites
across South Australia already produce 388 MW of
electricity with a further 341 MW under construction.
Additional wind farms are also proposed which
significantly increase the potential capacity for
electricity to be fed into the grid.

To be able to bid in the lucrative peak demand market,
the wind farm industry needs to be able to predict,
with some certainty, the amount of electricity that they
can produce in the next trading cycle. We present
here a methodology to model variability in the output
from the various South Australian wind farms, both
individually and combined, at the half hourly time
interval.

This paper extends Boland’s (2005) [1] paper in which
he showed an application of a methodology, first
described by Getz (2003)[3], to determine the overall
correlation between wind farms. This gives us an
indication of how the wind farms work together so
that the volatility effects of the individual turbine and
farms can be minimised.

We will show a method to model the wind farm output
volatility that contains three parts:

• estimating the deterministic and random parts
of each farm’s half hourly time series

• calculating the overall correlative coherence
between all of the farms

• developing a null distribution for the correlative
coherence between all the farms

2 DATA

In this analysis we have used 365 days of wind farm
output data in half hourly intervals from the following
sites: Canunda, Starfish Hill, Lake Bonney, Wattle
Point, Mt. Millar and Cathedral Rocks. This data
is given in MWh and our thanks are extended to the
Electricity Supply Industry Planning Council of South
Australia for providing this data.

3 METHODS

3.1 Distributional Attributes

Initially we want to model the distributional attributes
of the output variability. This will give us an idea

of the characteristics of the volatility inherent in
the system behaves. To do this, we first begin by
removing the deterministic component so that the
underlying random structure can be estimated.

The first step in this process is to look for cycles
within the data that may occur throughout the year
(365 days). Using Fourier series analysis we can
determine significant cycles within the data. Figure

Figure 1.Average Daily Wind Farm Output

1 shows that there is a distinct drop in output followed
by a significant peak for each of the sites. So we have
found that there is a diurnal pattern in each set of data.
The Fourier series for each wind farm’s diurnal cycle
is given by

xt = yt + rt

yt = β0 + β1 cos
(

2πt
48

)
+ β2 sin

(
2πt
48

)
.

(4)

We estimate the coefficients (β0, β1 and β2) of the
cycles using regression. We then remove the cycles
from the data by obtaining the residualsεt from the
regression process.

After we have removed the cycles from the data, we
need to find if there are persistent effects evident. To
do this we examine the autocorrelation and partial
autocorrelation functions to see if there are any lags
present in each set of data. This can be done in
most statistical analysis packages and from these two
functions, we get a good estimate of how many
lags (if any) are within the data. We can model
the dependence on previous time steps using Auto-
regressive Moving-Average (ARMA) modelling.

An ARMA(p, q ) model follows the structure shown in
Equation 5 [5]. Here,yt is the observed value of the
series at timet, at are the residuals and no restrictions
are placed on their distribution,xit is the observed
value of explanatory variablei at time t, φi is the
coefficient of the auto-regressive component andθi is
the coefficient of the moving-average component.

rt = φ0 +
∑p

i=1 φirt−i +
∑q

i=1 θiξt−i + ξt (5)
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whereξt ∼ WN(0, σ2
ξ ) We find that in nearly all of

the farms there is an ARMA(1,1) process acting on
our deseasoned residuals. We remove the ARMA(1,1)
component and calculate the remaining residualsξt.
Our data now has the structure shown in Equation 6

xt = Seasonal component+
ARMA component+ ξt

(6)

After the deterministic structure of the data is
removed, we estimate the distributional attributes of
the random processξt. The residuals for Canunda
wind farm are shown in Figure 2.The distribution of
the remaining residuals for each farm were found to
be symmetric and leptokurtic and thus, not normal.
These characteristics suggest that each set (one for

Figure 2. Histogram of the Canunda residuals after
seasons and ARMA process is removed.

each farm) of residuals follow a double exponential
distribution whose probability density function (pdf)
is given by [2]:

f(x) =
exp−

∣∣∣x−µ
β

∣∣∣
2β

.

The parameters for each double exponential distri-
bution were estimated using maximum likelihood
estimation where,

µ̂ = µ∗

β̂ =
∑n

1 (xi − µ̂)
n

.

Hereµ∗ is the median of the data. Figure 3 shows the
goodness-of-fit of the double exponential function for
the Canunda wind farm residuals against the original
residuals. Both the actual and estimated data can be
seen to peak sharply at the same point and then drop
away. From this we can see that the peak and spread of
the original residuals are captured well by the double
exponential distribution.

We thus have a model for the overall output of each
wind farm which is given by Equation 7 whereξt ∼

Double Exponential(µ, β).

xt = β0 + β1 cos
(

2πt
48

)
+ β2 sin

(
2πt
48

)
+ φ0 + φ1rt−1 + θξt−1 + ξt

(7)

Figure 3. The original residuals for Canunda wind
farm and their fitted values

3.2 Correlative Coherence Analysis

In order to smooth out the overall volatility of the
wind farms, we need to determine how correlated they
all are to each other. We use a method described by
Getz [3] and applied by Boland [1] to determine the
correlative coherence between the wind farms.

To begin with, we find the Spearman’s Correlation
coefficient (non-parametric correlation) of each pair
of wind farms (so there are 15 distinct comparisons for
the six farms). We build a symmetric matrixR using
these correlations whererij = Cor(Xi, Xj) = rji

for i 6= j andrij = 1 for i = j.

R is a correlation matrix and its eigenvaluesλi, i =
1 . . . , n, have special properties, in that0 ≤ λi ≤ n
and

∑n
i=1 λi = n which we can rewrite as0 ≤

λi/n ≤ 1 and
∑n

i=1 λi/n = 1. Given these
properties, Getz [3] presents a well defined measure of
the diversity of the eigenvaluesλi of R. This measure
is a generalisation of the concept of coherence for
periodic signals [3] and gives us a measure of the
degree at which the output from the farms vary in
concert with each other.

C(Xn) = 1− 1
ln(1/n)

n∑

i=1

(
λi

n

)
ln

(
λi

n

)
(8)

If all the off-diagonal correlations have the same value
r ∈ [0, 1] (i.e. the overall correlation between all
of the farms) and the diagonal elements remain as 1,
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thenthe eigenvalues of the correlation matrixR(r) are
λ1 = 1 + (n − 1)r andλi = 1 − r for i = 2, . . . , n
and Equation 8 reduces to

Cn(r) = (1+(n−1)r) ln(1+(n−1)r)+(n−1)(1−r) ln(1−r)
n ln n

(9)

Therefore,if r = 0 thenC(Xn) = 0 and ifr = 1 then
C(Xn) = 1. The correlative coherence of any system
of farmsXn is therefore the solution to the equation

r = C−1
n (C(Xn)) (10)

We use Newton’s method to solve Equation 10 forr
and obtain an overall correlative coherence ofr =
0.209662 for the six wind farms.

We can also investigater values to see how the
addition of a new wind farm changes the correlative
coherence of the system. We can determine if the
addition of the farm has significantly increased or
decreased ther value.

We next needed to determine which values ofr
corresponded to various combinations of correlated
and uncorrelated farms. To begin with, we only
knew that anr value of 0 meant that the farms were
completely uncorrelated and that anr value of 1 meant
that the farms were completely correlated.

We developed data sets in which some or all of the
farms were highly correlated. We then used equations
8,9 and 10 to determine the resultingr values for
various combinations. Table 1 shows ther values for
farms with different correlation combinations. Here

Table 1.r values for different correlated combinations
of six wind farms.

Correlationconfiguration r value
6 .95
5,1 .830041
4, 2 .765551
4,1,1 .684299
3, 3 .74424
3, 2, 1 .620647
3, 1,1,1 .515792
2, 2, 2 .57879
2, 2 , 1, 1 .465469
2, 1, 1, 1,1 .321067
1, 1, 1, 1, 1, 1 .049996

3,1,1,1 (for example) means 3 highly correlated farms,
and 3 uncorrelated (from the first 3 farms, and each
other) farms. We can see, that for a set of farms
where five were highly correlated and one was highly
uncorrelated from all of the others, we get anr value
of .717. For a set of farms in which two farms are
highly correlated and the rest of the farms are highly
uncorrelated, we get anr value of .274, and if we have

a set of farms that are all highly uncorrelated we get
anr value of .043. We can see that our actualr value
of .209662 is quite low, in comparison to these, and
there is no evidence of a strong overall link between
the farms.

3.3 Null distribution of r

We have shown that for different pair-wise correla-
tions among a set of six farms, we can obtain very
different values ofr. We have also shown that ther
value for the actual wind farm data is0.209662. We
would now like to estimate the null (i.e. that there is no
correlative cohesion between the farms) distribution
for r. In this paper we will show an initial attempt at
developing this null distribution.

We start by generating a sequence of Uniform data
between 0 and 1. We transform this data into a doubly
exponential sequence by applying the inverse double
exponential function [4](shown in Equation 11)

a =
{

µ + β ln(2F (a)), if F (a) ≤ 0.5
µ− β ln(2(1− F (a))), otherwise

(11)
to each point in the sequence. Hereµ andβ are the
estimates for one of the farms found using the method
in Section 3.1. We repeat this generation of data a
number of times (in our case we used 20) for each
farm. We now have a large set of synthetic sequences
of data, which are not correlated, but have the same
distributional attributes as our original farms.

We now take a combination of the synthetic data (one
sequence for each farm) and calculate the pairwise
Spearman’s correlation coefficient for each distinct
combination. Equation 12 shows an example of these
correlations that we have built into anR matrix.

R =




1 −0.10 0.33 0.04 −0.04 −0.01

−0.10 1 0.01 0.19 −0.01 0.06

0.33 0.01 1 −0.01 0.05 −0.04

0.04 0.19 −0.01 1 0.02 −0.03

−0.04 −0.01 0.05 0.02 1 0.10

−0.01 0.06 −0.04 −0.03 0.10 1




(12)

We next apply the method described in Section
3.2 to calculate the correlative cohesionr for this
combination of data. By repeating this process of
calculating the correlative cohesion with different
combinations of the manufactured data, we can build
a distribution for the nullr value. Figure 4 shows the
histogram of5000 r values calculated in this manner.
We can see that ther value of 0.209662 for our actual
farm data is a long way outside the 99% region, which
shows that the wind farms do work in concert with
each other to some extent.

1861



Figure 4.Histogram of 5000r values calculated from
the manufactured data

4 DISCUSSION

In performing this analysis, many interesting features
of the data have come to light. The MWh output for
each farm shows a diurnal cycle which indicates that
the wind speed drops down through the day time and
then picks up again in the early evening and night. The
peak domestic demand for electricity is at around 6
PM (depending on the month) and the introduction of
extra wind-powered electricity into the grid would be
advantageous at this time of day.

Although each farm displayed this diurnal cycle, with
generally a peak in the afternoon or evening, each
farm’s average peak was at different times. We believe
that this is caused by the local effects at the farm.
Wind farms that are close to the coast generally have
an afternoon peak in output, whereas those further
inland tend to have their peak in the late evening.
These local effects are very good for the network
stability overall. Having different peak times for each
of the farms means that it is rare for all of the farms
to peak at once (and overload the physical grid) or to
all drop out at once (which leads to other sources of
power having to be used).

It is interesting to note that the while the Lake Bonney
and Canunda farms are physically very close together,
they have quite different average days (see Figure
1). Both of the farms peak at about 2 PM but
Lake Bonney’s MWh output varies between around 17
MWh and 23 MWh, while Canunda varies between
4 and 36 MWh (see Figure??). Lake Bonney is
thus the more stable wind farm and is easier to
integrate into the grid. This difference is caused by
the number of turbines at each farm. Lake Bonney
has 46 turbines while Canunda only has 23 turbines.
The extra turbines at the Lake Bonney site smooth out
the variational effects and give a quite narrow band of
possible output. The Canunda farm does not have as
many turbines, so the variations in wind speed effect
it’s output to a greater extent.

The random component of each farm was found to
follow a double exponential distribution. Mostly,
the output varies by some mean value. Sometimes,
however, we get strong peaks or drop outs. This is
represented by the high centre peak and thick tails that
are present in the double exponential distribution so
we do regularly get values that are quite a distance
from the centre. This is quite an intuitive distribution
for the random part of the wind farm output.

The correlative coherence valuer can be used as an
indication of the way in which a set of farms follow
the same pattern. A lowr value is desired in the wind
farm network because it is much easier to integrate
the output into the grid if the farms are not acting
in unison (which tends to produce large spikes in the
output). A highr value indicates that the set are highly
correlated and so follow the same sort of pattern. If
one farm has a surge in output, then the others are
also likely to. A highr value has a negative impact
on the network stability as the farms will all peak (or
drop out) at a roughly similar time. This can cause
trouble with the supply and distribution of electricity
through the grid. A lowr value, however, can lead
to quite good stability within the grid, which is highly
desirable.

Boland (2005) used the method described in Section
3.2 but with wind data from the Bureau of
Meteorology (BoM) sites, rather than the actual output
from the wind farms. At the time, most of the wind
farms were in the early stages of construction and
the output data was unavailable. Boland found a
correlative coherence value ofr = 0.742 for his data
which is much higher than ther = 0.209662 found
for the wind farm output in this paper. The local land
features plus the smoothing effects of the multiplicity
of turbines means that the analysis using actual output
gives a more optimistic view of the contribution that
the wind farms produce together.

We show in Section 3.3 a first attempt at a
methodology to determine the null value of the
correlative cohesion of a set of farms. From
Equation 12 we can see that two farms in particular
(Farm 1 and Farm 3) are highly correlated. We
developed the methodology using each individual
farms characteristics to build new ‘uncorrelated’ data.
Unfortunately, due to the proximity of the Canunda
and Lake Bonney (unsurprisingly Farm 1 and Farm 3)
sites to each other, the random structure in their time
series is quite similar. This causes the high correlation
and so our results don’t show the null distribution that
we would like. In our future work we will attempt to
overcome this by merging the two sites together.

Adding a new farm into the analysis is a quite
straightforward process. Ther value can be
recalculated and then analysed to see what the effect
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that the new farm has on the correlative cohesion
between all of the farms. This is a very useful
tool which we can use in two ways: to predict the
effect of a proposed wind farm and to determine the
specifications for where a new wind farm should be
located.

In the first case, we know where a new wind farm
has been constructed. Before it begins operation, we
can analyse the effect it will have on the grid stability
by calculating ther value in a similar manner to
the method used by Boland in his 2005 paper. In
this paper, Bureau of Meteorology (BoM) recordings
of wind speed were used to estimate the correlative
coherence between wind farms. This method of
takeing BoM measures can be used to estimate the
output for the new farm, and hence calculate the new
correlative cohesionr value for the new wind farm.

In the second case, we would choose a desiredr value
and determine the best conditions for achieving it,
given the wind farms that we already have. This could
involve specifying the average MW output needed,
along with the variability desired. This translates into
determining the location (coastal or inland) along with
an estimate of the number of turbines needed in the
new farm.

5 CONCLUSION

Volatility within wind farm output is currently
preventing wind farm operators to compete in peak
electricity demand bidding. We have presented here a
method to model the volatility within individual wind
farms. We have also shown an approach that can be
used to determine to what extent that a number of
wind farms are correlated overall. The correlative
coherence can be used when considering where to
build new wind farms and what effect they will have
on the existing wind farms.

An extension for this work is to repeat the analysis
with five minute data instead of the half-hourly.
Electricity is dispatched in five minute intervals so this
work will be of particular interest to the wind farm
operators. We will work on forecasting the wind farm
output at various time intervals with high accuracy so
that the wind farms have a chance to compete in the
peak demand market.

The connector between the South Australian and
Victorian grids means that the interaction between
the two is very important. We will investigate the
correlation between South Australian and Victorian
wind farms to see what sort of effect they have
together, on the SA grid. We will also redevelop
the null distribution methodology with the farms that
show high correlation combined.
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