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EXTENDED ABSTRACT

The problem of determining the benefit or cost of 
irrigation mosaics compared to a contiguous area 
of irrigation required the development of a suitable 
method.  Here we describe a method which was 
developed using scaling of a property or process 
using power law scaling based on the area of the 
patch and given by:
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where C is the property that does not change with 
the area, a is the minor axis, b the major axis of an 
ellipse (Figure 1), x and x are empirical 
coefficients associated with the marginal impact of 
size on the property and x = a or b.

This leads for elliptical patches to a result for the 
marginal impact change due to patches compared 
to one contiguous area (IRe) where the total areas 
are the same given by:
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where I(a,b) is the patch impact and I(A,B) is the 
contiguous area marginal impact, a and A are the 
minor axis of the patch and contiguous are ellipse 
respectively, b and B are the major axis of the 
patch and contiguous are ellipse respectively,

a b    and n is the number of small patches.

For a circle then r = a = b and eqn (2) reduces to:
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These equations show that the marginal benefit or 
cost is dependent on  and this provides a great 
deal of utility in determining whether a benefit or 
cost will accrue for a particular process.  When  =
0 then IRe = 1and  there is neither cost nor benefit 
from irrigation mosaics.  When  < 0 then there is 
a cost for irrigation mosaics and  > 0 means that a 
benefit arises from irrigation mosaics.  This 
scaling approach should prove a useful tool 
decision making processes where systems such as 
irrigation mosaics are being considered.

Figure 1. Ellipse with characteristic major axis, a
and b.  The marginal impacts are a and b.

Examples using; water table rise, groundwater 
mound spreading, groundwater solute spreading 
and the wind function for evaporation are 
presented and give values of  ranging from 0.57 
to -0.05.  This approach to landscape scaling may 
also be useful for some ecological processes.
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1. INTRODUCTION

Natural and many other systems have features 
which are a function of characteristic properties of 
the system.  These properties are often associated 
with the temporal or spatial processes.  In ecology 
the size, shape and the spatial arrangement of 
patches have been studied by many authors and 
recently reviewed by Wu and Li (2006).  Here we 
will develop some scaling which is based around 
the patches of an elliptical shape.  This kind of 
scaling has similarities to that of landscape 
analysis (Gardner 1987, Milne 1992, Wiens et al. 
1997, Nikora et al. 1999, Hoffman and Greef
2004).  Here though we will look at the marginal 
impact on bio-physical processes associated with 
irrigation mosaics.

Irrigation schemes where the scale of an individual 
irrigation area is small, but the total area irrigated 
may be large are term irrigation mosaics (Paydar et 
al. 2007a, Cook et al. 2007a).  In determining 
whether benefits may accrue from irrigation 
mosaics a method is need to compare them to more 
traditional contiguous area of irrigation.  We will 
use the scaling approach developed here to show 
how this could be used to determine benefit or dis-
benefit of irrigation mosaics compared with 
tradition contiguous irrigation schemes.

2. THEORY

We will assume homogeneous conditions occur 
throughout the region and that the marginal costs 
or benefits are related to the size of the patch.  
Schematically this is presented in Figure 1, but the 
property and marginal value does not necessarily 
have to be the physical area so long as the property 
and marginal effects scale with area.  Under these 
conditions we can characterise the system in terms 
of some length scale that allows us to examine the 
effects of the size of the mosaics on the 
hydrological or other properties. We can consider 
the characteristics of the spatial extent as being 
described approximately by an ellipse (Figure 1).  
The perimeter (P) and area (A) of an ellipse are 
given by:
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In a mosaic we will have patches spread 
throughout a region and the total area will then be 

the sum of each patch.  If an irrigation scheme was 
implemented such that rather than one contiguous 
irrigated area, it consisted of a number of smaller 
patches, we consider this to be and irrigation 
mosaic.  

We assume that some property of the system, f,
scales with the area of the patch such that:
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a bf C a a    (5)

where C is the property that does not change with 
the area, a is the minor axis, b the major axis of an 
ellipse, x and x are empirical coefficients 
associated with the marginal impact of size on the 
property and x = a or b.   We define the impact of 
this property as:
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where  = ab.  For a system such as irrigation 
mosaics we wish to determine the effect of isolated 
distributed patches compared to one large 
contiguous patch.  If the total area is the same for 
one contiguous area and n number of smaller 
patches of the same size then:
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We define the relative impact of n patches 
compared to one contiguous area and the result is 
eqn (2).  Simplification of eqn (2) can be achieved 
by assuming that a = b and with substitution of 
eqn (7) results in:
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A further simplification occurs when a = b = R and 
A = B = RT which means that the ellipse becomes a 
circle and eqn (8) becomes eqn (3) above.

The interesting thing about the solutions given by 
eqns (3) and (8), is that the term n is the only 
difference between the numerator and 
denominator.  This means that the marginal effect 
of irrigation mosaics can be determined from the 
value of . When  = 0 then IRe = 1 and the impact 
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will be the same for irrigation mosaics and one 
contiguous area.  However, when    > 0 irrigation 
mosaics will have a reduced impact, while for   < 
0 irrigation mosaics will have an enhanced impact, 
compared to a contiguous irrigated area.   This has 
now provided us with a powerful tool for 
analysing the various impacts that maybe occur if 
irrigation mosaics are introduced.

Here we will examine a number of bio-physical 
properties where we have determined the effect of 
the size of the patches on this property (Cook et al. 
2007a).  These properties are: the maximum height 
of the water table under the patch at a particular 
time, the extent of watertable rise outside the 
irrigated area at a particular time, the extent of 
solute transport into the surrounding area and the 
effect on the wind function on evaporation.

3. METHOD

A study to determine the advantages and 
disadvantages of irrigation mosaics was 
undertaken (Cook et al. 2007a) and we will use the 
results from this study here.  We will consider
circular patches so that eqn (5) simplifies to:

2 2f C r   (9)

The processes that will be studied are; the 
maximum water table rise, the extent of 
groundwater mound spreading, extent of solute 
leakage and wind function in relation to 
evaporation.  Below we show how these processes 
were calculated and then in Section 4 eqn (9) is 
applied to these processes.

3.1. Groundwater rise and spreading

The rise of the water table caused by recharge to 
groundwater is discussed in detail elsewhere 
(Cook et al. 2007a,b).  We used the solutions of 
Cook et al. (2007a,b) to calculate the water table 
rise and converted these from the non-dimensional 
time and space to dimensional time and space 
using the methods presented by Cook et al. 
(2007b).  Radial dimensions varied from 100 m to 
100 km were chosen for the calculations.  The 
maximum water table height was calculated as the 
height the watertable reached at the centre of the 
irrigated patch.  The results at a time of 100 years 
are presented in (Cook et al. 2007b) and used here.   
In the calculations we used values of saturated 
hydraulic conductivity (K) of 1 m day-1, recharge 
rate to the groundwater (I) of 1 mm day-1,  specific 
yield () of  0.1 m3 m-3, and h0 of 10 m.

To determine the extent of groundwater mound 
spreading into the surrounding area we used:

( 0.001)r r H R    (10)

where H = h(r) – h0,  h(r) is the height of the water 
table at radial distance r [L] and h0 initial water 
table height above the impervious base [L].  The 
same values for the aquifer properties were used as 
given above.

3.2. Solute leaching

We consider the leaching of a tracer solute 
(chloride or tritium) to the groundwater and use 
two schemes to bound the radial extent of the 
solute spreading beyond the irrigated area (Cook et 
al. 2007a).  These schemes consider that the solute 
is mixed throughout the saturated zone to the 
impermeable layer (Figure 2a)  and the other 
where the solute is contain in the water table above 
the initial water table height (Figure 2b).

Figure 2.  Diagram of the two advective solute 
transport shemes used to estimate the position of 
the solute front: a) complete displacement of old 
water by new water to the impermeable base and 

b) the new water sits on top of the old water.

For these calculations we assume that the tracer 
solute reaches the water table at the same time as 
the water does.  In reality this will not be true as 
the water present in the profile prior to the increase 
in recharge rate will be displaced ahead of the 
solute front.  This will mean that the results 
overestimate the extent of solute spreading from 
the edge of the irrigated patch.  The radial distance 
is calculated by matching the water volumes.  The 
volume of water applied (Vi [L

3]) is given by:
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The volume of water stored in the water table (Vs) 
is given by:

0
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Figure 2b.  The radius the solute has advected to is 
determined by finding the value of r at which Vs =
Vi.  The integral in eqn (12) were solved 
numerically using trapezoidal integration.

3.3. Evaporation – wind factor

Enhanced evaporation of water due to advection 
caused by hot dry air moving over a wet patch or 
at the edge of irrigated areas is a well known 
phenomena (Priestley 1955, McNaughton 1983,
Lang et al.1983, Kadar and Yaglom 1990).  There 
is little research available on how evaporation 
varies with patch size but a good body of research 
for water bodies, which was summarised by 
Sweers (1976).  The evaporation rate from a water 
body is (Sweers 1976):

( )( )s aE f u e e   (13)

where es and ea are the saturated and actual vapour 
pressure deficit respectively and f(u) is the wind 
speed function.  Sweers (1976) reviewed the 
existing literature and concluded that the wind 
speed function was best given by:
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where ae, be and ce are empirical constants (see 
Sweers (1976) for values), S is the representative 
area of the evaporating area [L2] and u is 
windspeed .  Assuming that the patches are 

circular then 2S R  and that u is the same,
then the effect of R on the wind factor can be 
obtained from eqn (14).  The comparative 
windspeed effect can be calculated by:
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where Sr is a the reference area and RT is the radius 
of the large contiguous irrigation area (reference 
area), assuming patches are circular.

Conway and van Bavel (1967) showed that the 
Dalton equation for evaporation (eqn (13)) was 
applicable to soils.  This means that the form of 
eqn (14) and the scaling with the power of 0.05 
should be applicable.

4. RESULTS

The results presented here are for mosaics of 
isolated irrigated patches where the complication 
of interaction between the patches is not 
considered.  This is so that the effect of size of a
patch on the processes of interest can be estimated, 
without having to include the effect of spacing.

4.1. Groundwater rise

The maximum groundwater rise (hm) was 
calculated using the methods presented by Cook et 
al. (2007a,b) and a time of 100 years.  The scaling 
model presented in eqn (9) was fitted to this data 
and gives  = 0.35 (Figure 3).   is > 0 and 
suggests that for patches, which are sufficiently 
isolated that there is no appreciable interaction of 
the groundwater mounds, irrigation mosaics could 
reduce hm.  
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Figure 3. Maximum change in water table height 
(hm – h0), (hm = h(r = 0)) with radius (R), with t = 
100 years and recharge rate and aquifer properties 
given in text.  The line is a regression of eqn (9) 
against the data, which results in a value of  = 

0.35, (regression coefficient of 0.999).

The extent of groundwater spreading beyond the 
irrigated area as a function of R was determined 
using different values of non-dimensional time () 
(Figure 4).  The relationship between  and 
dimensional time (t) is:
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where  is the specific yield [L3 L-3] and 

0( ) / 2mb h h   is the linearization parameter 

[L].  The data are plotted as f – R as C will be 
equal to R for this case. 
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Figure 4. Relationship between f-R and R for 
various values of.  The regression lines gave 

values of  of 0.58, 0.57 and 0.57 for  = 0.75. 5.0 
and 10.0 respectively

The value of   0.57 indicates that the area 
impacted by water table spread is likely to be 
slightly less with irrigation mosaics that with one 
contiguous irrigation area.  This assumes that the 
patches in the irrigation mosaic are far enough 
apart for there to be not interaction.  Although not 
shown here calculations were done to check that 
variation in the other parameters I, Sy, and K did 
not affect this result. 

4.2. Solute leaching

The transport of solute beyond the irrigated area 
had to be calculated in dimensional time and 
space.  For scenario 1 with  = 0.1 and t = 100 
years,  = 0.31 and, for scenario 2,  = 0.14
(Figure 5).

This implies that the irrigation mosaics will result 
in less area being impacted by solutes than would 
occur with one large area.  This impact is likely to 
be even less as the water table may be lower for 
irrigation mosaics (Cook et al. 2007a) and so the 
likelihood of salinisation may be significantly 
reduced.  These values of  are in contrast to that 
found for the leakage rate for saline basins (Paydar 
et al. 2007b, Leaney et al. 2000) of -1. The saline 
basin results suggest large basins leak less and 
would be better than many small basins.  This 
contrasting result may be because of the constant 

head within the basins, rather than the constant 
flux used in the results above. 
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Figure 5.  f - R with R for scenario 1 (S1) and 
scenario 2 (S2), with  = 0.1.  The lines are linear 
regressions and the slope of these corresponds to 

2.

4.3. Evaporation – wind factor

Here we can derive the value of f/Ae from eqn (14)
and using circular patches we get a relationship 
between R and f/Ae (Figure 6).  The value of 
from the regression is 0.05 but can also be 
determined directly from eqn (14).  Thus the wind 
factor will decrease as the R increases and if the 
vapour pressure difference was constant with size 
then the evaporation would decrease in the same 
manner.  However, there is an interaction between 
the size of the water bodies and the vapour 
pressure deficit.  
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A

e
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
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2.5
f(u)/A

Regression



Figure 6.  f(u)/Ae versus R and  which is the value 
of f(u)/Ae divided by the value of f(u)/Ae when R = 

100 km.  The solid line is a regression of 
log(f(u)/Ae) with log(R).

  The value of   for R = 100 m is approximately 2.  
Thus the wind factor is doubled when the radius 
decreases from 100 km to 100 m.  The ratio for the 
evaporation will be much lower due to other 
effects such as the vapour pressures and water 
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temperatures.  This means that for water bodies 
with these radii there is an approximately 28% 
increase in evaporation for R =100 m compared to 
R = 100 km (D. McJannet pers comm. 2007).  The 
slope of the relationship is the same with  > 0 and 
means that small patches are likely to evaporate 
more water.

5. DISCUSSION

The scaling framework presented appears useful 
for determining the marginal effect of size on some 
bio-physical properties associated with irrigation 
mosaics, but should have applications to other 
areas such as ecology.  This scaling approach 
presented is different to most uses of scaling in 
ecological systems where either fractal approaches 
(Nikora et al. 1999) or other shape (often perimeter 
to area or area to length ratios) have been used to 
characterise ecosystems (Grossi et al. 2001, Dorner 
et al. 2002).  

However, Ludwig et al. (2000) did analyse the 
effect of patch size in terms of capturing nitrogen 
in sparsely vegetated landscapes.  Their Figure 4 is 
consistent with the analysis presented here but 
would require a piecewise solution with a 
truncation at a particular patch size of about 103

m2.  Their value of  is > 0 and indicates that the 
nitrogen captured increases as radius of the patch 
increases.

The results shown here for some bio-physical 
properties show that irrigation mosaics could have 
both benefits and dis-benefits environmentally.   
This analysis has provide a means to decide what 
the likely effect is by the use of one parameter, .  
This allows a table of values to be generated.  A 
further assessment could then be made using 
weighting of the  values.

6. CONCLUSION

A scaling technique has been developed to assess 
the effects of size on marginal changes in bio-
physical properties based on elliptical patches.  
This method was simplified to circular patches and 
was able to show that patches of irrigation if 
spaced sufficiently apart to act as isolated patches 
could be; beneficial for water table rise, water 
table spreading, and solute spreading; but not 
beneficial in relation to the wind function for 
evaporation.  This method could be developed 
further for other processes and systems, where the 
marginal effects on a property or process, scale 
with the size of the system.
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