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EXTENDED ABSTRACT 

It is recognised that the transformation of rainfall 
to discharge is essentially nonlinear and it would 
seem logical to construct parsimonious  nonlinear 
models to approximate the runoff process. Lumped 
nonlinear rainfall-runoff models are simple to 
construct but difficulties may be created in the 
calibration process if suboptimal fits to data arise 
from local minima in the objective function 
measuring goodness of fit, where small fit values 
indicate improved fit. 

One approach to fitting nonlinear models is to 
formulate calibration procedures which are 
hopefully robust against local minima when 
seeking the global minumum. An alternative 
approach is advocated here whereby threshold 
effects and other nonlinearities are approximated 
in models comprised of a large number of 
weighted hydrograph components. All these 
components  are of “hydrograph-like” nonlinear 
form, but the forms themselves are fixed and not 
some function of nonlinear parameters. 

The weights can be obtained via any constrained 
polynomial function of previous rainfall events, 
water table heights, or upstream discharge.  This 
allows for dynamic variation of hydrograph form 
with current catchment state, while with the model 
itself is still linear and subject only to linear 
constraints. 

It could be argued that linear weighted mixtures 
are as much “hydrological” in principle as 
parsimonious nonlinear models. However, the 
price paid for the simple model structure is the 
generation of a large number of correlated 
parameters, corresponding to the coefficients of 
the functions defining the N weight values of the N 
hydrograph components.  

A linear programming approach is used to avoid 
the numerical instability that would arise from 
least-squares fitting with many correlated 
parameters and possibly a relatively small 
calibration set. On the basis of 25 weighted 
Gumbel distributions, a 100-parameter linear 
model was constructed with the weights being 
defined from quadratic functions of the current and 
previous rainfall in unit time. In the result shown 
in Figure 1, the calibration data set contained less 
observations than model parameters and the 
validation (forecast) discharges were beyond the 
range of the calibration data. Despite this extreme 
violation of good modelling practice, the 
calibration via linear programming was 
straightforward (and in fact was done using the 
Excel Solver) and the model fared surprisingly 
well in this particular instance as a flood-peak 
forecaster. However, the potential of this 
interesting procedure is still entirely tentative at 
this stage and requires further applications to both 
larger calibration sets and pre-flood forecast 
calibrations for forecasting purposes.  
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Figure 1. Example application of the 100-
parameter model to peak-flow forecasting in a 14 
km2 subcatchment of the Mahurangi River, New 
Zealand. Calibration fits and forecast discharges 
are dashed. All data are on an hourly time scale. 



1. INTRODUCTION 

Lumped nonlinear rainfall-runoff models have a 
long established history as a means of 
approximating the nonlinearities in the catchment 
runoff generating process. However, while such 
models can be justified as “physically based” to 
varying degree there can be difficulties with the 
calibration process terminating at a local minima 
of the fit objective function. This may have 
implications for flood forecasting where it could 
be desirable to carry out frequent model 
recalibrations to capture the changing state of 
catchment conditions. 

One approach is to develop better general 
nonlinear calibration techniques that are robust 
against the effects of local minima, which is an 
ongoing area of research – see, for example, 
Tolson and Shoemaker (2007). An alternative may 
be to modify the structure of the models 
themselves so they become more numerically 
amenable while still maintaining their essential 
features. For example, Kavetski and Kuczera 
(2007) advocate a smoothing procedure to offset 
threshold effects, and Yang and Han (2006) 
propose a generalisation of the unit hydrograph by 
allowing a number of simpler sub-hydrograph 
components which can vary with catchment 
conditions. 
 
The Yang and Han (2006) parameterisation has 
intuitive appeal but is still a nonlinear model 
which requires a multi-stage calibration process. A 
similar but much simpler linear sub-component 
model is proposed here which can be calibrated 
easily by linear programming in a single step. 
Because linear programming is specially suited to 
over-specified problems, the calibration can even 
be calculated in the extreme case of more model 
parameters than calibration data values. 

2.  MODEL 

The proposed model is a generalisation of the 
finite-mixture approach of Bardsley and Liu 
(2003), whereby the discharge hydrograph from a 
given rainfall in time interval ∆t is defined to be: 

1( ) ( )N
i iiQ t Q t W

=
=∑   (1) 

where the Qi(t) are N  component hydrographs 
with associated non-negative weights Wi  which in 
turn are defined as a quadratic function of current 
and previous rainfalls.  

This approach is quite flexible in allowing 
nonlinear forms to be represented by linear 

mixtures. For example, the forms shown in Figure 
2 give the impression of nonlinear functions 
including location, shape, and scale parameters. In 
fact, these forms were created from weighted 
mixtures of the same normal distribution set with a 
common scale parameter but mean values equally 
spaced over the 0,1 interval. 
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Figure 2. Evident nonlinear forms created as 
weighted mixtures of normal distributions. 

Rather than use normal component hydrographs, 
25 equally-spaced Gumbel distribution kernels are 
set up on the unit interval, standardised to give 
peak values of 1.0: 

( ) exp{1 ( ) / exp[ ( ) / ]}i ii t t tQ ξ α ξ α= − − − − −  
     (2) 

where the iξ are location parameters and α  is a 
scale parameter (set to 0.04). The use of Gumbel 
(Figure 3) rather than normal kernels was 
employed simply to better represent the skewed 
nature of hydrographs (Bardsley, 1989). 
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Figure 3. The first five of the 25 Gumbel kernels 
spaced equally over the 0,1 interval . 



Although the terms “location” and “scale” 
parameter are employed with the distributions of 
Figure 3, this does not imply their use as nonlinear 
parameters in the calibration process. Provided 
there is a sufficient density of distributions along 
0,1 then the required hydrograph form in 
calibration can be met simply by adjusting the 
linear weights to the numerical values of the 
component distributions at the t values of the 
calibration data. That is, the nonlinear evaluation is 
done prior to the calibration and the choice of 
location and scale parameters is not particularly 
significant provided a sufficient number of 
distributions are utilised. Similarly, the 0,1 base 
length must be scaled up prior to calibration but 
this is not a model parameter to be  determined. 
Rather, it is simply required that the  specified base 
length be sufficiently large so as not to be a 
constraint in the calibration process. 

The present approach differs from that of Bardsley 
and Liu (2003), where a smaller number of 
specific component distributions gave approximate 
unimodality of the combined hydrograph, but at 
the expense of two manually adjusted nonlinear 
parameters in the calibration process. The use 
instead of a large number of component 
hydrograph distributions and parameters avoids 
nonlinear parameters altogether, but at the risk of 
introducing multimodality as data artefacts in the 
validation phase (Perrin et al. 2001). 

The hope is that the simple constrained linear 
structure of the model might be more forgiving 
with respect to overfitting if linear programming is 
employed for model calibration.    This is because 
it is in the nature of linear programming solutions 
to often have solution values at bounds, so 
employing a zero lower bound to all parameter 
values will result in some reduction in the number 
of nonzero parameters in the final model. 

The specific model utilised for illustrative 
purposes has the Gumbel weights as quadratic 
functions of the rainfall of just the current and 
previous ∆t, - a fully developed model would use 
multiple ∆t.  It is desirable that the weights tend to 
zero as rainfall amounts become smaller, and the 
weights always increase as rainfall increases. 
Therefore the quadratic expressions have zero 
intercept and all coefficients are constrained to be 
non-negative. The current and previous rainfall (if 
non-zero)  together give a total of four parameter 
values as the quadratic coefficients determining a 
given weight for a hydrograph component arising 
from a given rainfall in a ∆t. Combined with the 25 
Gumbel distributions, this yields the final model 
with 100 potential linear parameters but 
constrained to non-negative values. 

3. EXAMPLE APPLICATIONS 

The first application is to hourly rainfall and 
discharge data from a 14 km2 subcatchment of the 
Mahurangi River in Northland, New Zealand. A 
50-hour maximum hydrograph base length was 
specified. The calibration period was deliberately 
set to a short time interval on the basis that by 
calibrating to the current catchment state it might 
be possible to forecast flood events, given the 
actual “future” rainfalls. Also, it was of interest to 
see how the model would perform in an over-
parameterised situation – there were just 70 
calibration points for the 100 parameters. Further, 
a good test of a hydrological model is to check its 
ability perform outside the range of the calibration 
data. In fact, the model did a surprisingly good job 
as a peak flow forecaster, despite the clear 
violation of good modelling practice (Figure 1). 

Figure 4 gives an indication as to how the model 
was able to anticipate the 12 m3s-1 flow peak of 
Figure 1. The plotted hydrographs in Figure 4 were 
simulated from a synthetic rain event over two 
consecutive hours, with each hour having the rain 
amount indicated. 
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Figure 4. Simulated hydrographs from the 
Mahurangi model for 2-hour rainfall events. 

The secondary peak at about 45 hours is almost 
certainly an artefact of overfitting, but the main 
peak shows that a nonlinear relation between peak 
discharge and rainfall was detected by the model 
from the limited calibration data. This nonlinear 
relation, better seen in Figure 5, gave rise to the 
high 12 m3s-1 forecast peak beyond the range of 
the calibration data.  

The origin of the nonlinear effect can be seen in 
the non-zero values of the calibration parameters 
listed in Table 1, showing a greater frequency 
toward the squared terms, particularly in the initial 
hours of the hydrograph. 
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Figure 5.  Magnitude of the first peak in the 
hydrographs of Figure 4, as a function of the 

simulated rain amount (indicated amount repeats 
on two consecutive days). 

Table 1. The nonzero parameter values for the 
Mahurangi calibration for the 25 distributions. 

Column 1 gives distribution number, the 1 and 2 
headings denote the linear and squared coefficient 

values. Columns 2 and 3 are for current rainfall 
and * denotes coefficients for the previous rainfall. 

1 2 1* 2*
1 - - - -
2 - 0.304 0.006 0.306
3 - - - -
4 - - 0.016 0.002
5 - 0.007 - 0.072
6 - 0.048 - -
7 0.025 - - -
8 - 0.028 - 0.014
9 - - - 0.060

10 - 0.011 0.008 -
11 - - - 0.055
12 - 0.010 - -
13 - 0.045 - -
14 - 0.019 - 0.024
15 - - - 0.032
16 - - - 0.023
17 - 0.005 - -
18 - - - -
19 - - - -
20 - - - -
21 - - - -
22 - 0.129 - 0.006
23 - - -
24 - 0.041 - 0.010
25 - - - -  

 

In fact, the main hydrograph peak is likely to be 
dominated just by the distribution 2 coefficients of 
0.304 and 0.306 for the squared rainfalls of the 
current and previous hour, respectively. The other 
coefficients are likely to be largely noise although 
collectively they give a rough approximation to the 
hydrograph tail, which might be more clearly 
defined by using a longer calibration set. 

The second example (Figure 6) also applies a 50-
unit hydrograph base. Time units are days and the 
discharge is for the Tarawera River at 
Awakaponga, in the Bay of Plenty in the North 
Island of New Zealand (catchment area = 900 
km2). Recorded daily rainfall is from Rotorua. 
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Figure 6. Example calibration and forecast 
discharges for the Tarawera River at Awakaponga. 

It is evident in this case that the good fit of the 
model to the calibration data does not capture the 
hydrological processes sufficiently to anticipate 
the high flood peak in the forecast period. It may 
have been that the calibration period involved a 
significant change in the state of the catchment, or 
there was simply not enough information in the 
calibration data set relative to the flexibility of the 
model. 

It can be seen in Figure 7 that numerical artefact 
effects become increasingly evident with higher 
rainfalls in the Tarawera model. The second high 
peak here is an artefact derived from coefficients 
associated with squared terms in the later part of 
the hydrograph tail (Table 2), while the first peak 
would probably have led to a better forecast of the 
actual flood peak if there had been larger 
coefficient values for the squared terms associated 
with the earlier distributions Instead, the 
calibration process anticipated a simple linear 
increase of flood peak with increased rainfall 
amount (Figure 8). 
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Figure 7. Simulated hydrographs from the 
Tarawera model for 2-day rainfall events. Each 

rain event was comprised of two days, each with 
the rainfall amount indicated. 
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Figure 8. Magnitude of the first peak in the 
hydrographs of Figure 7, as a function of the 

simulated rain amount. 

4. NOTE ON LINEAR PROGRAMMING 
CALIBRATION 

The usual approach to fitting constrained linear 
models by linear programming is to minimise the 
sum of the absolute deviations. If there are K 
calibration data points then this requires 2K fitting 
variables, additional to the linear parameters of the 
model itself. This can create a large LP task. An 
alternative, utilised here, is to use two Fourier 
series in the LP minimisation of the positive and 
negative calibration residuals. Model residuals are 
often correlated so the minimisation operation can 
be achieved with considerably less Fourier 
coefficients than the alternative of 2K fitting 
variables. For example, this allowed the Excel 
solver to be used in the illustrations shown here. 

Table 2. The nonzero parameter values for the 
Tarawera calibration for the 25 distributions. 

Column headings as for Table 1. 

1 2 1* 2*
1 0.060 0.177 0.013
2 - - - -
3 - - - -
4 0.032 - - -
5 0.042 - - -
6 - 0.004 0.004 -
7 0.037 - 0.001 -
8 0.009 - 0.014 -
9 0.009 - 0.008 -

10 0.019 - - -
11 0.026 0.026 - -
12 0.016 - 0.016 -
13 - - - 0.117
14 - - - -
15 - 0.068 - -
16 - 0.073 0.020 -
17 - 0.014 0.002 -
18 - - - 0.038
19 0.010 0.008 - -
20 0.002 - 0.012 -
21 - - 0.030 -
22 - - 0.008 -
23 - - - -
24 0.010 - - 0.093
25 - - - -  

5. DISCUSSION AND CONCLUSION 

The use of polynomial coefficients to determine 
positive weights of component hydrographs is 
quite a powerful linear approach to mimic 
nonlinear processes. For example, hydrograph lag 
can be represented by the calibration process 
selecting zero weights for the first few 
distributions, while higher-order polynomials 
would have flexibility to mimic sudden increases 
in runoff response from rainfall threshold effects. 

The coefficients need not be confined to just 
current and preceding rainfalls. For example, for 
flood forecasting purposes it could be useful to 
include catchment water table levels or headwater 
discharge as factors contributing to the weights via 
positive polynomial relationships. Seasonal effects 
might also be incorporated by allowing weights to 
be influenced by some average of previous 
temperatures, given an increasing or decreasing 
linkage between discharge and temperature. 

Therefore, a complete “model” as such is not 
suggested here for immediate application to 
catchment runoff data. But rather a general many-



parameter constrained linear approach is 
advocated, with calibration using linear 
programming for both numerical stability and to 
reduce the number of parameters in the final 
model. Our use of Gumbel kernels is arbitrary and 
there is no reason to believe that other unimodal 
kernels could not serve equally well, given 
sufficient distribution frequency along the defined 
hydrograph length. 

One inevitable concern with this type of modelling 
is that it is likely that even with parameter 
reduction the final model may still contain so 
many parameters that there is over-flexibility and 
numerical artefacts in model applications. For 
example, Tables 1 and 2 indicate that the models 
still contain 33 and 26 parameters respectively, 
although a number of the smaller values could 
probably be set to zero with little effect. 

The question of model flexibility is something of a 
philosophical issue. Yang and Han (2006) make 
the point that their model structure permits 
multimodal hydrographs as a useful feature and 
point to situations where such hydrographs could 
arise. Similar multimodality applies to the 
approach discussed here, but the negative aspect is 
that multiple modes are also free to arise as 
calibration artefacts. The question then is whether 
to construct models to minimise artefact risk or 
allow greater flexibility and increase the possibility 
of discovery. On balance the latter approach seems 
better science, noting that a check for artefacts can 
be achieved by progressively increasing the size of 
the calibration set. 

The issue of absolute parameter numbers is less 
important because it is quite possible for a 
nonlinear model with few parameters to be more 
flexible than a constrained linear model with a 
much larger number of parameters – discussed also 
in Bardsley and Liu (2003). The many-parameter 
approach is not so concerned with accurate 
determination of the numerous model constants as 
with providing good validation outcomes. Model 
error is therefore better quantified by repeated 
applications to validation data than attempting 
statistical analysis based on possibly difficult 
statistical approaches to model estimation errors. 

The relative numerical stability of linear 
programming calibration raises the possibility that 
many-parameter linear models might be used for 
flood forecasting with model recalibration prior to 
each forecast. This is a somewhat more intuitive 
approach than more sophisticated parameter 
updating methods like the Kalman filter. However, 
the many-parameter model essentially creates a 
new model at each calibration so the forecast is 

always with an unvalidated model. It would 
nonetheless be of interest to apply models of this 
type to past flow records to check their capability 
for flood forecasting. 

There is obviously considerable further work 
required to verify whether the linear finite mixture 
approach has any future in rainfall-runoff 
modelling. However, there is at least potential for 
the technique to have application over the full 
range of catchment time and space scales. It would 
be interesting to establish a universal frequency of 
component hydrographs capable of describing 
real-world hydrographs independent of scale. 
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