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EXTENDED ABSTRACT 

The option of combining multiple model responses 
to reduce predictive uncertainty has been 
investigated in the field of economic forecasting 
and more lately in climate prediction. The current 
combination method in hydroclimatology is 
mainly limited to mixing weights that remain static 
over time. Recently (Chowdhury and Sharma, 
2006) and (Chowdhury et al., 2007) have proposed 
using time variant mixing weights as an 
improvement over the static weight combination. 
The method involves a dynamic hierarchical pair 
wise combination tree for outputs from multiple 
predictive models. The model pairs are first 
matched based on the sample error covariance. 
Then the pairs are combined by ascertaining a 
target weight for each time step. This process 
provides a low dimensional setting for 
investigating any predictive structure of the 
relative model strengths.  

The weights are predicted using a mixed 
distribution which is a product of a ‘precision 
ratio’ and a ‘bias direction’. The precision ratio is 

the fraction of the squared residual error associated 
with each of the paired models, and the bias 
direction represents an indicator of the sign of the 
two residual errors. The precision ratio is projected 
forward using a generalised linear autoregressive 
model and the bias direction is projected by 
ordered logistic regression. 

The method is extended here to combine three 
climate models, the variables of interest being the 
monthly global sea surface temperature anomalies 
at 5° grids for 1956 to 2001. This work is 
multivariate extension of our earlier univariate 
(NINO3.4) application (Chowdhury and Sharma, 
2006) . The prediction from static weight 
combination is used as base case for comparison. 
The predicted sea surface temperature using this 
dynamic combination algorithm consistently 
exhibited better accuracy to that of static 
combination in every season (Figure 1). Improved 
skill is achieved at 86% of the global grids with 
the rest showing indifference to static weight 
skills. 

 

Figure 1. The reduction in prediction error variance due to dynamic weight combination compared to 
that of static weight combination method.. The lighter shades (blue) and solid contours are the zones with 
improved prediction. The darker boxes (red) and broken contours where there is no difference. No zones 

show higher error variance. 
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1. INTRODUCTION 

There are a number of dynamic and stochastic 
models that predicts the hydroclimatic variables. 
Each model is subject to certain strengths and 
limitations. The selection of a single best model 
involves selection uncertainty as well as discards 
any superior strength of alternative options in 
certain climatic period. Combining response of  
various models maximise the strength of 
individual approach and reduce the variance of 
predictive uncertainty (Barnston et al., 2003; 
Colman and Davey, 2003; Greene et al., 2005; 
Peng et al., 2002; Raftery et al., 2005; Robertson et 
al., 2004; Sharma and Lall, 2004). Combining 
models is a well established time series forecasting 
technique (Clemen, 1989). The method used in this 
research is referred as the pair wise dynamic model 
combination (Chowdhury et al., 2007). The term 
dynamic being used to denote the fact that the 
mode of combination varies with time, with 
combination weights being modelled on the basis 
of the persistence they exhibit; the term pair wise 
reflects the paired hierarchical tree architecture 
when the numbers of components models are more 
than two. The aim is to improve upon the existing 
method of combining model predictions that 
overlooks persistence in the individual model 
skills. The existing developments that set the 
background of our current research are discussed 
in next paragraph. 

The static mixing weight reflects the accuracy of 
individual models or maximise the performance of 
the weighted combination output (Coelho et al., 
2004; Doblas-Reyes et al., 2005; Kondrashov et 
al., 2005; Pavan and Doblas-Reyes, 2000; See and 
Abrahart, 2001; Xiong et al., 2001). The weighted 
average combination forms the benchmark against 
which we compared the performance of our 
proposed pair wise dynamic combination 
approach. The proposed dynamic weight method is 
first applied to univariate predictions, NINO3.4 
time series by Chowdhury and Sharma (2006). 
This 2006 study has been further strengthened by 
projecting the weights as a mixed distribution of 
beta binomial conditional on logistic regression 
and with enhanced hierarchical tree structure 
(Chowdhury et al., 2007). This paper presents the 
current state of research to extend the method into 
multivariate prediction of global sea surface 
temperature anomalies. 

2. THEORY 

2.1. Target Weight 

Consider a case of combining predictions of a pair 
comprised of ith and jth component models using 
dynamic weights. The component predictions at 
time t are ûi,t and ûj,t with residual error of ei,t and 
ej,t , the corresponding true response is yt where, 

yt = ûi,t + ei,t     (1) 
yt = ûj,t + ej,t    (2) 
The two models can be combined as follows: 

yt = ûi,t ωt + ûj,t (1 ― ωt ) + ët  (3) 

Here ët is the residual of the combination where 
the target weight ωt is available. We assume that 
the component predictions are unbiased and hence 
restrict the weights within 0 to 1. One way of 
estimating the relative skills (and hence ωt ) of the 
models is by comparing the precision (defined here 
as the inverse of error variance) of the component 
predictions (Granger and Newbold, 1977; McLeod 
et al., 1987). In a two model case, the precision 
ratio, rt can be estimated as: 

rt = ej,t 2 / (ej,t 2 + ei,t 2 )   (4) 

In order to keep ët
2 ≤ Min(ei,t

2, ej,t
2) we propose 

additional criteria which are based on the direction 
of the bias of each model. The bias direction {bt ; 
t=1,2,..tmax} is mapped into three categories {mix, 
zero, one} as shown in Equation (5): 

bt =  mix 0 > ej,t / ei,t  (5) 

 zero 0 < ej,t / ei,t  < 1 

 one 1 < ej,t / ei,t  

The models are combined based on rt only when 
ei,t and ej,t have opposing sign i.e. two predictions 
are bracketing the true value. On the other hand 
while both predictions exhibit bias in the same 
direction the better prediction is chosen ignoring rt. 
The optimum measure of ωt is estimated as 
follows: 

ωt =  rt when bt = mix  (6) 

     =  0   bt = zero 

     =  1   bt = one 
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2.2. Forecasting Target Weight 

The forecast of weights {ωt} is done in a two step 
process. The first step involves predicting {rt}, the 
precision ratio model and the second step is 
predicting the bias direction {bt ∈mix, zero, one}. 

The precision ratio tr̂ is forecasted  using a finite 
order generalised linear autoregressive (GLAR) 
model (Shephard, 1995): 

Logit( tr̂ )= θt + φ rt-.   (7) 

Where, rt-.is the predictor vector (autoregressive 
and exogeneous) and θt is the periodic intercept. 
The regression parameter φ is estimated by 
maximising the likelihood of beta binomial 
distribution of the response variable. 

The second step of this method predicts the 
direction of bias. An ordered logistic regression 
(OLR) model (Agresti, 1996) is used as the basis 
for predicting the categorical bias direction b={bt ; 
t=1,2,..tmax}. The cumulative probability of b, P(b) 
is estimated as: 

Logit [P(bt = mix)] = α1 + xt β  (8) 

Logit [P(bt = mix or zero)] = α2 + xt β. 

Where xt are predictor vectors and {α1, α2, β} are 
intercepts and slope parameters. No third equation 
is necessary since P(b = one) = 1 - P(b = mix or 
zero). 

2.3. Multivariate Combination 

The combination exercise of Equation (3) can be 
extended to multivariate response, Yt= {yt,i},  
where i may denote spatial spread or a set of 
different types of response variable. The example 
of multivariate response may be global sea surface 
temperature or a set of indices like {NINO3.4, 
wind stress, thermo-cline etc}. The multivariate 
statistic is maintained by designing the predictors 
{rt-., xt } that retains the effects of the neighbours. 

rt-. = ∑i ci • rt-., i    (9) 

Where ci is a measure of influence (eg. correlation 
coefficient) of the neighbours. Similar relationship 
of Equation (9) is developed to estimate xt , which 
is not shown here. 

2.4. Combining Multiple Models 

The last three sections presented the basis for 
combination of two models. In case of higher 
number of models a paired combination 
hierarchical tree is used as shown for a four model 
case in Figure 2. The model pairing is performed 
by first sorting the models in order of their 
individual residual variance, and then starting from 
the lowest variance model and finding its pair as 
the model with which it has the lowest covariance. 
This process is repeated for the models that remain 
until all models are exhausted. 

 

Figure 2. The hierarchical tree of four component 
models. 

3. APPLICATION 

The method is applied to improve the prediction of 
global sea surface temperature anomalies 3 months 
in advance. Three model responses are combined. 
The first of the three models was developed at 
University of California, Los Angles, USA, 
hereafter referred as UCLA model (Kondrashov et 
al., 2005). The second of the three models was 
developed at the Climate Prediction Centre of the 
National Oceanic and Atmospheric 
Administration, USA and referred to as the 
CACPC model (Dool et al., 2003). The third 
model was prepared by the Demeter project of 
European Centre for Meteorological Forecast and 
referred to as the ECMF model (ECMWF, 2004). 
The hind-casts during the period of January 1956 
to December 2001 at 5° by 5° grids of the global 
sea surface between 60°N to 40°S are used to 
estimate the dynamic weights. The error variance 
of the {UCLA, CACPC, ECMF} are {0.70, 1.89, 
1.48}. The models UCLA and CACPC are paired 
first and then ECMF is paired at a higher level of 
the hierarchical tree. 

The first step of this combination method involves 
calculating the target weights. Figure 3 shows a 
sample of target weights of UCLA versus CACPC 
pair, averaged over 1956 to 2001 time series at all 
grid points. The contour of the target precision 
weight indicates the spatial variability of the 
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relative model skill. The next step of the 
combination method forecasts these target weights 
based on suitable predictors, as detailed in 
Equations (7) and (8). 

3.1. Predictor Selection 

The predictors for the precision ratio (rt-.) model in 
Equation (7) are ascertained from lagged values of 
the response (rt) over the past 12 time steps 
(months). Predictors for the categorical bias 
direction (xt) of Equation (8) are selected from 
lagged values of the ratio ei,t/ej,t. which is 
constrained within [-1, 2] avoiding numerical 
instability when ej,t → 0. The periodic intercepts 
are 12 monthly values smoothed over 3 months 
span. A common set of autoregressive lags are 
used for the entire sea surface for simplicity. The 
selected autoregressive lags are mainly in the order 
of 6, 9 and 12 months. 

The spatial characteristics are maintained by 
adjusting the predictors reflecting the 
neighbourhood influence. An exhaustive cross 
correlation analysis of predictors at each grid 
points against all other grid locations showed that 
the influence existed only within ±20° distances; 
Figure 4 displays one such analysis of UCLA and 
CPC model combination weights at a location. 
Each predictor vector is smoothed by weighted 
linear combination of neighbouring predictors 
within ±20° as shown in Equation (9). The weights 
{ci} being the correlation coefficient in this study. 

 

Figure 4. Spatial correlation of weights to 0°N, 
180°E grid point. Correlations ≥ 0.4 are drawn in 

thicker line, and lower values in broken line. 

3.2. Static Weight Alternative 

The strength of the dynamic weight combination is 
compared to that of static weight combination. The 
static weight combination here largely followed 
the methodology used by Robertson (2004) that 
can be divided into three steps. Each component 
model prediction at each grid point is first 
combined against the climatology prediction. The 
static weight is estimated by minimising the sum 
of squared errors of the combined prediction. The 
weights of each component models are normalised 
at second step. The above two steps are repeated 
for all the grid points. At third step, the spatial 
noise is reduced by smoothing weights at each grid 
points across the neighbours within ±20° distance. 

 

Figure 3. The contour of target precision ratio, the blue shaded area are showing zones where b=mix, the 
white zones are locations where target weights are either 0 or 1. This graph is showing average values 

across the entire time series 
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Figure 5.. Density graph of mean of squared error 
of prediction, the filled graph is the static weight 

method, the black outer graph is the dynamic 
weight results. 

4. RESULTS AND DISCUSSION 

The prediction obtained by this dynamic weight is 
compared against the best component model, 
UCLA and the static weight prediction. Mean 
squared error (MSE) is used as a measure of skill 
in this study. The density graph of MSE at all the 
grid point for the entire time series is drawn in 
Figure 5. The peaky density plot of the dynamic 
weight demonstrates the smaller error variance 
(0.298) and with reduced bias (peak is closer to 
zero vertical) compared to that of static weight 
method (0.455). Besides, the month by month 
comparison of MSE demonstrates, in Figure 6, the 
superior performance of the dynamic weight 
predictions compared to static weight predictions 
or best single model predictions. We have also 
checked the spatial dependence structure of the 
prediction to that of observed dependence by 
computing the correlation of each grid point to all 
other grid points. Very few systematic loss (or gain 
of) spatial correlation were evident compared to 
observed values as shown in Figure 7. 

The MSE of predictions by static weight method 
minus that of dynamic weight method are drawn 
across the global sea surface grid in Figure 1. The 
cells with positive difference denote improvement 
and are shown using lighter shades (blue). The 
figure demonstrates an improvement of the 
predictions at 86% of the grid boxes across the 
globe. The decrease of sum of squared error is 
found statistically significant when analysed by 
one tailed paired t test (p= 2e-16).  There are 14% 
locations where either static or dynamic weights 
yields similar prediction skill. Note that in absence 
of any persistence of relative model skills the 
dynamic weight converges to static weight 
estimate. In our exercise, the dynamic weight did 
not worsen the skills of prediction in any location 
compared to static weights 
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Figure 6. The monthly spread of mean of squared 
error of prediction. Note the consistence 

improvement around all seasons. 

 

Figure 7. Spatial correlation of SSTA at a grid 
point to the rest of the sea surface grids. 

5. CONCLUSION 

This study enhanced a dynamic combination of 
multiple predictive models to predict multivariate 
response, such as sea surface temperature anomaly. 
The pair-wise mixing weight is designed as a 
product of a ‘precision ratio’ and a ‘bias direction’. 
The precision ratio is projected forward using a 
generalised autoregressive model and the bias 
direction is projected using ordered logistic 
regression. Three or more models are combined 
based on a pair wise hierarchical tree. The tree 
provides a low dimension setting for designing any 
predictive structure of the relative model strengths. 
The method is extended to multivariate responses 
by simply including the neighbours through a 
linear combination. The method is applied to 
combine three climate models, the variables of 
interest being the monthly global sea surface 
temperature anomalies at 5° grids for a period of 
1956 to 2001. The prediction from static weight 
combination is used as base case for comparison. 
The predicted sea surface temperature using this 
dynamic combination algorithm consistently 
exhibited better accuracy to that of static 
combination. The spatial statistics of the 
temperature anomalies are maintained. 
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