
A Multisite Stochastic Downscaling Model of Daily 
Rainfall Occurrences with Long Term Persistence 

Mehrotra, R. 1, and A. Sharma 1 

1 School of Civil and Environmental Engineering, The University of New South Wales, Sydney 
Email: raj@civeng.unsw.edu.au; a.sharma@unsw.edu.au 

Keywords: Statistical downscaling, rainfall, spatial and temporal rainfall structure, low frequency variability

EXTENDED ABSTRACT 

Direct use of outputs from the General Circulation 
Models (GCMs) for climate change impact 
assessment is often limited by their incapability at 
representing local features and dynamics at spatial 
scales finer than the in-built GCM grid scale. This 
has led to the development of downscaling 
techniques for transfer of coarse GCM simulated 
weather output to finer spatial resolutions. 
However, the downscaling models are often 
suspected for their validity in the future climate 
conditions and their inability to simulate the 
hydrologic extremes. This paper presents a 
stochastic downscaling model for simulation of 
multi-site daily rainfall occurrences with the aim of 
proper simulation of rainfall extremes. At-site 
rainfall occurrences are modelled using a Modified 
Markov model (MMM) as described in Mehrotra 
and Sharma (2007) that defines the temporal 
persistence in the rainfall occurrence by updating 
at each time step the Markovian transition 
probabilities on the basis of recent past rainfall 
behaviour and the selected atmospheric variables. 
The spatial dependence across the rainfall 
occurrence field is maintained through spatially 
correlated random numbers and atmospheric and 
other variables defining the history of rainfall in 
the recent past, common across the stations. The 
proposed model is applied for downscaling of 
rainfall occurrences at a network of 45 raingauge 
stations around Sydney in Australia and its 
performance evaluated. The analyses of the results 
show that the scheme of updating the transition 
probabilities of the at-site rainfall occurrence 
model and the logic of providing spatial treatment 
separately, imparts considerable accuracy and 
flexibility in the representation of characteristics of 
interest in hydrologic studies. These characteristics 
include representation of spell patterns, spatial 
distribution, and low and higher time scale 
persistence characteristics and as generic indicators 
of water balance and variability that are of 
importance in a catchment scale water balance 
simulation.  
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Figure 2: Scatter plots of observed and model 
simulated log-odds ratios of rainfall 

occurrences for each station pair. 
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Figure 3: Scatter plots of observed and model 
simulated means and standard deviations of 
rainfall occurrences on monthly, seasonal and 
annuals basis at each station. SD stands for 
standard deviation. 
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1. INTRODUCTION 

General Circulation Models (GCMs) are 
commonly used to obtain detailed climate 
information needed for the assessment of the 
various consequences of future climate changes on 
ecosystems and societies, both in space and time 
(e.g. Bergström et al. 2001, Varis et al. 2004). 
Inspite of the fact that the spatial resolution of the 
GCMs is steadily improving, most GCMs operate 
at large spatial scales (>104 km2) and provide a 
reasonable representation of global and continental 
scale processes. However, they are incapable of 
representing local sub-grid-scale features and 
dynamics (IPCC, 2001; Charles et al., 2004; 
Vicuna et al., 2007). As a consequence techniques 
have been developed to post process the GCM-
output by means of downscaling in order to meet 
the need for detailed information at local and 
regional levels for use in modelling at the 
catchment scale. Statistical downscaling is a way 
to infer local information from coarse scale 
information by applying empirical statistical links 
between large scale fields and local conditions (e.g. 
von Storch et al. 2000, Yarnal et al. 2001). Such 
statistical links may be used both to validate global 
and regional climate models, and to develop 
detailed local climate scenarios based upon the 
output from such climate models. Statistical 
downscaling has been especially recommended in 
areas with complex topography (Kattenberg et al. 
1996). A diverse range of statistical downscaling 
techniques have been developed over the past few 
years, with regression based and weather state 
based methods are quite popular (Wilby and 
Wigley, 1997; Hughes et al., 1999; Charles et al., 
2004; Bartholy et al.,1995; Stehlίk and Bárdossy, 
2002; Mehrotra and Sharma, 2005). Yarnal et al. 
(2001), Charles et al. (2004), IPCC (2001) and 
Prudhomme et al. (2002) provide an excellent 
review and discussion of various downscaling 
techniques.  

It has been noted that the weather patterns 
producing rainfall over a region introduce spatial 
and temporal dependence structure into the rainfall 
record. Also, persistent longer-term climate 
variation like the El Nino Southern Oscillation 
(ENSO) or similar climatic anomalies influence the 
low-frequency persistence structure of rainfall 
including the representation of sustained droughts 
and periods of above average rainfall (or above 
average wet days) in the rainfall record (Madden et 
al., 1999; Shea and Madden, 1990; Singh and 
Kripalani, 1986; Harrold et al., 2003). However, 
commonly available statistical downscaling 
approaches are limited in their representation of the 
spatio-temporal structure of the downscaled 
rainfall field. The common logic used for 

downscaling of the rainfall occurrence field, while 
adequate at representing spatial attributes, is often 
found wanting at representation of temporal 
dependences, specifically of low frequency rainfall 
variability, of great importance in the simulation of 
hydrologic extremes (floods, droughts) of interest 
(Bartholy et al., 1995; Stehlίk and Bárdossy, 2002; 
Charles et al., 1999). It has been shown that the 
regression methods and some weather-typing 
approaches under-predict climate variability to 
varying degrees, since only part of the regional and 
local climate variability is related to large scale 
climate variations. For example, Conway et al. 
(1996) compared two downscaling approaches and 
found that mean daily precipitation probabilities, 
wet-day amounts and persistence were well 
represented, but variations in the interannual 
rainfall totals were not modelled to the same 
standard at either of the two reference sites.  

Another important and perhaps the more serious 
limitation of the application of the downscaling 
approaches to future climate scenario generation, is 
the fact that the relationships between the rainfall 
and associated meteorological properties over a 
region are seldom constant in time. Wilby et al. 
(1995) partly attributed this variability to the subtle 
changes in the dominant precipitation mechanism 
(stratiform or convective with reference to UK 
precipitation), whereas Sweeney and O’Hare 
(1992) have attributed this to the role of changes in 
the intensity of circulation development, and/or 
shifts in depression trajectories. 

This paper presents a rainfall occurrence 
downscaling model that tries to address these 
limitations to a greater extent. The model is termed 
as Modified Markov Model (MMM) (Mehrotra 
and Sharma, 2007). It conditionally simulates the 
rainfall occurrence field based on exogenous 
atmospheric forcings and aggregated longer time 
scale variables that represent the low frequency 
variability of rainfall within the commonly used 
low order Markov dependence structure. The 
MMM is nonstationary or dynamic in nature in a 
sense that at-site Markovian transition probabilities 
of the model are modified at each time step to 
accommodate the variations in the circulation 
variables over the region including the trend of the 
recent downscaled rainfall series. Spatial 
correlations of downscaled rainfall occurrence field 
are maintained by making use of random 
innovations that are spatially correlated yet serially 
independent in nature (Wilks, 1998).  

2. METHODOLOGY 

In the discussions that follow, all multivariable 
vectors or matrices are expressed as bold and 
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single variables or parameters using non-bold 
characters or symbols. We denote rainfall 
occurrence at a location k and time t as )(kRt  and 
at the pth time step before the current as )(kR pt− . 

Also, a sn -site rainfall vector at time t is denoted 
as tR , a vector of atmospheric predictor variables 
at time t as tA , and a vector of predictor variables 
(consisting of atmospheric and/or other relevant 
indicators) as tZ . Also, the areal averaged rainfall 

at time t is expressed as ∑
=

=
sn

i
ti

s
t R

n
R

1
,

1 .  

In general, the rainfall downscaling problem could 
be expressed as the conditional simulation of 

)()( kkR tt Z  where )(ktZ represents a vector of 
variables at a location k and at time t that in 
addition to previous time steps values of rainfall 
imparting daily or short term persistence, also 
includes atmospheric variables and/or other 
continuous variables ( )(ktX ) explaining the 
higher time scale persistence. In the simplest case 
of a first order Markov model for rainfall 
generation, )(ktZ  contains )(1 kRt−  only.  

2.1. Modelling at-site temporal persistence 

In the following discussions, the details of a 
method that aims to formulate a generic 
representation of the conditional simulation 

of )()( kk tt ZR within the framework of Markov 
process by considering order-one short-term 
dependence are presented. It may however be 
noted that the model structure presented can easily 
be extended to include higher order Markovian 
dependence. For brevity, site notations are dropped 
in the subsequent discussions. The parameters (or 
the transition probabilities) of a model expressing 
the order one Markovian dependence (first order 
Markov model) are defined by )( 1−tt RRP  with 

tZ consisting of 1−tR  only. Inclusion of additional 
predictors tX  in the conditioning vector tZ  would 
modify these transition probabilities 

as ),( 1 ttt RRP X− . The following parameterization 

is adopted to estimate ),( 1 ttt RRP X− : 
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The first term of (1) defines the transition 
probabilities )( 1−tt RRP  of a first order Markov 
model (representing order one dependence) while 
the second term signifies the effect of inclusion of 
predictor set tX in the conditioning vector tZ . If 

tX  consists of derived measures (typically linear 
combinations) of either atmospheric variables or 
summation of number of wet days in pre-specified 
aggregation time periods, one could approximate 
the associated conditional probability 

),1( 1 iRRf ttt == −X  as a multivariate normal 
distribution. One can consequently derive the 
conditional probability )( 1 iRf tt =−X  as a 
mixture of multivariate normals as specified in 
equation (1). This leads to the following 
simplification for ),( 1 ttt RRP X− : 

Here, the i,1μ  parameters represent the mean 
( )iRRXE ttt == −1,1|  and i,1V is the 

corresponding variance-covariance matrix. 
Similarly, i,0μ  and i,0V represent, respectively, the 
mean vector and the variance-covariance matrix of 
X when ( iRt =−1 ) and ( 0=tR ). The 

ip1 parameters represent the baseline transition 
probabilities of the first order Markov model 
defined by )1( 1 iRRP tt == − and det() represents 
the determinant operation. Please note that for 
some applications, the assumption of a multivariate 
normal may not be sufficient.  
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Figure 1: Raingauge stations location. 

In the present application we consider vector tX  
as consisting of the aggregated wetness state 
predictors, tB , over 30 and 365 days and the 
selected atmospheric variables, tA . Procedure for 
selection of atmospheric predictor variables is 
described in the sub-section 3.4. 

2.2. Modelling spatial correlations 

The rainfall occurrence downscaling model 
outlined in previous section simulates rainfall at 
individual stations in isolation, hence resulting in 
values that are theoretically spatially independent. 
We induce spatial dependence in the downscaled 
rainfall occurrences by making use of spatially 
correlated and serially independent random 
numbers during generation of rainfall occurrences 
at individual stations separately. The general logic 
of estimating the correlation matrices of random 
numbers for rainfall occurrences is available in 
Wilks (1998) and Mehrotra et al. (2006).  

3. DATASETS AND STUDY AREA 

3.1. Study area 

The study region is located around Sydney, eastern 
Australia spanning between 147°E - 153°E 
longitude and 31°S - 36°S latitude (Figure 1). The 
physio-geographical conditions in Sydney region 
cause large climatic gradients even over short 
distances, e.g. from lowland areas to mountain 
regions and from the coast to the inland.  

3.2. Rainfall 

For this study, 43-year continuous record (from 
1960 to 2002) of daily rainfall at 45 stations around 
Sydney, eastern Australia is provided directly by 
the Sydney Catchment Authority (SCA), Sydney, 
Australia (Figure 1). The available rainfall amount 
record is converted into rainfall occurrences (zero 
or one) by considering a day as wet (one) if 
observed rainfall on that day is greater than or 
equal to 0.3 mm, otherwise dry (zero). The dense 
network of climate stations with sufficient daily 
records of 43 years or more provides a good base 
for the development of empirical downscaling 
models such as MMM.  

3.3. Large scale atmospheric variables  

The required information about atmospheric 
variables over 25 grid points covering the study 
area, is extracted from the National Center for 
Environmental Prediction (NCEP) reanalysis data 
provided by the NOAA-CIRES Climate 
Diagnostics Centre, Boulder, Colorado, USA, from 

their web site at http://www.cdc.noaa.gov/. These 
variables are available on 2.5° latitude x 2.5° 
longitude grids over the study region, on a daily 
basis for the same period as the rainfall record. As 
an observed rainfall value represents the total 
rainfall over a 24-h period ending at 0900 hours 
(local time, LT) in the morning, the available 
atmospheric measurements on the preceding day 
are considered as representative of today’s rainfall.  

3.4. Identification of significant predictors 

Sea level pressure (SLP) fields, geo-potential 
heights, air temperatures, humidity, wind speeds or 
indices derived from these variables (e.g. air flow 
indices such as zonal and meridional wind and 
vorticity, vertical and horizontal gradients and 
thickness of pressure fields) have been 
demonstrated to account for a large part of the 
variation and trends in local precipitation 
(Harpham and Wilby, 2005; Buishand et al., 2004; 
Charles et al., 1999). Based on the results of these 
studies, we picked up a large set of atmospheric 
predictors comprising of circulation and moisture 
variables at various pressure levels and their 
horizontal and vertical gradients as the potential 
predictors (totalling 45 predictors). The predictor 
identification exercise is carried out at daily time 
step for each season (MAM, JJA, SON, DJJ). To 
facilitate the predictor identification exercise, we 
consider solo predictand as daily area averaged 
wetness fraction for rainfall occurrence. As some 
of the predictors might be highly correlated among 
themselves, initial screening is carried out using 
linear regression to exclude the highly correlated 
predictors (having linear correlation of greater than 
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Table 1: Mean and standard deviation of area 
averaged wetness fraction at varying timescales. 

Mean Standard Deviation Time 
Scale Observed Simulated Observed Simulated
Daily 0.31 0.32 0.33 0.31
Monthly 9.32 9.67 3.41 3.31
Annual 111.86 114.02 15.42 15.95

0.90). Finally, a nonparametric stepwise 
correlation analysis based on partial mutual 
information (Sharma, 2000) is carried out to 
identify sets of significant atmospheric predictors 
for each season. Based on this exercise finally, four 
atmospheric predictors for each season are 
identified as significant predictors for this region 
with at least one predictor in each season 
representing atmospheric moisture.   

4. RESULTS 

In all the results that follow, the statistics reported 
are ascertained by simulating 100 realisations of 
the rainfall occurrences from the MMM. The 
performance of the downscaling model is 
evaluated on a daily, monthly, seasonal and annual 
basis for its ability to simulate the observed spatial 
and temporal characteristics of rainfall including 
those of importance in water resource 
management. For a few statistics, the at-site time 
distribution plots are presented for two 
representative stations namely, station 19 located 
inland and representing a drier region, and station 
38 located in the coastal area representing a wetter 
region (Figure 1). 

4.1. Spatial correlations 

The log-odds ratio, reflecting the spatial correlation 
between rainfall occurrences at each pair of 
stations provides a measure of accurate 
reproduction of the overall wet and dry days 
between the station pair (Mehrotra and Sharma, 
2005). Figure 2 presents this statistic at all stations. 
The model accurately reproduces the dependence 
between the stations. Also, the area averaged 
wetness fraction on daily and higher time scales, 
has important implications in calculating the flows 
from a catchment. Table 1 provides the observed 
and model simulated means and standard 
deviations details of area averaged wetness 
fractions at varying time scales. The model 
accurately simulates these statistics. 

4.2. Number of wet days 

It is vital that the average number of wet days or 
wet day probabilities and day to day occurrence of 
the rainfall at raingauge network be reproduced 
accurately before using the downscaled rainfall 
series as an input to any water balance modeling 
exercise. The first column of Figure 3 presents 
scatter plots of observed and modelled number of 
wet days at all stations on monthly, seasonal and 
annual basis. As can be seen from the graph, the 
model provides a good fit to the number of wet 
days at all stations. However, for efficient design 
and management of water resource projects, not 

only the number of wet days but their accurate 
distribution and variations in the downscaled series 
are also important. Second column of Figure 3 
compares the standard deviation of aggregated 
number of wet days on monthly, seasonal and 
annual time scales whereas Figure 4 provides the 
distribution plots of wet days in the observed and 
downscaled rainfall series for two representative 
stations. The 5th percentile, median, and 95th 
percentile values are shown as continuous lines 
while the historical values are superimposed as 
circles. As shown in both the plots, the model 
adequately reproduces the averages, distribution 
and variation of wet days at varying time scales 
barring a small underestimation of standard 
deviation of annual wet days. 

4.3.  Wet and dry spell characteristics 

Sustained periods of wet and dry spells form the 
basis of reservoir design and operation, and 
agricultural studies. Therefore, it is vital that wet 
and dry spells and their distribution be accurately 
represented by any downscaling approach. For the 
obvious reason, we choose here to present the 
results of station 19 (representing a drier region) 
for dry spells and station 38 (representing wetter 
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Figure 4: Distribution of wet days for two 
representative stations 19 and 38. 
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Figure 5: Maximum wet and dry spells and their 
distribution at representative stations.

region) for wet spells (Results for other stations are 
available with authors). The two plots of the top 
row of Figure 5 compare the maximum wet and 
dry spells at all stations. The second row compares 
the distribution of annual maximum dry spells (for 
station 19) while the bottom row shows the 
distribution of maximum wet spells for station 38. 
As can be seen from these graphs, maximum wet 
and dry spells and their distributions are 
reproduced well by the model with the exception 
of slight over estimation of the maximum wet 
spells at majority of stations. 

5. CONCLUSION 

This paper has demonstrated the applicability of a 
relatively simple stochastic downscaling 
framework for multi-site rainfall. The approach 
downscales rainfall occurrences at all stations 
using a modified Markov model (MMM) with 
spatially dependent forcing of uniform random 
numbers. Downscaling models having the 
capability to simulate rainfall at a network of 
stations whilst maintaining the appropriate spatial 
dependence attributes are best suited for use in 
catchment management practice, where the nature 
of spatial variations in rainfall has important 

influences on streamflow and flooding. Also, 
important temporal attributes of rainfall like 
distribution of wet and dry spells, number of wet 
days at individual stations have a significant 
impact in crop simulation studies and drought 
management applications. Such spatio-temporal 
rainfall attributes assume even more importance 
when the downscaling procedure is applied for 
investigating possible changes that might be 
experienced by hydrological, agricultural and 
ecological systems in future climates. The results 
of the MMM downscaling model indicate that the 
model reproduces fairly well the desired spatio-
temporal statistics of the observed rainfall record at 
all sites and can be used to investigate the possible 
changes in the rainfall in the warmer climate. 
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