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EXTENDED ABSTRACT

Irrigation mosaics, consisting of patches of 
irrigated area, may offer advantages when 
compared to traditional contiguous irrigation 
schemes (Figure 1).  Irrigation mosaics could 
reduce water table rise, water logging and 
salinisation associated with large irrigation 
schemes.  The water table mound that builds up 
under an irrigated patch due to increased recharge 
is examined using both a new analytical solution 
and a numerical solution.  The rise in water table is 
examined in both dimensional and non-
dimensional parameters with the analytical 
solution.  This solution was developed by Cook et 
al. (2007a) and is computationally efficient. The 
use of non-dimensional variables allow us to 
examine a very large range of possible solutions.  
A solution for water table rise with a square array 
of circular irrigation patches is developed and used 
to examine these arrays. These results are 
supplemented by numerical simulations using 
MODFLOW (McDonald & Harbaugh, 1988).  The 

MODFLOW calculations allow for periodic 
recharge and also irrigation arrays that are limited 
in spatial extent.  

Results show that the maximum water table rise 
(in the centre of the irrigated patch) is strongly 
dependent on the size of the irrigation patch.  This 
water table rise is linear with time initially but the 
rate of rise reduces with time as the mound 
spreads.  The irrigation arrays show that if mosaics 
are to be introduced that the size and spacing will 
have a large effect on the maximum water table 
rise.    The numerical results show that periodic 
recharge will result in a periodic time rise of the 
water table and that this is likely to approach the 
water table rise calculated with an average steady 
recharge rate over longer time.

Results suggest that irrigation mosaics of correct 
size and spacing could reduce water table rises 
relative to traditional irrigation systems while still 
irrigating the same total area.

Figure 1. Schematic diagram showing a) traditional contiguous area irrigation and b) irrigation mosaics.
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1. INTRODUCTION

Development of irrigation has usually occurred by 
an ad hoc process of individual farmers 
implementing irrigation at a small scale or by large 
irrigation schemes.  Planned irrigation schemes 
where the scale of an individual irrigation area is 
small, but the total area irrigated may be large, are 
rare.  Such schemes we term irrigation mosaics 
(Paydar et al., 2007a,b; Cook et al., 2007a) and a 
comparison with a more traditional contiguous 
area of irrigation is shown in Figure 1.

Although the problems of irrigation as a scale 
issue have been known for some time “Water-table 
and salinity problems are to a large degree 
disabilities of scale; to this degree isolated small or 
individual irrigation projects are free of them”
(England, 1963).  There appears to be little 
published literature on analysing the problem of 
size in irrigated systems on water table rise, or on 
spatially distributed systems such as irrigation 
mosaics on water table rise.  Here we will 
concentrate on the problem of groundwater 
mounds below circular irrigated areas.

2. THEORY

2.1. Single Isolated Irrigation Patch

The flow of water from a circular irrigated area to 
the groundwater and the resulting mound this 
creates (Figure 2) was described by Hantush 
(1967) and Dagan (1967) using slightly different 
approaches.  

Figure 2.  Schematic of flow regime for recharge 
from a circular irrigated patch to groundwater.  
The initial groundwater height is h0 above an 

impermeable layer.  I is the vertical percolation to 
the groundwater.

We have followed the approach of Hantush but 
provided a computationally more efficient solution 

which is described in detail by (Cook et al. 2007a).  
The solution has the following form:
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where   = r/R is the non-dimensional radius, r is 
the radius [L], R is the radius of the irrigated area 

[L], 2/tbK R   is non-dimensional time, t is 

time [T],  is the specific yield [L3 L-3], H is the 
non-dimensional water table height, f is a function 
defined below, h is the water table height above an 
impermeable base [L], h0 is the initial watertable 
height above an impermeable base [L], I is the 

recharge rate [L T-1], 0( ) / 2mb h h   is the 

linearization parameter [L], hm = h(0,) is the 
maximum watertable height at  and K is the 
hydraulic conductivity of the aquifer [L T-1].  The 
function f is defined in Cook et al. (2007a) and for 
 = 0 and 1 given exactly by:
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where E1 is the exponential integral.  Approximate 
solutions for f are presented by Cook et al. (2007) 
and are for  < 0.1:
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and for   0.1: 
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The inerfc(x) functions are the repeated integrals of 
the error function and are calculated by (Carslaw 
and Jaeger 1959, p483):
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where erfc(x) is the complementary error function.

The non-dimensional results can be converted to 
dimensional values by calculating:
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where Hm = f(0,) and then using eqn (3) or (4) to 
obtain H for other values of  and values of h(r,t) 
from eqn (1) and r and t from their definitions.

2.2. Mosaic Arrays - Analytical

We will assume that an infinite array of circular 
irrigation patches with the same radius are 
arranged in a square grid with spacing (in the non-
dimensional space) between the centre of the
patches of L  2 (i.e. in physical terms L > 2R) 
(Figure 3) and L is an integer.  Calculations only 
need to be made along an axis because of radial 
symmetry. 

The water table height can then be determine in the 
space around a patch for 0    L/2 using the 
principle of superpositioning and results in:
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The value of n is obtained from the fact that H
tends towards zero as  increase.  We choose a 
value of n which is an integer such that 

6( ) 10n mH H  and then int( / ) 1nn L  . 

Equation (7) allows us to explore the effect of , 
and L on H.  Although the H is inversely 
proportional to R2 which means that for large R
only small values of H result but in dimensional 

terms change in watertable height (h – h0) is  large 
due to the proportional relationship to R2 indicated 
by eqn (1).

Figure 3.  Schematic of square grid for mosaic 
calculations.

Programs were written in MatLab to solve eqns (2) 
to eqn (6).  This is a good programming 
environment as routines are available to solve E1

(expint(x)) and erfc(x).  The results were directly 
ported to EXCEL spreadsheets using the xlswrite
command and any further manipulation to 
dimensional values done within the spreadsheets.  
Testing of the programs was done using the 
original equations of Hantush and they were found 
to give exactly the same results.  The results were 
also checked against the MODFLOW results for 
the single patch for the first stress period and 
found to give similar results.

2.3. Mosaic Arrays - Numerical

Numerical solutions using MODFLOW 
(McDonald & Harbaugh 1988, Harbaugh et al. 
2000) were carried out for a single patch and 
square grid (Figure 4).  The area irrigated is the 
same in both irrigation patterns.  The flow domain 
is 120 X 120 km with one layer 20 m thick and 
bounded on all sides by a free flow boundary 
condition.  The aquifer is unconfined and with 
properties; K = 160 m day-1,   = 0.06 m3 m-3, h0 = 
5 m and I = 0.002 m day-1.

The aquifer is recharged for 120 days at a rate of I
and then zero recharge for 240 days.  This cycle is 
repeated 3 times resulting in 6 stress periods.

The pre- and post- processors available in 
processing MODFLOW (PMWIN) were used to 
prepare data input and perform ground water 
numerical simulation on patches of different sizes 
and configurations.

Square 

L

R
Calculations on this line for 
Superpositioning
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Figure 4. Schematic of domain and irrigation 
patches for single and square array in 

MODFLOW.

3. RESULTS 

3.1. Water Table Rise from a Single Patch

Over short time periods the water table shape is 
similar to a square wave, as the system does not 
‘know’ about the outer boundary (Figure 5a).  
Over longer time periods the water table shape 
becomes more curvilinear (Figure 5).

Also over short times the value of Hm and value of 
H for  < 0.9 is approximately equal to (Figure 
5a, b).  With increasing time the mound gets large 
in terms of its height and the extent it spreads into 
the area surrounding the patch.
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Figure 5. H verses  for various values of .  Note the scales for  are different for each panel.

The effect of water table rise at the centre of the 
patch in dimensional variables shows that initially 
the water table rises linearly with time (Figure 6).  
This linear rise decreases with time to a 
logarithmic rate of rise as can be seen in Figure 6.  
The time of when this logarithm rate of rise 
becomes noticeable increases as R increases and 
for R = 100 km the water table is still rising 
approximately linearly after 100 years.

The numerical simulation gives results which 
show the effect of the periodicity in the recharge 
function (Figure 7). The numerical and analytical 
results are almost identical for the centre point 
during the first stress period.

The average flux values show that by the end of 
the sixth stress period the periodic solution is 
tending towards the solution for the mean flux.  
This is especially so at greater distance from the 
centre where the fluctuations are damped.

The numerical solution also predicts a rise in the 
water table at r = 8000 and 9500 m sooner than the 
analytical solution does (data not shown).  This is 
likely due to numerical dispersion within the 
numerical simulations.

3.2. Water Table Rise for an Array of 
Patches

For the analytical solutions the spacing at which 
the array approaches an isolated patch and the 
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maximum water table height increases as 
increases (Figure 8) except for  = 0.1 (Figure 8a). 
At large time and small array spacing the water 
table is essentially flat and for L = 2 is similar to 
that of a planar recharge source (Figure 8c, d).  
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Figure 6. Change in maximum water table height 
(hm – h0) versus time (t) for various values of R.  
The parameters used were; K = 1 m day-1, I = 
1x10-3 m day-1,  = 0.1 m3 m-3 and h0 = 10 m.
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2000 m from edge
Centre eqn (1)
Centre eqn (1)
500 m from edge eqn (1)
2000 m from edge eqn (1)

Figure 7. Water table rise versus time under a 
single patch with R = 7500 m.  The lines shown 

are for the centre (hm), r = 8000 m and r = 9500 m. 
The solid circles are calculated with eqn (1) using 
the maximum recharge rate (I = 0.002 m day-1) for 
the centre.  The open symbols are calculated with 

eqn (1) with the mean recharge rate (I = 0.00067 m 
day-1)

The spacing at which the water table height 
approaches that of an isolated patch increases with 
.  Although we consider  = 0.1 to be a small time 
for the system the physical time can be quite large 
when R is large, for example for R = 100 km, t is 
27,384 years when  = 0.1, while for R = 100 m, t
is 10 days for the same value of .

The maximum water table height for the array of 
patches increases compared to an isolated patch, as 
L decreases and  increases (Figure 9).  This means 
that as R increases,  increases and the spacing 

between patches to minimise water table rise 
would have to increase. The numerical simulations 
show similar results but with the periodicity of the 
recharge now included.  Taking the time when 
recharge occurs as continuous the results shown in 
Figure 10 for water table contours correspond to 
= 0.77 (t =120),  = 1.55 (t = 240 day of 
continuous recharge) and  = 2.32 (t = 360 day of 
continuous recharge).  The spacing between the 
patches is 17.5 km which results in L = 7.  For the 
first 2 stress periods the array in the numerical 
simulation gives results the values of n are 
approximately 3 and 5, which are comparable with 
results from the analytical solutions for  = 0.1 and 
1 respectively.  The result for the first stress period 
are similar to that predicted with the analytical 
method with isolated patch occurring (Figure 8a, 
10a).  Similarly for the second stress period we see 
that the water tables are just starting to interact, 
this is what would be predicted from the analytical 
method.

By stress period 6 (Figure 10c) there is a large 
amount of interaction between the patches and this 
cannot be compared with the analytical solution as 
the finite nature of the numerical model now has 
an effect on the results.

The increase in water table heights is not as high 
for mosaics as the single patch (Figure 6, 7).  The 
rise in water table is more curved in figure 11, 
which is mainly due to the radius being smaller.  
This same curvature in water table rise is predicted 
using the analytical model with the average 
recharge rate (figure 11).

The analytical results shown in Figure 11 are for a 
single patch as there is very little overlap in water 
tables that will occur during the time shown.  
Again the numerical periodic solutions are tending 
towards the average constant rate analytical 
solution as time increases.  This result suggests 
that large water table rises will occur with large
irrigation areas and is entirely inherent to the size 
of the system.

4. DISCUSSION

Here we have quantified England’s (1963) 
statement on the size of irrigated area with regard 
to the effect on water tables, and have shown that 
water table rise is strongly dependent on the radius 
of the irrigated area (Figure 6). These results also 
show that initially water table rise is approximately 
linear with time.  This result suggests that large 
water table rises will occur with large irrigation 
areas and is entirely determined by the size of the 
system.
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Figure 8.  H versus  for a square array of circular irrigation patches at a) = 0.1, b) = 1, c) = 10 and d) = 
100.
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Figure 9.  The maximum water height in the 
centre of an irrigated patch in an array of patches 
(H( = 0)) compared to an single isolated patch 

(H0) versus L, for various values of .

Figure 10. Water table contours for the square 
array of irrigation patches at a) t =120 day (end of 
stress period 1), b) 480 day (end of stress period 3) 
and c) end of stress period 6).
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Figure 11.  Water table height versus time of the 
array with 9 patches with R = 2500 m.  The lines 
shown are for the centre (hm), r = 8000 m and r = 
9500 m. The open symbols are calculated with eqn 
(1) with the mean recharge rate (I = 0.00067 m 
day-1) from a single patch.

Given that to prevent salinisation of the root zone 
leaching is required (Cook et al. 2007b) water 
table rise of significant proportions is inevitable.  
This does not seem to have been discussed before 
even though it is inherent in the Hantush (1967) 
solutions.  Dagan (1967) found that a sloping 
impermeable base resulted in a displacement down 
slope of the peak in the water table at small times 
but at large times slope had almost not effect on 
the position or height of the water tables.  The only 
physical process that could change the time course 
for the water tables are if water leaks through the 

a b c
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impermeable base or there is a sink (river, leakage 
to ocean or well) that the water can flow to.  Even 
with such sinks the resulting water table rise may 
still be significant (Rassam et al. 2005).  It is 
possible to extend the analysis presented here for 
combinations of sources and sinks and we hope to 
be able to do this in the future.

Extending this to irrigation mosaics we can see 
that the spacing and size of the irrigation patches 
will determine the water table rise with time along 
with the aquifer properties and recharge rate.  The 
analytical analysis presented offers a method for 
rapid investigation of possible sizes and spacing.  
However, this does not allow for variability in the 
aquifer properties in space or recharge rate in time.  
We are working on solving the latter problem and 
an analytical solution is possible.  To deal with 
spatial variability in aquifer properties will require 
numerical methods.

The analysis here can be used to assess the 
marginal impact of irrigation mosaics and size of 
patches. This is examined in detail by Cook et al. 
(2007a).  Irrigation mosaics if they have correct 
size and spacing could reduce water table rises 
while irrigation of the same total area occurs 
(Figures 6, 9).  

5. CONCLUSION

Analytical and numerical solutions are used to 
assess water table mounds created by irrigation.  
These results are consistent with each other and 
show that the water table rise is strongly dependent 
on the size of the irrigated area.

Irrigation mosaics are investigated and found to 
reduce water table rise depending on the irrigation 
patch size and spacing of the patches.

6. ACKNOWLEDGMENTS

This work formed part of a suite of activities 
carried out through the Northern Australia 
Irrigation Futures (NAIF) project. It was funded in 
part by CSIRO, the Land and Water Australia 
National Program for Sustainable Irrigation 
(NPSI), the CRC for Irrigation Futures, and the 
Australian, Western Australia, Northern Territory, 
and Queensland Governments.

7. REFERENCES

Carslaw H.S. and J.C. Jaeger (1959), Conduction 
of Heat in Solids 2nd edition, Oxford 
University Press, London, 510p.

Cook F.J., E. Xevi, J.H. Knight, Z. Paydar and 
K.L. Bristow (2007a), Analysis of 
biophysical processes with regard to 
advantages and disadvantages of irrigation 
mosaics, CSIRO Land and Water Technical 
Report, (In press) 65p.

Cook F.J., N.S. Jayawardane, D.W. Rassam, E.W.
Christen, J.W. Hornbuckle, R.J. Stirzaker, 
K.L. Bristow and T. K.Biswas (2007b), The 
state of measuring, diagnosing, 
ameliorating and managing solute effects in 
irrigated systems, Cooperative Research 
Centre for Irrigation Futures Technical 
Report, 04/06, 47p.

Dagan G. (1967), Linearized solutions of free-
surface groundwater flow with uniform 
recharge, Journal of Geophysical Research, 
72, 1183-1193.

England, H.N. (1963), Problems of irrigated areas,
In Water Resources and Land Use, 
Melbourne University Press, 399-418.

Hantush M.S. (1967), Growth and decay of 
groundwater-mounds in response to 
uniform percolation, Water Resources 
Research, 3, 227-234.

Harbaugh A.W., E.R. Banta, M.C. Hill and M.G.
McDonald (2000), MODFLOW-2000, The 
U.S. Geological Survey modular ground-
water model User guide to modularization 
concepts and the ground-water flow 
process, U. S. Geological Survey, Open-
file report 00-92.

McDonald, M.C. and W. Harbaugh (1988), 
MODFLOW, A modular three-dimensional 
finite difference groundwater flow model, 
Open-file report 83-875, Chapter A1, US 
Geological Survey, Washington DC.

Paydar Z., F.J. Cook, E. Xevi and K.L. Bristow, 
(2007a), Review of the current 
understanding of irrigation mosaics, CSIRO 
Land and Water, Technical Report, (In 
press).

Paydar, Z., F.J. Cook, E. Xevi, and K.L. Bristow
(2007b), Irrigation Mosaics. How are they 
different? MODSIM07.

Rassam D.W., G. Walker, and J.H. Knight (2005), 
Application of the unit response equation to 
assess salinity impacts of irrigation 
development in the Mallee, CSIRO 
Technical Report, 23p.

1409




