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EXTENDED ABSTRACT 

Richards’ equation models have been extensively 
applied to simulate water transport in soils. These 
models are usually calibrated against a set of 
observed field or laboratory time series. However, 
the models can yield dramatically different 
predictions for conditions outside the range of the 
calibration data, or the models can give 
inconsistent prediction on variables that are not 
used in the calibration. Insight into the 
appropriateness of Richards’ equation models for a 
particular soil type can be obtained by model 
evaluation against multiple observations. 
Simultaneous soil moisture (time domain 
reflectometry) and deep percolation data from a 
lysimeter experiment on two soil types (a heavy 
and a light soil) in south-eastern Australia were 
used. Lysimeters represented 2.2 m deep 
undisturbed soil cores with a constant water table 
depth of 1.8 m. Perennial pasture was established 
in the cores and which was regularly irrigated. 
Monte Carlo simulations of the HYDRUS-1D 
model were applied for each soil type to simulate 
water transport in the lysimeters. Each Monte-
Carlo simulation provided a model realization with 
a set of model parameters (the crop factor and 
eight soil hydraulic parameters) sampled from a 
feasible range of parameter values. Then model 
performance for each Monte Carlo realisation was 
evaluated against soil moisture and deep 
percolation data using the root mean square error 
as performance measure. The Richards’ equation 
model was not able to provide consistent 
predictions of both soil moisture and deep 
percolation for the heavy soil. Only soil moisture 
was well predicted, deep percolation predictions 
had substantial errors for all model realizations. 
This means that calibrating the model parameters 
using soil moisture data is unlikely to result in 
useful predictions of deep percolation. The 
Richards’ equation model performed better when 
used to simulate water transport in the light soil 
type. Both soil moisture and deep percolation were 

well predicted on this soil type. Therefore it is 
possible to obtain reliable model parameters for 
deep percolation predictions when calibrating 
against soil moisture data. The 1-D Richards’ 
equation appears to be a physically sound model of 
water transport for this light soil. 

 

1. INTRODUCTION 

Models simulating water transport in soils based 
on the Richards’ equation are widely applied in 
irrigation management and design (e.g. Thorburn 
et al. 2003). 

The applicability of Richards’ equation models is 
often limited by difficulties in field 
parameterization (both calibration and 
measurement of model parameters) and the often 
poor representation of preferential flow processes 
in soils (Walker and Zhang, 1999). Richards’ 
equation models that explicitly include preferential 
flow, represent water flow in soils more 
realistically. However, parameterization for these 
models is even more difficult than for models that 
do not account for preferential flow. Although 
these limitations have been recognised for many 
years, there is still little systematic knowledge 
available about how appropriate Richards’ 
equation models are for representing water 
transport on different soil types.  

Insight into the appropriateness of Richards’ 
equation models can be obtained by model 
evaluation against multiple observations (i.e. state 
variables and fluxes). Few field data sets are 
available that allow this type of analysis. 
Lysimeters provide an opportunity to observe 
water transport under quasi-field conditions (Bond, 
1998).  

In this study simultaneous soil moisture and deep 
percolation data from a lysimeter experiment in 
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south-eastern Australia were used to evaluate the 
performance of a Richards’ equation model for a 
heavy and light soil type.  It is investigated 
whether reliable deep percolation estimates can be 
obtained from model calibration against soil 
moisture data.   

2. MATERIAL AND METHODS 

2.1. Lysimeter Data 

The two soils investigated were part of a lysimeter 
experiment in Tatura (south-eastern Australia). 
The lysimeter experiment was conducted to 
quantify response of deep percolation to different 
soil types, water table depths in the Shepparton 
Irrigation Region and ponding times during 
surface irrigation. The lysimeter experiment is 
detailed in Bethune et al. (2007).  

The two soils studied were a heavy Lemnos loam 
and light Sandmount sand soil type. The Lemnos 
loam was characterised by a 300 mm deep topsoil 
(silty clay loam) and a subsoil with low hydraulic 
conductivity (clay). The Sandmount had a 100 mm 
deep topsoil (sandy loam) and a clayey sand/ sandy 
clay subsoil. 

Lysimeters represented undisturbed soil cores, 
each of 0.75 m diameter and 2.2 m depth. 
Perennial pasture was established in the cores, 
consisting of ryegrass and white clover.  

Lysimeters had a water table depth of 1.8 m which 
was set by applying a constant water pressure to 
the base of the lysimeters using Mariotte bottles.  

Irrigation events were triggered when accumulated 
US Class A pan evaporation minus rainfall, since 
the last irrigation, exceeded 50 mm. An irrigation 
event consisted of maintaining a pond of water on 
the lysimeter surface for a period of time (i.e. 
irrigation ponding time). After this time, remaining 
surface water was drained and measured as runoff. 
A total of 18 irrigation events were applied during 
the irrigation season 2005/2006 (from October 
2005 until May 2006). Deep percolation was 
measured as the difference between water leaving 
(percolation) and entering (capillary rise) the base 
of the lysimeter, with net water leaving the 
lysimeter recorded as positive deep percolation. 
Total deep percolation for the irrigation season 
varied considerably between the two lysimeter 
cores. Sandmount sand and the Lemnos loam had 
2770 mm and 9 mm of deep percolation, for 
irrigation season 2005/2006 respectively (Figure 
1). 

Figure 1. Cumulative deep percolation for the 
Lemnos loam (solid line) and the Sandmount sand 
(dashed line). 

Figure 2. Time series of relative water contents 
(i.e. water contents normalised by maximum water 
content measured in a particular depth) measured 

by TDR for selected soil depths: 0.1 m (solid line), 
0.3 m (dashed line) and 0.6 m (dotted line). 

Arrows indicate selected irrigation events during 
season 2005/2006. 

Rainfall was measured at a Bureau of Meteorology 
Climate Station, located within 100 m of the 
lysimeter facility. Additional climatic data were 
used to calculate the daily crop evapotranspiration 
(Allen et al., 1998). The soil moisture profile for 
each lysimeter was measured at depths of 0.1, 0.2, 
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0.3, 0.4, and 0.6 m using time domain 
reflectometry (TDR). Soil moisture responded to 
irrigation and rainfall at all depths in the 
Sandmount sand (Figure 2). Lemnos loam had a 
similar response to irrigation and rainfall, however 
redistribution was slower than for the Sandmount 
sand. Soil moisture below 0.3 m soil depth was 
less responsive than for Sandmount sand. 

2.2. Model Simulations 

The one-dimensional Richards' equation model 
HYDRUS-1D (Simunek et al., 2004) was applied 
to simulate the water flow in the lysimeters. A 2.2 
m deep soil profile was specified, consisting of 
two soil horizons (i.e. topsoil and subsoil). Model 
boundary and initial conditions and model 
parameters were specified as follows. 

The atmospheric boundary condition was specified 
as a daily flux (precipitation plus irrigation minus 
runoff). Precipitation, irrigation and runoff were 
measured during the experiment. Water was not 
allowed to build up on the soil surface and any 
excess water from rainfall or irrigation that did not 
infiltrate was removed instantaneously. However, 
to be consistent with the lysimeter experiment, 
model realizations with runoff greater 1 % of 
potential infiltration (i.e. irrigation plus rainfall 
minus runoff) were not considered for further 
analysis.   Soil evaporation was neglected (full 
plant cover). Simulations with relative mass 
balance error (i.e. absolute error divided by sum of 
all boundary fluxes) of greater than 1% and 0.05 % 
for Sandmount sand and Lemnos loam, 
respectively were discarded. This difference 
accounted for the different amount of deep 
percolation on these two soil types. Computation 
of root water uptake required estimates of the 
potential evapotrans-piration. The potential 
evapotranspiration was calculated as the product of 
reference evapotranspiration (Allen et al., 1998) 
and a crop factor. The root water uptake was 
computed from the potential evapotranspiration, a 
typical root distribution of mixed clover and grass 
pasture reported by Mehanni and Repsys (1986) 
(i.e. 65%, 22%, 8%, 3% and 2% of the roots 
located in 0-0.1, 0.1-0.2 , 0.2-0.3, 0.3-0.45 and 
0.45-06 m soil depth, respectively) and soil water 
stress function for surface irrigated pasture (P0 = 0 
cm, POpt = 0 cm, P2H = -200 cm, P2L = -800, P3 
= -8000 cm, r2H =  0.5 cm/d, r2L = 0.1 cm/d) 
(Bethune and Wang, 2004), and the distribution of 
the pressure head calculated by the model. A fixed 
pressure at the bottom of the lysimeter core of 40 
cm was considered as the lower boundary 
condition to represent the lysimeter’s water table 
depth of 1.8 m. Measured water contents at soil 

depths of 0.1, 0.2, 0.3, 0.4 and 0.6 m were used as 
initial conditions. 

Soil hydraulic properties (water retention and 
hydraulic conductivity curves) were represented 
using the models and parameterization of Mualem 
(1976) and van Genuchten (1980).  

Ten-thousand Monte Carlo simulations of 
HYDRUS-1D were applied for each soil type 
using Latin hypercube sampling from a uniform 
parameter distribution. Parameters sampled were: 
the crop factor and eight soil hydraulic parameters, 
i.e. alpha (a scaling parameter), n (shape of the 
curve), tortuosity parameter l of the conductivity 
function and the saturated hydraulic conductivity 
for the topsoil and the subsoil. The parameters 
were uniformly sampled with allowable ranges: 
alpha (0.001…0.2 1/cm), n (1.05…1.7), tortuosity 
parameter l (-3…3), saturated conductivity of 
topsoil (9…1000 cm/d) and saturated conductivity 
of subsoil (0.02…220 cm/d). A logarithmic 
parameter distribution was used for sampling of 
the saturated conductivity. Saturated water 
contents were fixed to average maximum water 
contents measured at all depths within a particular 
soil horizon. Residual water contents were 
assumed to be zero.  

Each Monte Carlo simulation was evaluated using 
daily soil moisture data measured at five depths 
(0.1, 0.2, 0.3, 0.4 and 0.6 m) and deep percolation 
measured for 18 irrigation events during the 
irrigation season 2005/2006. The performance of 
each model realization was assessed using root 
mean square error RMSE. Model discretization 
and iteration criteria as recommended by J. 
Simunek (http://www.pc-progress.cz/_forum/) 
were used. 

 

3. RESULTS AND DISCUSSION 

Monte Carlo simulations revealed that, for both 
soil types, most model parameters were poorly 
constrained by soil moisture data, i.e. a wide range 
of parameter combinations predicted the soil 
moisture data similarly well. Studies of Jacobsen 
and Schjonning (1993) and Lane and Mackenzie 
(2001) suggest that the standard error of TDR 
measurements in the field can be as great as 0.03 
m3/m3 when appropriate calibration is used. These 
errors can arise from difficulties in the 
interpretation of the TDR trace and small scale soil 
heterogeneity of texture, bulk density and 
temperature. There may also be other errors such 
as an imperfect model structure. Therefore, all 
model realizations with RMSE < 0.05 m3/m3 were 
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interpreted as reasonable model calibrations, i.e. 
they predicted soil moisture data similarly well. 
Only three to four out of 9 parameters: topsoil 
alpha, subsoil n and crop factor (for Lemnos loam) 
and saturated conductivity, alpha and n of subsoil, 
topsoil n (for Sandmount sand) were slightly 
constrained by soil moisture data (Figure 3, 
Lemnos loam not shown). 

Figure 3. Scatterplot relationship between model 
parameters and RMSE of the soil moisture 

predictions from 10,000 Monte Carlo simulations 
(Latin Hypercube sampling) using HYDRUS-1D. 
Each dot represents a single model realization and 

its corresponding RMSE.  

For the heavy Lemnos loam soil type, the 
Richards’ equation model provided a reasonable 
prediction of soil moisture measurements, with one 
model realizations of RMSE < 0.05 m3/m3. 
However, the model could not provide realistic 
simultaneous predictions of both soil moisture and 
deep percolation (Figure 4). The best model 
realization had deep percolation predictions of 
RMSE = 17 mm per irrigation event whereas deep 
percolation sums during the entire irrigation 
season (18 events) were only 9 mm (Figure 1). The 
model realization that predicted soil moisture data 
best had RMSE = 37 mm for deep drainage. This 
indicates that calibration using soil moisture data 
(often available in the field) is unlikely to provide 
reliable predictions of deep percolation on a 
Lemnos loam soil type. The Richards’ equation 
approach may be inappropriate for these cracking 
soils, where infiltration is dominated by 
preferential flow through soil cracks (Prendergast 
1995).  

 

 
Figure 4. Scatterplot relationship between RMSE 

of soil moisture and deep drainage predictions 
from 10,000 Monte Carlo realisations with Latin 

hypercube sampling using HYDRUS-1D. Each dot 
represents a single model realization and its 

corresponding RMSE.  

The light Sandmount sand soil type had 49 model 
realizations with RMSE < 0.05 m3/m3 for soil 
moisture data (Figure 4). These simulations had 
prediction errors for deep percolation ranging from 
15 mm to 47 mm. Average deep percolation was 
154 mm per irrigation event for this soil type. 
Therefore it is possible to obtain reliable 
predictions for deep percolation when the model 
parameters were calibrated against soil moisture 
data. The 1-D Richards’ equation appears to be a 
physically sound model of water transport for this 
light soil. 
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4. CONCLUSION 

Soil moisture and deep percolation data measured 
in a lysimeter experiment were used to test the 
appropriateness of the Richards’ equation models 
for representing water transport on a heavy and a 
light soil type. 

The 1-D Richards’ equation model was appropriate 
for the light Sandmount sand soil type. Calibration 
using soil moisture is likely to give reliable model 
parameters.  

The Richards’ equation model used in this study 
did not provide a realistic representation of water 
transport on the heavy Lemnos loam soil type. One 
cannot obtain reliable predictions of deep 
percolation by calibrating model parameters 
against soil moisture data.  
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