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EXTENDED ABSTRACT

This paper introduces a new test for structural
instability among only some individuals at the end
of a sample in a panel regression model. Most tests
for structural breaks in the literature are appropriate
when the break is relatively long lasting and happens
in the middle of a sample. The distribution of the
corresponding test statistic is suitably found using
asymptotics in which the number of observations
before and after the break point go to infinity.
However, it is often at the end of a sample that
researchers and policy-makers alike are interested in
testing for instability.

Andrews (2003) proposes a test for structural break
which was shown to be particularly useful when
the number of post-break observations is small.
Unlike the well known Predictive Failure test of
Chow (1960), the critical values of Andrews’s
(1993) test statistic are calculated using parametric
sub-sampling methods making the test robust to
non-normal, heteroskedastic and serially correlated
errors. The extension of the test to panel data,
under the assumption of cross sectional indepen-
dence, is relatively straightforward as shown in
Mancini-Griffoli and Pauwels (2006). This extension
assumes an alternative hypothesis that all individuals
exhibit a break, as in other tests for structural breaks
in the panel literature. Yet, these tests do not
allow the interesting alternative that only some -
and not all - individuals are affected by a break.
This paper addresses such question by introducing a
standardizedZ statistic built from Andrews (2003)
statistics averaged across individuals.

Methodologically, the proposed procedure is similar
to the approach in Im et al. (2003) which, while
focussing on the different question of unit root tests,
also considers an average of separate statistics. The
test statistic is shown to follow a normal distribution
as the number of individuals goes to infinity by using
the Lindeberg-Feller Central Limit Theorem (LF-
CLT). This greatly simplifies the computation of the
critical values with respect to Andrews (2003). As
in Andrews (2003), though, the proposed statistic
is robust to non-normal, heteroskedastic, serially

correlated errors and when the instability occurs at
the end of a given sample. Lastly, the test covers the
cases of parameter heterogeneity or homogeneity pre-
and post-instability. Moreover, it is straightforward to
extend the proposed test statistic and the associated
asymptotic results to accommodate the presence of
cross sectional dependency.

A series of Monte Carlo experiments show that the
proposed structural break test performs very well
in finite sample. The experiments accommodate
serial correlation in the error terms with a mixture
of different distributions for the innovations. Monte
Carlo results indicate that the test has good size and
power with relatively few time series and moderate
serial correlation within cross sections. For high
levels of serial correlation, the performance of the test
improves as the number of time series observations,
T , increases. Lastly, the test has good power and size
for partial instabilities, when the instabilities are of a
small magnitude.

Finally, this paper considers an empirical application
of the test to demonstrate its practical usefulness. The
question of detecting the effects of Euro on trade has
been at the center of lively debates in academic and
policy circles alike. However, the papers that have
tackled the issue have not provided strong empirical
evidence in support of the presumed effect. This
is largely due to two empirical issues: the few
datapoints available after the Euro’s introduction and
the heterogeneity of the trade effect over different
countries. Given both these characteristics, the test
introduced in this paper is particularly well suited.
Results show a break at the 10% significance level in
Eurozone trade starting in 1998, thereby supporting to
the belief commonly expressed in the literature.
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1 INTRODUCTION

This paper introduces a new test for structural
instability among only some individuals at the end
of a sample in a panel regression model. Most
tests for structural breaks in the literature, like
the celebrated Chow (1960) tests, and those for
unknown or multiple break dates in Andrews (1993),
Andrews and Ploberger (1994) and Bai and Perron
(1998) are appropriate when the break is relatively
long lasting and happens in the middle of a sample.
The distribution of the corresponding test statistic is
suitably found using asymptotics in which the number
of observations before and after the break point go to
infinity. However, it is often at the end of a sample
that researchers and policy-makers alike are interested
in testing for instability.

Andrews (2003) proposes a test for structural break
which was shown to be particularly useful when the
number of post-break observations is small. Unlike
the well known Predictive Failure test of Chow
(1960), the critical values of Andrews’s (1993) test
statistic are calculated using parametric sub-sampling
methods making the test robust to non-normal,
heteroskedastic and serially correlated errors. The ex-
tension of the test to panel data, under the assumption
of cross sectional independence, is relatively straight-
forward as shown in Mancini-Griffoli and Pauwels
(2006). This extension assumes an alternative
hypothesis that all individuals exhibit a break, as in
other tests for structural breaks in the panel literature,
like in Han and Park (1989), Kao et al. (2005) and
De Wachter and Tzavalis (2004). Yet, these tests do
not allow the interesting alternative that only some
- and not all - individuals are affected by a break.
This paper addresses such question by introducing a
standardizedZ statistic built from Andrews (2003)
statistics averaged across individuals.

Methodologically, the proposed procedure is similar
to the approach in Im et al. (2003) which, while
focussing on the different question of unit root tests,
also considers an average of separate statistics. The
test statistic is shown to follow a normal distribution
as the number of individuals goes to infinity by using
the Lindeberg-Feller Central Limit Theorem (LF-
CLT). This greatly simplifies the computation of the
critical values with respect to Andrews (2003). As
in Andrews (2003), though, the proposed statistic
is robust to non-normal, heteroskedastic, serially
correlated errors and when the instability occurs at the
end of a given sample. Lastly, the test covers the cases
of parameter heterogeneity or homogeneity pre- and
post-instability.

Although the proposed test is initially derived under
the assumption of cross sectional independency, it
does not impose serious restriction on the practical

usefulness of the test. The asymptotic results derived
in this paper will still hold in the absence of cross
sectional independency as long as the cross sectional
dependency can be “filtered out”. For example,
Chan et al. (2007) modifies the proposed test statistics
to accommodate cross sectional dependency using
the Common Correlated Effects (CCE) estimator as
introduced in Pesaran (2006).

A series of Monte Carlo experiments show that the
proposed structural break test performs very well
in finite sample. The experiments accommodate
serial correlation in the error terms with a mixture
of different distributions for the innovations. Monte
Carlo results indicate that the test has good size and
power with relatively few time series and moderate
serial correlation within cross sections. For high
levels of serial correlation, the performance of the test
improves as the sample size increases. Lastly, the test
has good power and size for partial instabilities, when
the instabilities are of a small magnitude.

Finally, this paper considers an empirical application
of the test, to highlight its properties in a real-world
setting: did the introduction of the Euro increase
intra-Eurozone trade? The question has been at the
center of lively debates in academic and policy circles
alike. However, the papers that have tackled the
issue have not provided strong empirical evidence in
support of the presumed effect. This is largely due
to two empirical issues: the few datapoints available
after the Euro’s introduction and the heterogeneity of
the trade effect over different countries. Given both
these characteristics, the test introduced in this paper
is particularly well suited. Results show a break at
the 10% significance level in Eurozone trade starting
in 1998, thereby supporting to the belief commonly
expressed in the literature.

The paper is organised as follows. Section 2
introduces the panel data stability test for partial
break. This is followed by the various asymptotic
results in section 3. The finite sample properties
will be investigated via Monte Carlo simulation in
section 4. Due to the page number constraint,
all the proofs are omitted from the current paper.
However, interested readers can find the proofs of all
the asymptotic results in this paper from Chan et al.
(2007). Finally, section 5 illustrates how the test
can be put to use to answer the question of the
Euro’s effect on intra-Eurozone trade. The last section
concludes.

2 HETEROGENEOUS PANEL DATA STABIL-
ITY TESTS

This section introduces the heterogeneous panel data
stability test. Consider the following model for panel

979



data,

yit =

{
Θ

′

0ixit + uit t = 1, . . . , Ti

Θ
′

1ixit + uit t = Ti + 1, . . . , Ti + mi

(1)

uit = γ
′

ift + εit t = 1, . . . , Ti + mi, (2)

for i = 1, .., N with yit being the endogenous
variable,xit = (x

(1)
it , ..., x

(d)
it )′ is the d × 1 vector

of explanatory variables including intercepts and/or
seasonal dummies,Θ0i and Θ1i are the d × 1
vectors of coefficients before and after the breakpoint,
respectively. Notice thatTi are the presumed break
dates, which can differ for each cross sectioni andmi

are the number of post-break observations different
for each i. Moreover, εit are the idiosyncratic
shocks specific to each individual and assumed to be
uncorrelated toxit and with zero mean,ft is thel × 1
vector of unobserved common effects andγi are the
factor loadings associated withft. For the purposes of
deriving the test statistics,γi is assumed to be 0 for
all i = 1, ..., N . See Chan et al. (2007) for the case
whereγi 6= 0.

Under equations (1) and (2) withγi = 0, the
hypothesis of structural stability is simply

H0 : Θ1i = Θ0i ∀ i = 1, . . . , N and∀ t,

H1 : Θ1i 6= Θ0i ∃ i ∈ {1, . . . , N} and fort > Ti

with t = 1, . . . , Ti, Ti+1, . . . , Ti+mi. LetN = N0+
N1, whereN0 is the number of individuals for whom
Θ1i = Θ0i andN1 is the total number of individual
that have a break (Θ1i 6= Θ0i). The null hypothesis
states that there are no structural breaks across allN
individuals, whereas the alternative states that at least
one individual experiences a structural break.Θ0i can
be estimated heterogeneously by simply estimating
each time-seriesΘ0i for eachi by OLS.

2.1 Panel data stability test

This section introduces a standardisedZ statistic
to test for stability in panel data models. TheZ
statistic essentially amounts to comparing two average
statistics taken from a pre-break subsample and the
post-break sample. The construction of the average
statistics for both a pre-break subsample and the
post-break sample require to compute the Andrews
(2003) test statisticN times for each individual time
series. The computation of the individual statistics
is identical to the initial time series end-of-sample
instability test proposed by Andrews (2003).

Define the test statistics,S q
i,p, for each individual,i, as

S q
i,p(Θi,Σi) = A q

i,p(Θi,Σi)
′

[V q
i,p (Σi)]

−1A q
i,p(Θi,Σi),

(3)

A q
i,p(Θi,Σi) = X

′ q
i,p Σ

−1
i

(
Y

q
i,p − X

q
i,pΘi

)
, (4)

V q
i,p (Σi) = X

′ q
i,p Σ

−1
i X

q
i,p (5)

for all i = 1, . . . , N , whereY
q

i,p and X
q

i,p are the
endogenous variable and the explanatory variables,
respectively, for alli starting from the time indexp to
q. The average statistic̄S = N−1

∑N

i=1 S q
i,p amounts

to summing each individualS q
i,p statistic obtained

from running the test on the separate time-series.
There are two specific variants ofS q

i,p that are used in
calculating the standardisedZ statistic, namely,S0

i =

S mi

i,1

(
Θ̂

T̄
i,1 , Σ̂ T̄

i,1

)
andS1

i = S T̄
i,Ti+1

(
Θ̂

T̄
i,1 , Σ̂ T̄

i,1

)
,

whereT̄ is defined as̄T = Ti+mi for simplicity. The
post-break statistics,S1

i , are computed for the sample
spanning fromp = Ti + 1 to q = T̄ , whereas the pre-
break sample statistics,S0

i , are calculated fromp = 1
to q = mi. Both set of statistics are computed using
m observations.

The estimated time-series covariance matrix derived
in Andrews (2003) are used as a weight ma-
trix, which estimates the individuali’s variances
and autocovariances. The covariance matrix is
Σ̂

T̄
i,1 = (Ti + 1)−1

∑Ti+1
r=1

(
Û

r+mi−1
i,r Û

′ r+mi−1
i,r

)

andU
r+mi−1

i,r is individuali’s mi×1 residual vector
resulting from theith time-series regression, that is

Û
r+mi−1

i,r =
(
Y

r+mi−1
i,r − X

r+mi−1
i,r Θ̂

T̄
i,1

)
. The

coefficient vectorΘ̂ T̄
i,1 is the least square estimates

of Θ for individual i over the full temporal sample.
Under the assumption of cross sectional independency

E
[
U

′

i,tUj,s

]
= 0, for i 6= j and ∀ s, t =

1, . . . , T̄ . Hence, the covariance matrix can be
computed for each individual and used respectively in
each individual test.

If mi ≤ d, the projection matrix collapses to a
mi × mi identity matrix and theSi(Θi,Σi) statistic
becomes

Pi(Θi,Σ) =
(
Y

q
i,p − X

q
i,pΘi

)′

Σ
−1
i

(
Y

q
i,p − X

q
i,pΘi

)

(6)

2.2 The Z Statistic

The standardised testZ statistic to test for stability in
panel data models is built by taking the difference of
the post- and pre-break average statistics derived in
the previous subsection. It can be written as

Z =

(
S̄1 − S̄0

)
√

V ar
(
S̄1 − S̄0

) (7)
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whereS̄1 andS̄0 are the average statistics for the post-
and pre-break sample respectively. Intuitively, if the
null hypothesis is true thanZ will be centered around
0. However, under the alternative, theZ will centered
further away from 0 and hence, the further away from
0 is theZ statistics, the more evidence against the null
hypothesis in favor of the null.

The sample size used for̄S0 is the same as̄S1. It
is recommended to use the firstmi observations to
estimateS̄0 in order to minimise the potential impact
of serial correlation in the errors by maximising the
distance between the two subsamples. The size ofmi

used to calculate thēS0 can be increased if needed, at
the cost of the potentially increasing problem of serial
correlation. This is essentially an empirical issue, and
any subsample selection problem affectingS̄0 should
diminish asN increases, as discussed in the following
section 3.

3 ASYMPTOTIC RESULTS

This section provides the asymptotic properties of
the proposed test. Define the data set as a sequence
of random variables{W0,it} where {Yi,Xi} ⊂
{W0,it}. Under H0, the data areW0,it for i =
1, . . . , Ti + mi, while underH1 the data areWit =
W0,it for i = 1, . . . , Ti and Wit = WT,it for
i = Ti, . . . , Ti + mi. {WT,it : i = Ti, . . . , Ti + mi}
are some random variables with a joint distribution
different from{W0,it : i = Ti, . . . , Ti + mi}. Note
that underH1 the data are from a triangular array since
the breakpoint is changing withT → ∞.

Let B(Θ0i, ǫT ) be a ball centered aroundΘ0i with
radiusǫT > 0 as in Andrews (2003). Formi > d, the
following assumptions for theSν

i , ν = 0, 1 are:

A1: {W0,it : t ≥ 1} ∀ i, is stationary and ergodic.

A2: (a) ‖Θ̂ Ti+mi

i,1 − Θ0i‖
p→ 0, with (Ti, N) →

∞ with mi fixed under H0 and H1. (b)
sup

Θ∈B(Θ0i,ǫT ) ‖Σ̂ Ti+mi

i,1 − Σ0i‖
p→ 0 with

(Ti, N) → ∞ with mi fixed underH0 and
H1, for some nonsingular matrixΣ0i, for all
sequences of constant{ǫT,N : T ≥ 1, N ≥ 1}
andǫT,N → 0 as(T, N) → ∞.

A3: (a)Si(Θi,Σi) is continuously differentiable in a
neigbourhood of(Θ0i,Σ0i) with probability one
underH0 andH1, whereΣ0i is as in assumption
2(b). (b) Let(∂/∂(Θi,Σ

−1
i )) denote the partial

differentiation with respect toΘi and the non
redundant elements ofΣ−1

i . Si is bounded as

E sup
Θ∈B(Θ0i,ǫT ),

Σi∈N(Σ0i)

‖(∂/∂(Θi,Σ
−1
i ))S0

i (Θ̂i, Σ̂i)‖ < ∞,

for someǫT > 0, whereΣ0i is as in assumption
2(b). N(Σ0i) denotes some neighbourhood

of Σ0i. (c) The distribution function of
S0

i (Θ̂0i, Σ̂0i) is continuous and increasing at its
1 − α quantile, whenm > d.

A4: (a) E [UitXit] = 0, ∀ i and t ≥ 1. (b)
E

[
U2

it

]
< ∞ andE‖Xit‖2+δ < ∞ for some

δ > 0 and∀ i andt ≥ 1. (c) E
[
XitX

′

it

]
and

Σ0 = E
[
U

mi

i,1 U
′ mi

i,1

]
are positive definite,∀ i

andt ≥ 1.

Theorem 1 Under Assumptions 1 - 4, the Z statistic
as described in equation (7)

Z =

(
S̄1 − S̄0

)
√

V̂ ar
(
S̄1 − S̄0

)

has an asymptotic distribution

√
N Z

A∼ N (0, 1)

4 SIMULATIONS

4.1 Monte Carlo design

The experiment uses the linear regression model as
follows:

yit = Θ
′

ixit + uit, uit = ρuit−1 + ǫit (8)

xit = tan(wit), wit∼NIID(µ, σ2)

The number of regressors is set tod = 5, which
includes a constant, but does not include a lagged
dependent variable. To start with, some benchmark
results are generated in order to investigate the
normality, the size and power of the test. Firstly,
the set of Monte Carlo experiments simulate the null
in order to analyse the size of the test. Moreover,
a discussion of the properties of the distributions
of the test under the LF-CLT is provided. The
null hypothesis is simulated over the full sample
T̄ using the coefficient vectorΘ1i = Θ0i = 0,
∀ i. Secondly, the power properties of the test
are examined. The alternative hypothesis of partial
instability is simulated, allowing for some individuals
to experience a structural break while some do not.
The ratio N1

N
is gradually changed from .10, .50, .65,

.80 and 1, in order to allow for a larger proportion
of the individuals to experience a structural break.
Furthermore, the alternative hypothesis featuring a
partial structural break is simulated, usingΘ0i = 0,

Θ1i = 1
10 × (1, 1, 1, 1, 1)

′

, for somei andΘ1j =
Θ0i = 0, for somej 6= i. The magnitude of the break
is very small, equal to.1. Note that whenN1

N
= 1, the

coefficient vector is homogeneous acrossi’s, implying
that all individuals experience a structural break and
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Θ0 = Θ0i = 0 prior to the instability,∀ i and

Θ1 = Θ1i = 1
10 × (1, 1, 1, 1, 1)

′

after the instability,
∀ i.

To analyze the distribution, size and power of the
test, the Monte Carlo experiments are conducted with
the following settings:m = mi = 1

10 × T̄ , T̄ =
30, 50 and100, N = 20, 40, 60, 80 and100, where
T̄ = T + m = Ti + mi. For simplicity, the
break datesTi and post-break observationsmi are
identical for all individuals. The regression’s error
term is generated with an AR(1) process with the
following autoregressive parameters:ρ = .4 and.95
which is common to all individuals, or in other
words, all individuals’ errors have the sameρ. Four
different types ofiid distributions for the innovation
of the error term are considered: standardN(0, 1),
a recentered and rescaledχ2

d andt5, and an uniform
distribution with support[0, 1]. Different individuals
have different innovation processes, such that the
four distributions are intermixed evenly in the panel.
The number of replications equals 2000. Note that
the alternative hypothesis is fixed for all individuals,
implying that we test for a break occurring at a known
fixed date. All simulations were carried out using Ox
4.02.1

4.2 Monte Carlo results

The first results look at the probabilities of a type I
error with normal significance level of.05. The main
results can be summarised as follows: (i) Overall the
Monte Carlo experiments reveal that the test statistic
is close to Normal with 2000 replications showing that
the LF-CLT hold, under moderate serial correlation
and relatively small time dimension; (ii) The size of
the test is relatively close to the desired value of.05
for N > 20 when T̄ = 100 and m = 10 when
serial correlation is moderate,ρ = .4. Moreover,
the test has reasonable size when the time horizon
is decreased tōT = 50 and T̄ = 30 given the
DGP, and it is relatively unaffected if the number
of post break observations are increased to 20 % of
T̄ and (iii) The normality of the distribution worsen
in the presence of extreme serial correlation. The
mean grows substantially, the distribution is skewed
and the variance shrinks below1, as expected. The
size, on the other hand, deteriorates as the number of
individuals increase such that its largest value of.199
is attained forN = 100 andT̄ = 100. This result is
expected as all individuals are required to exhibit the
same high degree of serial correlation, and the impact
of serial correlation is compounding asN increased
with fixed T̄ . Moreover, increasinḡT from 100 to 250
observations or more improves the size, as implied by
ergodicity.

1The programming code is available upon request.

In sum, the test has reasonable size in small
temporal and individual sample with moderate serial
correlation. However, under extreme serial correlation
the size of the test deteriorates substantially.

Overall the test has good power. The power of the
test is analysed for a normal significance level of
.05. The most important results of the Monte Carlo
experiments are as follows: (i) The power of the test
varies little withT̄ except when it is very small (̄T ≤
50). This underlines the advantage gained by working
with a panel structure. The test remains powerful
even if T̄ is decreased to 50: whenc = .80 and
N = 80, the power is.65. The power of the test will
also improve if the number of post break observation
increases (see Chan et al. (2007)); (ii) The test gains
power as eitherN or c increases. The power of the
test is above.90 whenN andc are high. The power
is still good when bothc andN are of medium size
andT̄ = 100; for example whenc = .65 andN = 60
the power is.85. Moreover, the power of the test is
good whenN is high (100) and c is low (.50) with
T̄ = 100. The reverse is also true: whenN = 40
andc = .80, the power is.91 and (iii) The power of
the test is quite robust to serial correlation, especially
whenN andc are large. Even in extreme cases when
serial correlation is.95, the test has power of.71 when
N = 100 andc = .80.

Overall, the test seems quite powerful given the DGP
when serial correlation is moderate. Lastly, the
power of test increases as the magnitude of the break
increases. The results of the Monte Carlo experiments
are available upon request.

5 EMPIRICAL EXAMPLE

This section provides an empirical application to
demonstrate the usefulness of the test. Since
the publication of Rose (2000), the question
on a common currency’s effect on trade has
been a focus of the trade literature. See
Micco et al. (2003) and Flam and Nordström (2003)
and Mancini-Griffoli and Pauwels (2006). Overall,
the literature mostly found a positive effect starting
between 1998 and 1999 of the order of 10 to
20%. Only Mancini-Griffoli and Pauwels (2006), by
applying a modification of the Andrews (2003) test to
homogeneous panel data (considering the alternative
of a common effect of the Euro across all trading
partners) shows that the effect is significant, and
refines the conclusion by showing that the break first
occurred in the growth rate of trade around 1998, and
only had noticeable repercussions on the level of trade
around 2002.

This section extends the findings of
Mancini-Griffoli and Pauwels (2006) to test
for a break in the trade between only some
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of the Eurozone countries. Indeed, while
Mancini-Griffoli and Pauwels (2006) can be seen
as providing a methodological advancement with
respect to the existing literature, the paper is limited
by the assumption that all individuals (unilateral
trading partners) exhibit the same break in trade
due to the Euro. But intuition tells us the contrary.
For instance, while it was clear that Germany was
going to play a central role in the Euro project from
its inception, it was uncertain whether Italy would
meet the strict accession requirements almost until
the Euro’s introduction. It would therefore seem
natural that each country’s trade pattern would have
responded differently, if at all, to the new currency.
Thus, the particular test developed in this paper
appears especially fitting.

Consider the typical model of trade between
countries:

Vi,jt = αi,j + λt + ϕj + γ1Yit + γ2Yjt +

γ3ξi,jt + ǫit (9)

∆Vi,jt = ρǫ̂it−1 + δ1∆Yit + δ2∆Yjt + δ3∆ξi,jt

+γ1∆V•t + γ2∆Y•t + νit (10)

whereVi,jt is the value of imports from countryj
to country i, Yjt and Yit are nominal GDP,ξi,jt

is the real exchange rate between the two countries
engaged in trade,ǫit is a regression error,αi,j is a
pair-specific fixed effect to control for variables of
type common border, language, history, legal system,
distance and others traditionally shown to matter in
gravity equations,λt allows for the country pair
intercept to be time dependent, andϕj is a country
of origin dummy as used in Rose and van Wincoop
(2001).

The model is estimated using difference from sample
mean fixed effects and the second using pooled OLS
and where the• notation indicates sample average
over the subscript it replaces. These additional
variables are included to remove cross sectional de-
pendence in the errors, as described in Pesaran (2006)
as the common correlated effect (CCE) estimator.
The goal is to control for the common factor causing
cross correlations, but because it is unknown, Pesaran
suggests it can be proxied by a linear combination of
the sample averages of the regressors and regressand.
Mancini-Griffoli and Pauwels (2006) show that using
the additional CCE terms do indeed get rid of cross
sectional dependence and prove that this condition
allows for the inversion of the covariance matrix in
the Andrews (2003) test statistic.

For the regressions, the quarterly data were obtained
from Eurostat, IMF DOTS and IFS, as in most other
relevant empirical papers. The unilateral import
values are used as trade data, obtained from IMF
DOTS. Finally, all the data are seasonally adjusted
using the standard X.12 smoothing algorithm.

Recall that theZ test statistic in this paper is
standardised with thēS0 average statistic calculated
within the pre-instability sample. This paper
suggested to estimate the latter from the very
beginning of the sample. The Euro data set, however,
is not very reliable over the first 4 years (16 quarters)
of data, as several series are extrapolated using
moving averages from yearly data to fill in some
missing observations. Hence, to overcome some
of these shortcomings, the benchmarkS̄0 is found
using data starting from 1985 Q1. This still ensures
a large period between the pre-break subsampling
and the post-break observations thereby minimizing
disturbances due to serial correlation. The particular
choice of date to anchor thēS0 statistic will be tested
for robustness.

The empirical results can be summarised as follows:
First, recall that Mancini-Griffoli and Pauwels (2006)
finds a break in the growth of trade (in the ECM) in
1998Q1 at the 10% significance level and that this
break appears to last 6 quarters. Note that the break
date is defined as the first quarter for which the null
of stability is rejected for 6 quarters with at least
10% significance. Thus, it is reassuring to note that
the break date seems to be robust to the alternative
hypothesis of a heterogeneous break. Indeed, the null
of stability is rejected, this time at the 1% level, for a
break in 1998Q1 and lasting 6 quarters. Second, the
break appears to last longer with this paper’s test - up
to 12 quarters (or 3 years). Note that the length of a
break is found by fixing the break date and repeating
the test while adding on quarter to the post-break
sample period with each iteration. These results are
also as expected. As different Eurozone countries
reacted differently to the Euro (some exhibiting a
break and some not, or perhaps a much shorter
one), the alternative hypothesis of a common break
across the board is restrictive and probably only
fitting for a few quarters. On the contrary, the
more accommodating and realistic alternative of a
heterogeneous break is accepted for a longer time
period. Fourth, it is encouraging to note that the
test results are barely sensitive to the choice of pre-
break sampling date. This is as argued in the paper
and stands given the stability and ergodicity of the
pre-break data. In summary, it appears that indeed,
the introduction of the Euro did have a noticeable
impact on intra Eurozone trade, as anticipated by the
original Rose (2000) hypothesis. What, exactly, in
the new currency caused this rise in trade, is another
question well worth considering in other research. But
at least, end of sample instability tests, like the one
presented here, lay solid and precise foundations for
such research to continue its course.
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6 CONCLUDING REMARKS

This paper built a stability test for heterogeneous
panel data in the light of the IPS test for unit
roots, to test the null of stability for all cross
sections versus the alternative that some cross sections
experience the instability and some do not. The test
statistic is constructed as a standardised average of
independent test statistics computed for each cross
section. Asymptotic results show that the test is
Normally distributed as per the Lindeberg-Feller
central limit theorem.

Monte Carlo results show that the test performs well
in terms of power and size, even when the time and
individual dimensions are small. The results show
that the test performs relatively well in the presence of
serial correlation in the errors and that the results can
be improved by increasing the time dimension. These
results allow the test to be used widely in finance
and economics applications. This paper explored one
particular example, showing the existence of a trade
effect of the Euro’s introduction.
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