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EXTENDED ABSTRACT

Testing the presence of serial correlation in the
error terms of a fixed effects regression model is
important for many reasons. While there have been
a number of testing procedures developed so far
(see, e.g., Bhargava, Franzini and Narendranathan
(1982), Baltagi and Li (1995), Baltagi and Wu (1999),
Bera et al. (2001), Wooldridge (2002), Drukker
(2003), Hong and Kao (2004) and Inoue and Solon
(2006)), testing for serial correlation has not been a
standard practice in applied research that uses panel
data, as recognized byé&dzi (2004) and Bertrand

et al. (2004). As conjectured by Inoue and Solon
(2006), the reason for this might be that there had
been no simple testing procedure until very recently.
Moreover, many simple testing procedures, such as
those suggested by Wooldridge (2002), look only at
the first order autocorrelation and are not portmanteau
tests. Although portmanteau tests do exist for panel
data, such as those proposed by Hong and Kao (2004)
and Inoue and Solon (2006), there has been no test for
serial correlation in micro economic panel data that
is both portmanteau test and is as straightforward as
the Ljung—Box or Box—Pierce test. (Fu et al. (2002)
extend the Box—Pierce test to panel data settings.
However, they consider only time effects and do not
consider the presence of individual effects. In most

issue that arises when we extend the idea of the
Ljung—Box test to panel data settings is that sample
auto-correlations computed with panel data might be
severely biased when the length of the time series
is not very large compared with the cross-sectional
sample size (see, e.g., Solon (1984) and Okui (2007)).
This bias distorts the size and is the main issue in
applying the idea of the Ljung—Box test to fixed
effects regression models. We modify the Ljung—Box
test to take into account the bias of autocorrelation
estimators, and our modification is based on Okui’'s
results (2007) that proposes asymptotically unbiased
autocorrelation estimators for long panel data. Okui
(2007) observes that the leading term of the bias
of within-group auto-covariances are proportional to
the long-run variance. Given this observation, Okui
(2007) proposes to eliminate the bias by estimating
the long-run variance with the kernel estimator of
Parzen (1957) and Andrews (1991). We then construct
autocorrelation estimators using the bias-corrected
autocovariance estimators. The modified Ljung—Box
test for panel data analysis is based on these bias-
corrected autocorrelation estimators.

We run Monte Carlo simulations to evaluate the
performance of our new testing procedure and to
compare our test with other existing tests. We find that
our test yields a reasonable size even if the length of

applied economics research using panel data, we need the time series is not very long. Our tests are powerful

to consider individual effects and their test is not
readily applicable.) This paper seeks to provide a
simple and straightforward portmanteau test to fill this

gap.

The goal of this paper is to develop a test for serial
correlation in fixed effects models. Our test is a
natural extension of the well-known test by Ljung
and Box (1978) to panel data settings. The Ljung—
Box test is a modification of Box and Pierce’s (1970)
test and the basic idea is that we use a weighted
sum of the squares of the estimated autocorrelations
as the test statistics. This approach yields a test
that is intuitive, easy to interpret and simple to
compute, because the asymptotic variance matrix of
the vector of the estimated auto-correlations is an
identity matrix under the null hypothesis of no serial
correlation even in panel data settings. The main
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against a wide range of alternatives because our test
is a portmanteau test as is the original Ljung—Box
test. Note that many existing tests consider only first—
order autocorrelations and they are not portmanteau
tests. We also find that our test is more powerful than
the test of Inoue and Solon (2006), which is also a
portmanteau test.
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1 THE NEW TESTING PROCEDURE

Suppose that we have panel datag@f, z;;) for i =

.,N andt = 1,...,T. Lety,; be the scalar
dependent variable and; be the vector of regressors.
The relationship betweey;, andz;; is modeled as the
following fixed-effects model:

Yir = B'xir + 1 + wir,

fori = 1,...,N andt = 1,...,T, wherej is
the vector of parametersy; is the individual fixed
effect for individual i and w;; is the time-varying
unobservable error term. We assume thats strictly
exogenous: i.ex;; is uncorrelated withw;, for any s.

We are interested in the dynamic structure of
wy. I particular, this paper focuses on testing
the presence of serial correlation in;. Let pg

denote thek-th order autocorrelation ofy;;: pp
Cov(wig, w; t—1) /var(wy). Our null hypothesis is:

Ho:pr=0, fork=1,....

We consider Box and Pierce’'s (1970) approach for
testing serial correlation. This approach is based on
the sum of the squares of sample autocorrelations. We
then apply Ljung and Box’s (1978) modification in
order to improve the finite sample properties of the
test. To describe the test statistics, we first discuss
how to estimate the autocovariancesugf. Let 3 be

the fixed effects estimator:

N T -1
I
E Tip — T) (Tir — T4)
i=1 t:l
T

N
X xlt—xZ
1 t=1

wherez; = 7 /T andg; = S, vi /T Let
u;; be the (un-centered) residuals from the regression:

yzt - ﬂz)v

.
I

Al
Uit = Yir — B Ty

Let

N T
Y = Z Z um‘_uz)(u7t k_uv)

1=1 t=k+1

which may be a natural (but naive) estimator of
the k-th order autocovariance ab;;, whereu; =
7 uit/T. However, the estimatory,, may be
severely biased whéer is not very large relative tdv.
The main source of the bias is the estimation error of
7;. Note that wher" is fixed, we cannot consistently
estimaten;. Even whenT tends to infinity, the
estimation ofy; is problematic ifV is large compared

1Any estimator that satisfies the condition in Assumplibn 2 can
be used.
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with 7. To see this, we observe thgj, may be
decomposed in the following form (see Okui (2007)):

rAYk = N Z Z WitWi,t—k

=1 t=k+1
| XN
N Z(@)Q + small.
i=1

The termw; (= (g; — #'Z;) — n;) can be understood as
the estimation error for;. This estimation error is the
main source of the bias even wh&rtends to infinity,
becaus& Y, (w;)2/N is of orderO,(1/T).

An important observation is thdfl'/N) ZZ L(w;)?
converges to the long-run variance af;. This
observation motivates us to consider a bias correction
method based on a long-run variance estimator. Okui
(2007) proposes to estimate the long-run variance by
the kernel estimator of Parzen (1957) and Andrews
(1991) and, then, to use the proposed long-run
variance estimator to correct the bias. The kernel
estimator for the long-run variance is:

o 510

j=—T+1

T —
T

il
7]7

wherek(-) is a kernel function and the scala$, is

the bandwidth to be chosen by the researcher. In
the simulations, we use the quadratic spectrum (QS)
kernel:

k() = 3 {sin(ﬁwx/E\)

(67z/5)2 | 6mz/5 _‘Km(ﬁﬂx/5)}’

for x| < 1 andk(x) = 0 otherwise. This choice
of the kernel function follows the recommendation of
Andrews (1991). A bias-corrected estimator of
may be constructed by:

- . 1~
Vi :’Yk‘f'TVT-

Okui (2007) shows thai, is asymptotically unbiased:
its asymptotic distribution is centered around zero. We
can iterate this bias correction: we update the estimate
of Vr by using the bias-corrected estimators fiqr
ink =0,...,T — 1; then, we re-estimate;, based

on the updated estimate &f;. As 7S are better
estimates ofy;, the bias may be better estimated using
k. This iteration may be repeated many times and it
converges under very mild conditions. Lgtr_; =

(B, - -, 97r—1)", IT be theT x T identity matrix and

v be theT' x 1 vector of ones. Let

2T —2 (1 2 (T—-1\)
. k<5),‘.,Tk (S )) .

The condition for the convergence of this iteration is
K < T, which is satisfied with the QS kernel.
Then, the vector of the auto-covariance estimators

Kr = <k(0);


�����<�#Hfootnot�
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obtainedafter the convergence, denotggl_1(co),
is written as:

Fo,7—1(00)

1 -
<IT - TLTK'T> Yo,7-1

1
I — 1 KL ) Ao o1
<T+T_L,TKTLT T)’YO,T 1

We also follow Okui (2007) in the choice of the
bandwidth. For the QS kernel, we use the following
bandwidth:

S* = 1.3221(72TN)Y/?,

where 7 = 2§/(1 — 4)2 and é is Hahn and
Kuersteiner's (2002) estimator for the panel AR(1)
model of u;;B The bandwidth is chosen so that it
achieves the minimum of the asymptotic mean square
error of the long-run variance estimator when the true
dynamics ofw;; follows the AR(1) process. Our test
statistic is based ofy 71 (c0).

We now construct the test statistics for the Ljung—
Box test test modified for fixed-effects regression
models. We estimate the autocorrelations based on

%,Tfl(oo)i

~ k(o)
e Fo(00)”

Note that g, is asymptotically unbiased as are the
results of the asymptotically unbiasednes§ . Let

p be an integer that the researcher specifies in advance.

The test statistic takes the following form:

T—k_\°
()
It is easy to see that the test-statistig,p is
a straightforward extension of the Ljung-Box test
statistic. The ratigT — k) /T makes the denominator
of the k-th autocorrelation estimatav1" rather than
N(T — k). Theratio(T +2) /(T — k) is important to
have a good size property (see Ljung and Box (1978)).
We see the effect of including these ratios in the test
statistic in the Monte Carlo simulations reported in
Section 4.3. Our testing procedure is:

T—-k

p
T+2
Que=NT
k=1

RejectH, if QL > X;Q),l—ou

whereq is the nominal size of the test chosen by the
researcher an;qf,’l,a denotes thd — « quantile of
the x2 distribution withp degrees of freedom.

2Hahnand Kuersteiner's (2002) estimator is

T N S (i1 — W) (i1 — Tiy)
T-1 SN Y (i1 — )2
1

+T—1’

5 =

wheret;— = ST i /(T—1) andaiy = Y1 g wir/(T—1).
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2 THE ASYMPTOTIC DISTRIBUTION OF
THE TEST STATISTICS UNDER THE NULL
HYPOTHESIS

This section derives the asymptotic distributions of
our test statistic,Qrz, under the null hypothesis.
We make two sets of assumptions. The first set of
assumptions mainly concerns the probabilistic nature
of w;;. This set of assumptions is important to
deriving the asymptotic distribution a5 even if

[ is known or there is no regressor. The second set
of assumptions is mainly about the properties of the
regressorg;;, and is used to guarantee that the effect
of estimatings may be ignored.

The first set of assumptions is:

Assumption 1.
individuals.

1. {x;, wy }1_, are ii.d. across

2. wy is strictly stationary within individuals and
Do sl < 00

3. There exists M < oo such that
E(|lwjwigwimwi|) < M for any t, k, m
andl.

oo oo

4. X 2 Jeum(0, 41, .. 7)< oo,
J1=—00 J7=—00
where cum(0, j1,...,77) is the eighth-order
cumulant Of(’u)i(), Wi, gy ,wim).

o0 o0

5. Z Z leum(0, 41, 72,73)] < o0,

j1=—o00  jg=—00

where cum(0, j1, jo,j3) is the fourth-order
cumulant Of(wio,widl,th,wq;ng).

Note that Assumption 1 does not impose any
restriction on the probabilistic nature of, as;

is eliminated by the fixed-effects transformation.
Assumptions [11.131.3 are standard. Assump-
tion .4 guarantees the uniform integrability of
S (wiwie—x — ) /VT. It is one of the
key conditions in applying the central limit theorem
under double asymptotics by Phillips and Moon
(21999) on which our asymptotic results are based.
This assumption may be relaxed as long as the
uniform integrable condition is met. Assumption
.5 guarantees that the the asymptotic variance of
(p1,---,pp) exists and that it is the identity matrix
under the null hypothesis.

Next, we consider the set of assumptions that allows
us to ignore the estimation error gfwhen we derive
the asymptotic distribution of the test statistics.

Assumption 2.
andts.

1. E(wi, zi,) = 0 for any ¢,

2. =B =0,((NT)"/?),


 2�#Hfootnote.2
����#assum.1

3. E(||wit, wit, zit,xy, ||) < M for someM < oo
for any combination ofy, t5, t3 andt,, where
|| - || is the Euclidean norm.

4. Let z;+, be thea-th element ofr;;. Then
E(|ity,aTity bTits,cTity,d]) < M for some
M < oo for any combination oty, ¢, t3, t4,
a, b, candd.

We assume that the regressof,;, is strictly
exogenous in Assumptidd 2.1. Allowing regressors
to be predetermined is not considered here and this
would change the results. Assumpt{dn 2.2 says that
3 is v NT-consistent, which is satisfied by the fixed-
effects estimator. Assumptioik 2.3 &d 2.4 impose the
existence of fourth moments, which are important in
asymptotic results. These assumptions are standard in
the literature on fixed-effects estimation.

Let [)1,17 = (p~17 e aﬁp)/'

Theorem 1. Suppose that Assumptiofls 1 ddd 2 are
satisfied. Underly, asT — oo and N — oo with
N/T3 — 0, we have

VNTp1,, —a N(0,1,).

Proof. This theorem is obtained as a corollary of the
results in Okui (2007). Here, we present a brief
sketch of the proof. First, Theorem 11 in Okui (2007)
shows that the estimation error in the fixed-effects
estimator3 can be ignored. Second, Theorems 3
and 5 in Okui (2007) demonstrate that(co)s are
asymptotically normal. The asymptotic variance of
Fi(00) i8 372 (V7 + ts7k—3), which is~g for

k # 0 and2+¢ for k = 0 underH,. The asymptotic
covariance betweefj,(co) andy;(oco) for k # j is

> oo (iYi—k+j + Yi457—k), Which is O for any

k # j underH, (see also Remark 3 in Okui (2007)).
By applying the Delta method, we obtain the desired
result. O

This result is analogous to the well-known result by
Box and Pierce (1970). An important point is that the
bias must be corrected to obtain this theorem. If we do
not correct the bias, the bias remains even in the first-
order asymptotics (see Remark 2 below). As a direct
corollary of this theorem, we obtain our main result.

Corollary 1. Suppose that Assumptidis 1 did 2 are
satisfied. Undet{y, asT — oo and N — oo with
N/T3 — 0, we have

QLB —d X
This result justifies the use of our test.

Remark 1. It would be clear that our test is consistent
against any alternative in which, # 0 for k£ < gq.
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However, like the Box—Pierce and Ljung—Box tests
in the time—series context, our test does not have
power if serial correlation arises only at an order
higher tharp. Detecting higher-order autocorrelations
requires a large value qf, but the size of the test
might deviate from the nominal one whenis too
large. We should pick a value gf by taking this
trade-off into account. Unfortunately, there is no
universally accepted method to chogseven for the
original Box-Pierce test for single time-series (e.g.,
see Hayashi (2000, p144)). This problem is beyond
the scope of the current paper.

Remark 2. Let p, be the estimator of thek-

th order autocorrelation based on the within-group
autocovariances: py A /50- Let pi,p
(p1,---,pp) . As a special case of Theorem 2 in Okui
(2007), the asymptotic distribution gf;, under the
null hypothesis is

1
VNT </317p + TLP) —q N(0,1,),

wherey,, is thep x 1 vector of ones. The asymptotic
bias inj has a very simple form of,/T" under the
null hypothesis. This result suggests another test for
serial correlation that is based on correcting the bias
by addingl/T to the within-group auto-covariances.
We denote such a test as “BP3” whose properties are
examined below in the Monte Carlo simulations. This
test is very easy to compute and might be attractive at
first glance. However, the simulations show that this
test has a severe size distortion problem. Thus, we do
not recommend using this test.

3 MONTE CARLO EXPERIMENTS

This section reports the results of the Monte Carlo
experiments. The simulations are conducted with the
Ox 4.04 for Windows software (Doornik (2006)). The
primary purpose of the simulations is to check the
finite sample properties of our new testing procedure.
Our testing procedure is based on asymptotic results.
It is important to see if the asymptotic results provide
a good approximation of the finite sample properties
of the test. Another purpose is to compare our tests
with existing testing procedures.

3.1 Design

Our data-generating process is:
Yit = Wit + Ni,

wheren; ~ i.i.d.N(0,1). Note that the specification
of n; does not affect the results becausge is
eliminated in all the procedures examined in the
experiments. For simplicity, we consider models
with no regressor. We consider the following four
specifications ofv;.


����#assum.2

DGPO (null):  wg¢ ~i.i.d.N(0,1). Table 1.Empirical rejection probability under the null
hypothesis (DGP 0)

’ (N, T) ‘ LB LB ISS ISS W WD
DGP 1 (AR(1)): wix = 0.lw;;—1 + €i, Where p (4) ) () (9)
€;+ ~ 1.1.d.N(0, 1). The initial observations are (20,5) | 0.054 0.011 0.090 0.096
i T (20,10) | 0.064 0059 0032 0.002 0089 0.094
generated from the stationary distribution; i.e., (20.25) | 0054 0057 0035 0003 0079 008p
wio ~ i.i.d.N (0, (0.81)1). (100,5) | 0.066 0.024 0.061 0.062

(100,10) | 0.066 0.066 0.053 0.030 0.061 0.05p
(100,25) | 0.055 0.060 0.050 0.049 0.052 0.054
(200,5) 0.062 0.025 0.051 0.049

DGP 2 (MA(2)): wit = €t + 0.1€; 1o, Wheree;; ~ (200,10) | 0.062 0.063 0.055 0.029 0.060  0.060
) ' (200,25) | 0.052  0.060 0.053 0.050 0.054  0.04p
i.i.d.N(0,1).

DGP 3 (incidental trends): w;; = €;; + «;t, where

eit ~ i.i.d.N(0,1) anda; ~ .i.d.N(0,0.01). 32 Results

) o Table 1 reports the empirical sizes of the tests. All
The data-generating processes are similar t0 thoSe {hg tests have reasonable empirical sizes in all cases.
considered by Inoue and Solon (2(_)06), although  \we opserve that the rejection probability of “LB"
the values of the parameters are different. Each 5 ¢jose to the nominal size wheR is small even

experiment is characterized by the cross-sectional hqgh its theoretical justification is based on double

sample size,N, the length of the time series, asymptotics. However, we observe that the empirical
and the data-generating process. We 3t = size of “LB” becomes closer to the nominal size as
20,100,200; T = 5,10,25. The number of T increases whileV is not critical in determining the
replications is 5000 for each specification. size property of “LB”. The sizes of “ISS” are affected

] ] ] ] by bothT and N. For “LB”, the value ofp does
We examine the properties of six tests in the ot affect the size much, but “ISS” tends to be very
experiments. The nominal size is setto 5% throughout ;ncervative when is large (p= 9). The sizes of
the experiments. First, we consider our new testing «a» and “WD” are better whenV is large while they
procedure wittp = 4 andp = 9. Our test is denoted are not very sensitive 0.
“LB”. We consider four testing procedures based on

existing articles to check the relative performance of 15pes 2-4 report the powers of the tests. First of all
our tests. The test “ISS” is a modified version of the o recognize that both “LB” witlp = 4 and withp =

portmanteau test by Inoue and Solon (2@)6)/;\"6 9 show encouraging results. With DGP2 and DGP3,
modify the Inoue and Solon test in two ways: “ISS settingp = 4 yields better power than setting= 9,

is specialized for first- top-order autocorrelations but with DGP4, the opposite is observed. Compared
and it is based on the assumption that the process is \;ith other tests, setting = 4 tends to yield competent

covariance stgtionaq/.We setp = 4 andp = 9 for power in all cases while our test with= 9 sometimes
ISS. We consider two tests suggested by Wooldridge pas 4 lower power than other existing tests.

(2002). Wooldridge's (2002, p. 275) test, denoted

“W”, is based on the first-order autoregres_sioni@tf. The most powerful test with DGP1 (the AR (1)
We conduct the-test of the null hypothesis that the  gternative) turns out to be “W”, although we observe
coefficient onw; ; is —1/(T — 1). Note that we that other tests are also effective in detecting the

have to use an autocorrelation robust standard error AR(1) alternative. However, the result also indicates

to construct the test statistics. The test “WD” by 5t “\W” does not have strong power against the
Wooldridge (2002, pp 282-283) and Drukker (2003)  \1a(2) alternative (DGP2). It is interesting to note
is based on the first difference of the residuals. We 4t “W” has some power with DGP2 whef is
test the hypothesis that the first-order autoregressive g although it may appear that “W” tests only
coefficient of the differenced residuals-id /2. the first-order autocorrelation. It turns out that “W”
is consistent against some (but not all) alternatives
3Resultsnot shown here indicate that the original version of ~ With zero first—order autocorrelation unddr — oo
the Inoue and Solon test performs poorly whEnis not small. and T fixed asymptotics. Wherl" is fixed, the
This is unsurprising because the asymptotic distribution of their test coefficient estimator on which “W” is based is not a
statistics under an asymptotic sequence in whith— oo andT’ . . . .
is fixed iSX%T—l)(T—z)/Q’ which depends off” and diverges as consistent estimator for t_he first-order autocorrela_non
T2 o and converges to a function of all the autocorrelations
4The test statistic is computed by the formula given in Inoue  (Solon (1984)). Therefore, “W” has some power even
a;]nd Sgolon (2008, pi39) Wi:]h relplacin@k,T iT their(forr;uls by in DGP2 in which the first-order autocorrelation is
theT™ x p matrix whose;-th column is equal tarec(A;) where zero. On the other hand, whéh tends to infinit
Aj istheT x T matrix whosgl, m)-th elementis 1 i{l —m| = j wwnp s . ' . . Y,
and 0 otherwise. Note that the asymptotic null distribution of this W IS consistent only agalr_wst aIternaﬂves_Wlth non-
modified test statistic ig?2. zero first-order autocorrelation. This explains the fact
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Table 2.Empirical rejection probability under AR(1)
alternatives (DGP1)

(N,T) | LB B SIS W WD
’ P ‘ (4) 9) (4) (9) ‘
(20,5) | 0.067 0.015 0139 0.135
(20,10) | 0.166 0120 0.062 0003 0.249 0.18p
(20,25) | 0.389 0271 0.170 0011 0560 0.344
(100,5) | 0.224 0.098 0242 0221
(100,10) | 0.637 0503 0.466 0.259 0.693 0.478
(100,25) | 0985 0950 0966 0.871 0.996 0.90D
(200,5) | 0.418 0.228 0.401 0.349
(200,10) | 0913 0.832 0829 0629 0929 0.744
(200,25) | 1.000 1.000 1.000 0.999 1.000  0.99F

Table 3.Empirical rejection probability under MA(2)
alternatives (DGP2)

’ (N, T) ‘ (B (B 1SS 1SS W WD‘
P 4) 9) 4) 9)

(20,5) | 0.106 0.010 0.124 0126
(20,10) | 0.149 0.127 0049 0.001 0.091 0.186
(20,25) | 0.360 0.255 0.153 0.009 0.084 0.374
(100,5) | 0.249 0.077 0.171 0.230
(100,10) | 0533 0.428 0.430 0.230 0.105 0.498
(100,25) | 0970 0925 0958 0.863 0.080 0.909
(200,5) | 0411 0.198 0.265 0.363
(200,10) | 0.854 0770 0.810 0594 0.164 0.779
(200,25) | 1.000 1.000 1.000 0.999 0089 0.998

that“W” loses its power with DGP2 a%' increases.

The “WD” test performs reasonably well with DGP1
and DGP2, while it fails to have power against
the alternative with incidental trends (DGP3). With
DGP3, the presence of serial correction is visible
only through large values of the trend tertnas the
variance ofa; is very small. However, the trend is
eliminated when we take the first difference. The
“WD” test, which is based on the first difference, fails
to detect this alternative.

Like our new test, “ISS” is also a portmanteau test
and it has good power against all kinds of alternatives
considered here. However, our tests are typically
more powerful than “ISS”. The power of “ISS” can
be vastly low when we set= 9.

Summing up, we observe that our new “LB” test
performs very well throughout the experiments. Its
size is good even wheéfi is small and is not sensitive

to the choice ofp. Moreover, it is powerful against a
wide range of alternatives because it is a portmanteau
test.

3.3 Other modified Box—Pierce tests

This paper extends the Ljung—Box test to panel data
settings. The Ljung—Box test has been considered
to improve the finite sample properties of the Box—
Pierce test. This subsection asks how the original
version of the Box—Pierce test and other modifications
of the Box—Pierce test perform with finite samples. In
particular, we consider the following three versions of
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Table 4. Empirical rejection probability under
alternatives with incidental trends (DGP3)

(N,T) LB LB ISS ISS W WD
’ j ‘ ) ) “) 9

(20,5) 0.060 0.012 0.104 0.101
(20,10) | 0.214 0.262 0.053 0.003 0.155 0.09L
(20,25) 1.000 1.000 0.410 0.017 0.987 0.082
(100,5) 0.080 0.030 0.063 0.065
(100,10) | 0.743 0.866 0.638 0.406 0.390 0.069
(100,25) | 1.000 1.000 1.000 1.000 1.000 0.082
(200,5) 0.093 0.040 0.069 0.059
(200,10) | 0.964 0993 0.963 0.915 0.657 0.07f
(200,25) | 1.000 1.000 1.000 1.000 1.000 0.11p

Table 5.Empirical rejection probability under the null
hypothesis (DGP 0)

(N,T) LB BP1 BP2 BP3
P 4 @ @ ¢
(20,5) | 0.054 0.225 0.002 0.463
(20,10) | 0.064 0.088 0.012 0.143
(20,25) | 0.054 0.066 0.028 0.071
(100,5) | 0.066 0.232 0.003 0.690
(100,10) | 0.066 0.092 0.014 0.173
(100,25) | 0.055 0.068 0.027 0.075
(200,5) | 0.062 0.229 0.002 0.957
(200,10) | 0.062 0.094 0.008 0.2071
(200,25) | 0.052 0.059 0.027 0.074

the Box—Pierce test modified for panel data analysis:

p
Q1 = NTY i,
k=1
P /T Kk \?2
Q = NTZ( 7 pk),
k=1
p
Qs = NT> (pp+1/T)
k=1

Let “BP1” be the test based on the test statigic
The “BP2” and “BP3” tests are defined similarly.
The “BP1” and “BP2" tests may be considered as
natural extensions of the original Box—Pierce test.
The difference between “BP1” and “BP2” is that
(1 uses the autocovariance estimators in which the
denominator isl" — k, while that forQs is T. The

Q3 test statistic is based on the observation given in
Remark 1. Under the null hypothesis, the bias of each
pr is —1/T and Qs corrects the bias by adding'T

to eachp,. Note thatQ,, @2 and@Qs all possess the
same asymptotic distribution (i.exf)) under the null
hypothesis.

Table 5 presents the empirical rejection probabilities
of the tests under the null hypothesis. For reference,
we also present the empirical size of “LB” in Table
5. We setp = 4 for all tests. The “BP1” and “BP3”
tests suffer from substantial size distortion wleis
small, although their sizes are not bad whér= 25.

It seems that we cannot use “BP1” and “BP3" unless



we correct the critical values or our panel data have
a long time series. The “BP2” test appears to be
conservative. This indicates that we need to consider
correcting the critical value for “BP2” in order to
obtain good power.

These results show the advantage of the Ljung—Box
test, which provides the best size properties among
four modifications of the Box—Pierce test.

4 CONCLUSION

This paper proposes a hew portmanteau test for serial
correlations in fixed effects regression models. Our

test is a natural extension of the Ljung—Box test to

panel data settings. The main point is that our test
is based on asymptotically unbiased autocorrelation
estimators. The new test behaves nicely in our Monte
Carlo simulations. Our testing procedures should be
helpful to applied researchers.

There are several points that should be investigated in
the future. The first is how to choogeas discussed

in a previous section. Another possible future study
is to consider panel data models with predetermined
regressors. Note that our current discussion considers
only strictly exogenous regressors. When the model
includes predetermined regressors, the estimation
error of 5 might affect the asymptotic distribution of
the autocorrelation estimators as demonstrated by Box
and Pierce (1970). While this might complicate the
analysis, considering predetermined regressors would
also be an interesting extension.
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