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EXTENDED ABSTRACT

Testing the presence of serial correlation in the
error terms of a fixed effects regression model is
important for many reasons. While there have been
a number of testing procedures developed so far
(see, e.g., Bhargava, Franzini and Narendranathan
(1982), Baltagi and Li (1995), Baltagi and Wu (1999),
Bera et al. (2001), Wooldridge (2002), Drukker
(2003), Hong and Kao (2004) and Inoue and Solon
(2006)), testing for serial correlation has not been a
standard practice in applied research that uses panel
data, as recognized by Kédzi (2004) and Bertrand
et al. (2004). As conjectured by Inoue and Solon
(2006), the reason for this might be that there had
been no simple testing procedure until very recently.
Moreover, many simple testing procedures, such as
those suggested by Wooldridge (2002), look only at
the first order autocorrelation and are not portmanteau
tests. Although portmanteau tests do exist for panel
data, such as those proposed by Hong and Kao (2004)
and Inoue and Solon (2006), there has been no test for
serial correlation in micro economic panel data that
is both portmanteau test and is as straightforward as
the Ljung–Box or Box–Pierce test. (Fu et al. (2002)
extend the Box–Pierce test to panel data settings.
However, they consider only time effects and do not
consider the presence of individual effects. In most
applied economics research using panel data, we need
to consider individual effects and their test is not
readily applicable.) This paper seeks to provide a
simple and straightforward portmanteau test to fill this
gap.

The goal of this paper is to develop a test for serial
correlation in fixed effects models. Our test is a
natural extension of the well-known test by Ljung
and Box (1978) to panel data settings. The Ljung–
Box test is a modification of Box and Pierce’s (1970)
test and the basic idea is that we use a weighted
sum of the squares of the estimated autocorrelations
as the test statistics. This approach yields a test
that is intuitive, easy to interpret and simple to
compute, because the asymptotic variance matrix of
the vector of the estimated auto-correlations is an
identity matrix under the null hypothesis of no serial
correlation even in panel data settings. The main

issue that arises when we extend the idea of the
Ljung–Box test to panel data settings is that sample
auto-correlations computed with panel data might be
severely biased when the length of the time series
is not very large compared with the cross-sectional
sample size (see, e.g., Solon (1984) and Okui (2007)).
This bias distorts the size and is the main issue in
applying the idea of the Ljung–Box test to fixed
effects regression models. We modify the Ljung–Box
test to take into account the bias of autocorrelation
estimators, and our modification is based on Okui’s
results (2007) that proposes asymptotically unbiased
autocorrelation estimators for long panel data. Okui
(2007) observes that the leading term of the bias
of within-group auto-covariances are proportional to
the long-run variance. Given this observation, Okui
(2007) proposes to eliminate the bias by estimating
the long-run variance with the kernel estimator of
Parzen (1957) and Andrews (1991). We then construct
autocorrelation estimators using the bias-corrected
autocovariance estimators. The modified Ljung–Box
test for panel data analysis is based on these bias-
corrected autocorrelation estimators.

We run Monte Carlo simulations to evaluate the
performance of our new testing procedure and to
compare our test with other existing tests. We find that
our test yields a reasonable size even if the length of
the time series is not very long. Our tests are powerful
against a wide range of alternatives because our test
is a portmanteau test as is the original Ljung–Box
test. Note that many existing tests consider only first–
order autocorrelations and they are not portmanteau
tests. We also find that our test is more powerful than
the test of Inoue and Solon (2006), which is also a
portmanteau test.
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1 THE NEW TESTING PROCEDURE

Suppose that we have panel data of(yit, xit) for i =
1, . . . , N and t = 1, . . . , T . Let yit be the scalar
dependent variable andxit be the vector of regressors.
The relationship betweenyit andxit is modeled as the
following fixed-effects model:

yit = β′xit + ηi + wit,

for i = 1, . . . , N and t = 1, . . . , T , where β is
the vector of parameters,ηi is the individual fixed
effect for individual i and wit is the time-varying
unobservable error term. We assume thatxit is strictly
exogenous: i.e.,xit is uncorrelated withwis for anys.

We are interested in the dynamic structure of
wit. In particular, this paper focuses on testing
the presence of serial correlation inwit. Let ρk

denote thek-th order autocorrelation ofwit: ρk =
Cov(wit, wi,t−k)/var(wit). Our null hypothesis is:

H0 : ρk = 0, for k = 1, . . . .

We consider Box and Pierce’s (1970) approach for
testing serial correlation. This approach is based on
the sum of the squares of sample autocorrelations. We
then apply Ljung and Box’s (1978) modification in
order to improve the finite sample properties of the
test. To describe the test statistics, we first discuss
how to estimate the autocovariances ofwit. Let β̂ be
the fixed effects estimator:

β̂ =

{
N∑

i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)′
}−1

×
N∑

i=1

T∑
t=1

(xit − x̄i)(yit − ȳi),

wherex̄i =
∑T

t=1 xit/T andȳi =
∑T

t=1 yit/T .1 Let
uit be the (un-centered) residuals from the regression:

uit = yit − β̂′xit.

Let

γ̂k =
1

N(T − k)

N∑
i=1

T∑
t=k+1

(uit − ūi)(ui,t−k − ūi),

which may be a natural (but naive) estimator of
the k-th order autocovariance ofwit, where ūi =∑T

t=1 uit/T . However, the estimator,̂γk, may be
severely biased whenT is not very large relative toN .
The main source of the bias is the estimation error of
ηi. Note that whenT is fixed, we cannot consistently
estimateηi. Even whenT tends to infinity, the
estimation ofηi is problematic ifN is large compared

1Any estimator that satisfies the condition in Assumption 2 can
be used.

with T . To see this, we observe thatγ̂k may be
decomposed in the following form (see Okui (2007)):

γ̂k =
1

N(T − k)

N∑
i=1

T∑
t=k+1

witwi,t−k

− 1
N

N∑
i=1

(w̄i)2 + small.

The termw̄i(= (ȳi−β′x̄i)−ηi) can be understood as
the estimation error forηi. This estimation error is the
main source of the bias even whenT tends to infinity,
because

∑N
i=1(w̄i)2/N is of orderOp(1/T ).

An important observation is that(T/N)
∑N

i=1(w̄i)2

converges to the long-run variance ofwit. This
observation motivates us to consider a bias correction
method based on a long-run variance estimator. Okui
(2007) proposes to estimate the long-run variance by
the kernel estimator of Parzen (1957) and Andrews
(1991) and, then, to use the proposed long-run
variance estimator to correct the bias. The kernel
estimator for the long-run variance is:

ṼT =
T−1∑

j=−T+1

k

(
j

S

)
T − |j|

T
γ̂j ,

wherek(·) is a kernel function and the scalar,S, is
the bandwidth to be chosen by the researcher. In
the simulations, we use the quadratic spectrum (QS)
kernel:

k(x) =
3

(6πx/5)2

{
sin(6πx/5)

6πx/5
− cos(6πx/5)

}
,

for |x| ≤ 1 and k(x) = 0 otherwise. This choice
of the kernel function follows the recommendation of
Andrews (1991). A bias-corrected estimator ofγk

may be constructed by:

γ̃k = γ̂k +
1
T

ṼT .

Okui (2007) shows that̃γk is asymptotically unbiased:
its asymptotic distribution is centered around zero. We
can iterate this bias correction: we update the estimate
of VT by using the bias-corrected estimators forγk

in k = 0, . . . , T − 1; then, we re-estimateγk based
on the updated estimate ofVT . As γ̃ks are better
estimates ofγk, the bias may be better estimated using
γ̃k. This iteration may be repeated many times and it
converges under very mild conditions. Letγ̂0,T−1 =
(γ̂0, . . . , γ̂T−1)′, IT be theT × T identity matrix and
ιT be theT × 1 vector of ones. Let

KT =
(

k(0),
2T − 2

T
k

(
1
S

)
, ..,

2
T

k

(
T − 1

S

))′

.

The condition for the convergence of this iteration is
ι′T KT < T , which is satisfied with the QS kernel.
Then, the vector of the auto-covariance estimators
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obtainedafter the convergence, denotedγ̃0,T−1(∞),
is written as:

γ̃0,T−1(∞)

=
(

IT − 1
T

ιT K ′
T

)−1

γ̂0,T−1

=
(

IT +
1

T − ι′T KT
ιT K ′

T

)
γ̂0,T−1.

We also follow Okui (2007) in the choice of the
bandwidth. For the QS kernel, we use the following
bandwidth:

Ŝ∗ = 1.3221(τ̂2TN)1/5,

where τ̂ = 2δ̂/(1 − δ̂)2 and δ̂ is Hahn and
Kuersteiner’s (2002) estimator for the panel AR(1)
model of uit.2 The bandwidth is chosen so that it
achieves the minimum of the asymptotic mean square
error of the long-run variance estimator when the true
dynamics ofwit follows the AR(1) process. Our test
statistic is based on̂γ0,T−1(∞).

We now construct the test statistics for the Ljung–
Box test test modified for fixed-effects regression
models. We estimate the autocorrelations based on
γ̂0,T−1(∞):

ρ̃k =
γ̃k(∞)
γ̃0(∞)

.

Note that ρ̃k is asymptotically unbiased as are the
results of the asymptotically unbiasedness ofγ̃ks. Let
p be an integer that the researcher specifies in advance.
The test statistic takes the following form:

QLB = NT

p∑
k=1

T + 2
T − k

(
T − k

T
ρ̃k

)2

.

It is easy to see that the test-statisticQLB is
a straightforward extension of the Ljung–Box test
statistic. The ratio(T − k)/T makes the denominator
of the k-th autocorrelation estimatorNT rather than
N(T − k). The ratio(T + 2)/(T − k) is important to
have a good size property (see Ljung and Box (1978)).
We see the effect of including these ratios in the test
statistic in the Monte Carlo simulations reported in
Section 4.3. Our testing procedure is:

RejectH0 if QLB > χ2
p,1−α,

whereα is the nominal size of the test chosen by the
researcher andχ2

p,1−α denotes the1 − α quantile of
theχ2 distribution withp degrees of freedom.

2Hahnand Kuersteiner’s (2002) estimator is

δ̂ =
T

T − 1

PN
i=1

PT
t=2(ui,t−1 − ūi−)(ui,t−1 − ūi+)

PN
i=1

PT
t=2(ui,t−1 − ūi−)2

+
1

T − 1
,

whereūi− =
PT−1

t=1 uit/(T−1) andūi+ =
PT

t=2 uit/(T−1).

2 THE ASYMPTOTIC DISTRIBUTION OF
THE TEST STATISTICS UNDER THE NULL
HYPOTHESIS

This section derives the asymptotic distributions of
our test statistic,QLB , under the null hypothesis.
We make two sets of assumptions. The first set of
assumptions mainly concerns the probabilistic nature
of wit. This set of assumptions is important to
deriving the asymptotic distribution ofQLB even if
β is known or there is no regressor. The second set
of assumptions is mainly about the properties of the
regressor,xit, and is used to guarantee that the effect
of estimatingβ may be ignored.

The first set of assumptions is:

Assumption 1. 1. {xit, wit}T
t=1 are i.i.d. across

individuals.

2. wit is strictly stationary within individuals and∑∞
j=−∞ |γj | < ∞.

3. There exists M < ∞ such that
E(|witwikwimwil|) < M for any t, k, m
andl.

4.
∞∑

j1=−∞
· · ·

∞∑
j7=−∞

|cum(0, j1, . . . , j7)| < ∞,

where cum(0, j1, . . . , j7) is the eighth-order
cumulant of(wi0, wi,j1 , . . . , wi,j7).

5.
∞∑

j1=−∞
· · ·

∞∑
j3=−∞

|cum(0, j1, j2, j3)| < ∞,

where cum(0, j1, j2, j3) is the fourth-order
cumulant of(wi0, wi,j1 , wi,j2 , wi,j3).

Note that Assumption 1 does not impose any
restriction on the probabilistic nature ofηi, as ηi

is eliminated by the fixed-effects transformation.
Assumptions 1.1–1.3 are standard. Assump-
tion 1.4 guarantees the uniform integrability of∑T

t=k+1(witwi,t−k − γk)/
√

T . It is one of the
key conditions in applying the central limit theorem
under double asymptotics by Phillips and Moon
(1999) on which our asymptotic results are based.
This assumption may be relaxed as long as the
uniform integrable condition is met. Assumption
1.5 guarantees that the the asymptotic variance of
(ρ̃1, . . . , ρ̃p)′ exists and that it is the identity matrix
under the null hypothesis.

Next, we consider the set of assumptions that allows
us to ignore the estimation error ofβ̂ when we derive
the asymptotic distribution of the test statistics.

Assumption 2. 1. E(wit1xit2) = 0 for any t1
andt2.

2. β̂ − β = Op((NT )−1/2).

973

 2�#Hfootnote.2
����#assum.1


3. E(||wit1wit2xit3x
′
it4

||) < M for someM < ∞
for any combination oft1, t2, t3 and t4, where
|| · || is the Euclidean norm.

4. Let xit,a be the a-th element ofxit. Then
E(|xit1,axit2,bxit3,cxit4,d|) < M for some
M < ∞ for any combination oft1, t2, t3, t4,
a, b, c andd.

We assume that the regressor,xit, is strictly
exogenous in Assumption 2.1. Allowing regressors
to be predetermined is not considered here and this
would change the results. Assumption 2.2 says that
β̂ is

√
NT -consistent, which is satisfied by the fixed-

effects estimator. Assumptions 2.3 and 2.4 impose the
existence of fourth moments, which are important in
asymptotic results. These assumptions are standard in
the literature on fixed-effects estimation.

Let ρ̃1,p = (ρ̃1, . . . , ρ̃p)′.

Theorem 1. Suppose that Assumptions 1 and 2 are
satisfied. UnderH0, asT → ∞ and N → ∞ with
N/T 3 → 0, we have

√
NTρ̃1,p →d N(0, Ip).

Proof. This theorem is obtained as a corollary of the
results in Okui (2007). Here, we present a brief
sketch of the proof. First, Theorem 11 in Okui (2007)
shows that the estimation error in the fixed-effects
estimatorβ̂ can be ignored. Second, Theorems 3
and 5 in Okui (2007) demonstrate thatγ̃k(∞)s are
asymptotically normal. The asymptotic variance of
γ̃k(∞) is

∑∞
j=−∞(γ2

j + γk+jγk−j), which isγ2
0 for

k ̸= 0 and2γ2
0 for k = 0 underH0. The asymptotic

covariance betweeñγk(∞) and γ̃j(∞) for k ̸= j is∑∞
l=−∞(γlγl−k+j + γl+jγl−k), which is 0 for any

k ̸= j underH0 (see also Remark 3 in Okui (2007)).
By applying the Delta method, we obtain the desired
result.

This result is analogous to the well-known result by
Box and Pierce (1970). An important point is that the
bias must be corrected to obtain this theorem. If we do
not correct the bias, the bias remains even in the first-
order asymptotics (see Remark 2 below). As a direct
corollary of this theorem, we obtain our main result.

Corollary 1. Suppose that Assumptions 1 and 2 are
satisfied. UnderH0, asT → ∞ and N → ∞ with
N/T 3 → 0, we have

QLB →d χ2
p.

This result justifies the use of our test.

Remark 1. It would be clear that our test is consistent
against any alternative in whichρk ̸= 0 for k ≤ q.

However, like the Box–Pierce and Ljung–Box tests
in the time–series context, our test does not have
power if serial correlation arises only at an order
higher thanp. Detecting higher-order autocorrelations
requires a large value ofp, but the size of the test
might deviate from the nominal one whenp is too
large. We should pick a value ofp by taking this
trade-off into account. Unfortunately, there is no
universally accepted method to choosep even for the
original Box-Pierce test for single time-series (e.g.,
see Hayashi (2000, p144)). This problem is beyond
the scope of the current paper.

Remark 2. Let ρ̂k be the estimator of thek-
th order autocorrelation based on the within-group
autocovariances: ρ̂k = γ̂k/γ̂0. Let ρ̂1,p =
(ρ̂1, . . . , ρ̂p)′. As a special case of Theorem 2 in Okui
(2007), the asymptotic distribution of̂ρk under the
null hypothesis is

√
NT

(
ρ̂1,p +

1
T

ιp

)
→d N(0, Ip),

whereιp is thep × 1 vector of ones. The asymptotic
bias in ρ̂ has a very simple form ofιp/T under the
null hypothesis. This result suggests another test for
serial correlation that is based on correcting the bias
by adding1/T to the within-group auto-covariances.
We denote such a test as “BP3” whose properties are
examined below in the Monte Carlo simulations. This
test is very easy to compute and might be attractive at
first glance. However, the simulations show that this
test has a severe size distortion problem. Thus, we do
not recommend using this test.

3 MONTE CARLO EXPERIMENTS

This section reports the results of the Monte Carlo
experiments. The simulations are conducted with the
Ox 4.04 for Windows software (Doornik (2006)). The
primary purpose of the simulations is to check the
finite sample properties of our new testing procedure.
Our testing procedure is based on asymptotic results.
It is important to see if the asymptotic results provide
a good approximation of the finite sample properties
of the test. Another purpose is to compare our tests
with existing testing procedures.

3.1 Design

Our data-generating process is:

yit = wit + ηi,

whereηi ∼ i.i.d.N(0, 1). Note that the specification
of ηi does not affect the results becauseηi is
eliminated in all the procedures examined in the
experiments. For simplicity, we consider models
with no regressor. We consider the following four
specifications ofwit.
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DGP 0 (null): wit ∼ i.i.d.N(0, 1).

DGP 1 (AR(1)): wit = 0.1wi,t−1 + ϵit, where
ϵit ∼ i.i.d.N(0, 1). The initial observations are
generated from the stationary distribution; i.e.,
wi0 ∼ i.i.d.N(0, (0.81)−1).

DGP 2 (MA(2)): wit = ϵit + 0.1ϵi,t−2, whereϵit ∼
i.i.d.N(0, 1).

DGP 3 (incidental trends): wit = ϵit + αit, where
ϵit ∼ i.i.d.N(0, 1) andαi ∼ i.i.d.N(0, 0.01).

The data-generating processes are similar to those
considered by Inoue and Solon (2006), although
the values of the parameters are different. Each
experiment is characterized by the cross-sectional
sample size,N , the length of the time series,T ,
and the data-generating process. We setN =
20, 100, 200; T = 5, 10, 25. The number of
replications is 5000 for each specification.

We examine the properties of six tests in the
experiments. The nominal size is set to 5% throughout
the experiments. First, we consider our new testing
procedure withp = 4 andp = 9. Our test is denoted
“LB”. We consider four testing procedures based on
existing articles to check the relative performance of
our tests. The test “ISS” is a modified version of the
portmanteau test by Inoue and Solon (2006).3 We
modify the Inoue and Solon test in two ways: “ISS”
is specialized for first- top-order autocorrelations
and it is based on the assumption that the process is
covariance stationary.4 We setp = 4 andp = 9 for
ISS. We consider two tests suggested by Wooldridge
(2002). Wooldridge’s (2002, p. 275) test, denoted
“W”, is based on the first-order autoregression ofŵit.
We conduct thet-test of the null hypothesis that the
coefficient onŵi,t−1 is −1/(T − 1). Note that we
have to use an autocorrelation robust standard error
to construct the test statistics. The test “WD” by
Wooldridge (2002, pp 282-283) and Drukker (2003)
is based on the first difference of the residuals. We
test the hypothesis that the first-order autoregressive
coefficient of the differenced residuals is−1/2.

3Resultsnot shown here indicate that the original version of
the Inoue and Solon test performs poorly whenT is not small.
This is unsurprising because the asymptotic distribution of their test
statistics under an asymptotic sequence in whichN → ∞ andT
is fixed isχ2

(T−1)(T−2)/2
, which depends onT and diverges as

T → ∞.
4The test statistic is computed by the formula given in Inoue

and Solon (2006, p839) with replacingDk,T in their formula by
theT 2 × p matrix whosej-th column is equal tovec(Aj) where
Aj is theT ×T matrix whose(l, m)-th element is 1 if|l−m| = j
and 0 otherwise. Note that the asymptotic null distribution of this
modified test statistic isχ2

p.

Table 1.Empirical rejection probability under the null
hypothesis (DGP 0)

(N, T ) LB LB ISS ISS W WD
p (4) (9) (4) (9)

(20,5) 0.054 0.011 0.090 0.096
(20,10) 0.064 0.059 0.032 0.002 0.089 0.094
(20,25) 0.054 0.057 0.035 0.003 0.079 0.082
(100,5) 0.066 0.024 0.061 0.062
(100,10) 0.066 0.066 0.053 0.030 0.061 0.055
(100,25) 0.055 0.060 0.050 0.049 0.052 0.054
(200,5) 0.062 0.025 0.051 0.049
(200,10) 0.062 0.063 0.055 0.029 0.060 0.060
(200,25) 0.052 0.060 0.053 0.050 0.054 0.049

3.2 Results

Table 1 reports the empirical sizes of the tests. All
the tests have reasonable empirical sizes in all cases.
We observe that the rejection probability of “LB”
is close to the nominal size whenT is small even
though its theoretical justification is based on double
asymptotics. However, we observe that the empirical
size of “LB” becomes closer to the nominal size as
T increases whileN is not critical in determining the
size property of “LB”. The sizes of “ISS” are affected
by both T and N . For “LB”, the value ofp does
not affect the size much, but “ISS” tends to be very
conservative whenp is large (p = 9). The sizes of
“W” and “WD” are better whenN is large while they
are not very sensitive toT .

Tables 2-4 report the powers of the tests. First of all,
we recognize that both “LB” withp = 4 and withp =
9 show encouraging results. With DGP2 and DGP3,
settingp = 4 yields better power than settingp = 9,
but with DGP4, the opposite is observed. Compared
with other tests, settingp = 4 tends to yield competent
power in all cases while our test withp = 9 sometimes
has a lower power than other existing tests.

The most powerful test with DGP1 (the AR (1)
alternative) turns out to be “W”, although we observe
that other tests are also effective in detecting the
AR(1) alternative. However, the result also indicates
that “W” does not have strong power against the
MA(2) alternative (DGP2). It is interesting to note
that “W” has some power with DGP2 whenT is
small, although it may appear that “W” tests only
the first-order autocorrelation. It turns out that “W”
is consistent against some (but not all) alternatives
with zero first–order autocorrelation underN → ∞
and T fixed asymptotics. WhenT is fixed, the
coefficient estimator on which “W” is based is not a
consistent estimator for the first-order autocorrelation
and converges to a function of all the autocorrelations
(Solon (1984)). Therefore, “W” has some power even
in DGP2 in which the first-order autocorrelation is
zero. On the other hand, whenT tends to infinity,
“W” is consistent only against alternatives with non-
zero first-order autocorrelation. This explains the fact
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Table 2.Empirical rejection probability under AR(1)
alternatives (DGP1)

(N, T ) LB LB ISS ISS W WD
p (4) (9) (4) (9)

(20,5) 0.067 0.015 0.139 0.135
(20,10) 0.166 0.120 0.062 0.003 0.249 0.180
(20,25) 0.389 0.271 0.170 0.011 0.560 0.344
(100,5) 0.224 0.098 0.242 0.221
(100,10) 0.637 0.503 0.466 0.259 0.693 0.478
(100,25) 0.985 0.950 0.966 0.871 0.996 0.900
(200,5) 0.418 0.228 0.401 0.349
(200,10) 0.913 0.832 0.829 0.629 0.929 0.744
(200,25) 1.000 1.000 1.000 0.999 1.000 0.997

Table 3.Empirical rejection probability under MA(2)
alternatives (DGP2)

(N, T ) LB LB ISS ISS W WD
p (4) (9) (4) (9)

(20,5) 0.106 0.010 0.124 0.126
(20,10) 0.149 0.127 0.049 0.001 0.091 0.185
(20,25) 0.360 0.255 0.153 0.009 0.084 0.374
(100,5) 0.249 0.077 0.171 0.230
(100,10) 0.533 0.428 0.430 0.230 0.105 0.498
(100,25) 0.970 0.925 0.958 0.863 0.080 0.909
(200,5) 0.411 0.198 0.265 0.363
(200,10) 0.854 0.770 0.810 0.594 0.164 0.779
(200,25) 1.000 1.000 1.000 0.999 0.089 0.998

that“W” loses its power with DGP2 asT increases.

The “WD” test performs reasonably well with DGP1
and DGP2, while it fails to have power against
the alternative with incidental trends (DGP3). With
DGP3, the presence of serial correction is visible
only through large values of the trend term,t, as the
variance ofαi is very small. However, the trend is
eliminated when we take the first difference. The
“WD” test, which is based on the first difference, fails
to detect this alternative.

Like our new test, “ISS” is also a portmanteau test
and it has good power against all kinds of alternatives
considered here. However, our tests are typically
more powerful than “ISS”. The power of “ISS” can
be vastly low when we setp = 9.

Summing up, we observe that our new “LB” test
performs very well throughout the experiments. Its
size is good even whenT is small and is not sensitive
to the choice ofp. Moreover, it is powerful against a
wide range of alternatives because it is a portmanteau
test.

3.3 Other modified Box–Pierce tests

This paper extends the Ljung–Box test to panel data
settings. The Ljung–Box test has been considered
to improve the finite sample properties of the Box–
Pierce test. This subsection asks how the original
version of the Box–Pierce test and other modifications
of the Box–Pierce test perform with finite samples. In
particular, we consider the following three versions of

Table 4. Empirical rejection probability under
alternatives with incidental trends (DGP3)

(N, T ) LB LB ISS ISS W WD
p (4) (9) (4) (9)

(20,5) 0.060 0.012 0.104 0.101
(20,10) 0.214 0.262 0.053 0.003 0.155 0.091
(20,25) 1.000 1.000 0.410 0.017 0.987 0.082
(100,5) 0.080 0.030 0.063 0.065
(100,10) 0.743 0.866 0.638 0.406 0.390 0.069
(100,25) 1.000 1.000 1.000 1.000 1.000 0.082
(200,5) 0.093 0.040 0.069 0.059
(200,10) 0.964 0.993 0.963 0.915 0.657 0.077
(200,25) 1.000 1.000 1.000 1.000 1.000 0.110

Table 5.Empirical rejection probability under the null
hypothesis (DGP 0)

(N,T ) LB BP1 BP2 BP3
p (4) (4) (4) (4)

(20,5) 0.054 0.225 0.002 0.463
(20,10) 0.064 0.088 0.012 0.143
(20,25) 0.054 0.066 0.028 0.071
(100,5) 0.066 0.232 0.003 0.690
(100,10) 0.066 0.092 0.014 0.173
(100,25) 0.055 0.068 0.027 0.075
(200,5) 0.062 0.229 0.002 0.957
(200,10) 0.062 0.094 0.008 0.207
(200,25) 0.052 0.059 0.027 0.074

theBox–Pierce test modified for panel data analysis:

Q1 = NT

p∑
k=1

ρ̃2
k,

Q2 = NT

p∑
k=1

(
T − k

T
ρ̃k

)2

,

Q3 = NT

p∑
k=1

(ρ̂k + 1/T )2.

Let “BP1” be the test based on the test statisticQ1.
The “BP2” and “BP3” tests are defined similarly.
The “BP1” and “BP2” tests may be considered as
natural extensions of the original Box–Pierce test.
The difference between “BP1” and “BP2” is that
Q1 uses the autocovariance estimators in which the
denominator isT − k, while that forQ2 is T . The
Q3 test statistic is based on the observation given in
Remark 1. Under the null hypothesis, the bias of each
ρ̂k is −1/T andQ3 corrects the bias by adding1/T
to eachρ̂k. Note thatQ1, Q2 andQ3 all possess the
same asymptotic distribution (i.e.,χ2

p) under the null
hypothesis.

Table 5 presents the empirical rejection probabilities
of the tests under the null hypothesis. For reference,
we also present the empirical size of “LB” in Table
5. We setp = 4 for all tests. The “BP1” and “BP3”
tests suffer from substantial size distortion whenT is
small, although their sizes are not bad whenT = 25.
It seems that we cannot use “BP1” and “BP3” unless
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we correct the critical values or our panel data have
a long time series. The “BP2” test appears to be
conservative. This indicates that we need to consider
correcting the critical value for “BP2” in order to
obtain good power.

These results show the advantage of the Ljung–Box
test, which provides the best size properties among
four modifications of the Box–Pierce test.

4 CONCLUSION

This paper proposes a new portmanteau test for serial
correlations in fixed effects regression models. Our
test is a natural extension of the Ljung–Box test to
panel data settings. The main point is that our test
is based on asymptotically unbiased autocorrelation
estimators. The new test behaves nicely in our Monte
Carlo simulations. Our testing procedures should be
helpful to applied researchers.

There are several points that should be investigated in
the future. The first is how to choosep as discussed
in a previous section. Another possible future study
is to consider panel data models with predetermined
regressors. Note that our current discussion considers
only strictly exogenous regressors. When the model
includes predetermined regressors, the estimation
error ofβ might affect the asymptotic distribution of
the autocorrelation estimators as demonstrated by Box
and Pierce (1970). While this might complicate the
analysis, considering predetermined regressors would
also be an interesting extension.
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