
Go*Team, an Instance of the Simulation Framework
Jagiello, J. 1, Eronen M. 1

1 Defence Science and Technology Organisation, Canberra, Australia
Email: jerzy.jagiello@dsto.defence.gov.au, marko.eronen@dsto.defence.gov.au

Keywords: simulation, framework, software, gaming

EXTENDED ABSTRACT

Network-Centric Warfare (NCW) is a new military
doctrine or theory of war that seeks to translate an
information advantage into a competitive war
fighting advantage through the robust networking
of well informed geographically dispersed forces
(Alberts et al. 1999,
http://en.wikipedia.org/wiki/Network-
centric_warfare).

The focus of NCW efforts has largely been
concentrated on issues related to technology and
infrastructure. However, there is a growing trend
in the scientific community to analyse the human
aspect of network warfare. The human factors
community has concerns about the impact of
technology on human performance, and has
identified a need for investigation of individual
and group behaviours in a NCW context.

There are many possible ways of testing
hypotheses regarding human and organisational
behaviour. A practical approach is to conduct a
real life experiment. Sometimes it is impossible to
set this up due to technical and economical
constraints. It can also be difficult to establish
validity of conclusions based on a limited
experimental sample. An alternative is to abstract
some of the key attributes of a real life system into
a model, allowing for unlimited repetition and an
understanding of the behaviour of the real life
system. The computerized Go*Team game is an
example of such an approach. Go itself has nothing
to do with NCW per say, but it creates an
opportunity for simulating cooperation and
coordination between teams and individuals. By
creating a competitive and collaborative
environment where players/teams compete against
each other, human factors may be identified which
could have a profound impact on the outcomes of
future NCW wars.

Go*Team is based on the traditional Go game in
which players place black and white stones onto a
board in order to occupy territory on the board
(http://www.britgo.org/intro/intro1.html).
Go*Team is designed to allow a number of
competing teams to play Go with a number of

players in each team. Every player on a team has a
local view of the game. Players on the same team
must collaborate if they want to have a more
complete picture of the actual game state.

The Go*Team game was implemented as an
instance of the Simulation Framework (Jagiello et
al. 2007). The core of the framework provides the
software infrastructure for storing and distributing
the simulation state across the network. This paper
describes how the Go*Team requirements were
transformed into the framework vocabulary and
constructs.

826

1. GO*TEAM REQUIREMENTS

The original Go game consists of black and white
stones and a square board with
grid lines. The board sizes can
vary, with a standard board having
19x19 grid lines. A Go game
requires two players to take turns
placing stones onto the grid line
intersections of the board. The
object of the game is to occupy
territory on the board. At the start
of the game, players place stones
onto the board staking claim to
areas which they intend to occupy.
As the game progresses, players
have to defend their positions
while attempting to gain more
territory. Stones cannot be moved
once they are placed onto the board. However they
can be captured resulting in their removal from the
board. Stones are captured when they are
surrounded by an opponent’s stones. While
capturing stones is not the object of the game it
does provide a useful way of gaining additional
territory. The winner of the game is the player who
controls a larger proportion of the board when the
game ends. The Go*Team game is a modified
version of the original Go game adapted with the
purpose of simulating an NCW environment. The
Go*Team allows more than one person to play for
a particular stone colour, and the stone colours are
not limited to just black and white. People playing
for the same colour are on the same team and they
cooperate with each other to achieve victory for
their team. Teams can form alliances to simulate
coalition forces. A game can be played by many
teams on many boards with a limited number of
allocated stones. An important element of
Go*Team is the limited visibility of the game
state. The individuals from one team only have a
local view of the game. They cannot see where the
stones of other players on their team are, and they
cannot see opposition team stones that are not
close to their own stones. However it is possible
for a team to “reconstruct” a complete picture of
the game state if everyone on the team shares their
knowledge.

2. GO*TEAM MODEL

Having in mind the Go*Team requirements and
the Simulation Framework architecture the
Go*Team implementation model can be
represented as depicted in Figure 1. The input

)(Pr kTkeAction Δ and the output (SeverAction,
GameSataus, Teams, Allies, IllegalMoves,
Winners) variables inside the repository store are
manipulated by the players and the rule modules.

Here is the outline of the input/output variable
structure.

)(Pr kTkeAction Δ :=<Operation><PositionX><Posit
ionY><TeamID><PlayerID><BoardID> (set of
tokens separated by the white space separator).

For example if player 4 from team 1 placed a stone
on board 3 at location 5,7 the preAction input
variable would be “ADD 5 7 1 4
3”

{ }WinnersesIllegalMovAlliesTeamsGameStatusonServerActiTkY ,,,,,:)(=Δ
r

ServerAction:=<Operation><PositionX><Position
Y><TeamID><BoardID>

For example if team 1 placed a stone on board 5 at
location 12,7, and the result of this was a capture
of team 2 stone on board 5 at location 11,7 the
Server Action message would be “ADD 12 7 1 5
REMOVE 11 7 2 5”

GameStatus:=<TimingMode><GameTimeLeft>
<TotalGameTime><StonesLeft><StonesAlive>
<BoardId><TimingRule><Time1><Time2><Tea
mTurn><StonesAlive><Prisoners><BoardState><
ActionState>

TimingMode:=String Value {“timing_sys_board”,
“timing_sys_team”},

{GameTimeLeft,TotalGameTime,StonesLeft,
BoardId,Time1,Time2,TeamTurn,StonesAlive,
Prisoners}:= Integer Value,

TimingRule:=String Value {“Pacing”,
”ForcedDelay”, ”TurnBased”, ”Independent”},

BoardState:=String Value {“Pacing”,
”ForcedDelay”, ”TurnBased”,”Independent”},

.

.

Game Client Player 1

Go*Team Entities : Game{ Stone, Board {Position}, Team {Player} }

Rule Module Manager: Action Processor, Illegal Actions, Scheduler, Scoring

Sensor Manager: Status Sensor, Visibility Sensor

{ }1,,, SensorGamePlayerBoard

{ }TeamBoardRulesBoardPositionPlayerGame ,,,,,

)(Pr kTkeAction Δ
},,,{ ,1 NiSensorGamePlayerBoard =

{ }MSensorGamePlayerBoard ,,,
Game Client Player M

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

Winners
esIllegalMov

Allies
Teams
GameStatus

onServerActi

Figure 1. Go*Team Implementation Model

827

ActionState:=String Value {“READY”,
”NOTYET”},

For example if the game is played on 2 boards
with two different pacing schemas: Forced Delay
and Pacing and timing measured against the board
movements the Game Status message would be
“timing_sys_board 28589 28800 49 50 1
ForcedDelay 19 0 1 1 0 running NOTYET 2
Pacing 0 0 0 0 0 0 running READY”

Teams:=<BoardID><TeamCount><List of
Teams>.

For example if teams 1 and 3 are playing on board
1, and teams 2 and 3 are playing on board 2 the
Teams message would be “1 2 1 3 2 2 2 3”

Allies:=<BoardID><AlliedCount><List of
Teams>

For example if teams 1 and 3 are allies on board 1,
and teams 2 and 3 are allies on board 2 the Allies

message would be “1 2 1 3 2 2 2 3”

IllegalMoves:=<BoardID><PositionX><PositionY
>

For example if a player had attempted moves
which were illegal on board 3 at location 12,8 and
on board 4 at location 6,7 the Illegal Move
message would be “3 12 8 4 6 7”

Winners:= <BoardID><WinnersNames>

These are the entities which attributes are
manipulated by the rule manager and game clients:

• Game
• Stone
• Board
• Position
• Team
• Player

The essence of the game play involves players
placing stones onto
the game board.
The host may
accept or reject
stone placements.
When a player
attempts to place a
stone onto their
game board the
client sets a
preAction attribute
for the Game entity
in the local client
repository store. As
a result of the

reflection
mechanism it is
automatically also
set in the global

simulation
repository as
depicted in Figure
2. During the deny
phase, the
simulator processes
first the rule
modules then the
sensors. The Turn
Schedule rule
module processes
the preAction
attribute and
accepts or rejects a
proposed action.
The Action
Processor and

Client - Player 1

Client GUI

Game
preAction

Simulation Store [client]
Sensor (player 1)
GameStatus
Teams
Allies
IllegalMoves
Winners

Client - Player 1

Client GUI

Game
preAction

Simulation Store [client]

Sensor (player 1)
serverAc tion

Sensor (player 1)
GameStatus
Teams
Allies
IllegalMoves
Winners

Game Host - Simulator

Game
preAction

Simulation Store [Server}

Sensor
(player 1)
serverAction

Status Sensor

Sensor
(player 1)
GameStatus
Teams
Allies
IllegalMoves
Winners

Visibility
Sensor

Status messages

TurnSchedul
er ActionProces

sor IllegalAction
s Scoring

Client - Player 1

Client GUI

Game
preAction

Simulation Store [client]

Sensor (player 1)
serverAc tion

Sensor (player 1)
GameStatus
Teams
Allies
IllegalMoves
Winners

Perceived Actions

preActions

Figure 2. Go*Team Host/Client Model

828

Illegal Actions rule modules validate

appropriateness of that action and modify the state
of other entity attributes in the simulation store as
depicted in Figure 2 and Figure 3.

3. RULE MODULES

The Go*Team game has implemented four
fundamental rule modules: Turn Scheduler, Action
Processor, Illegal Action, Scoring.

3.1. Turn Scheduler

The Turn Scheduler rule module is able to track
different timing schemes for each board in the
game. The following timing schemes for
controlling the flow of the game have been
implemented:

Independent Moves - Each team can add stones
onto the board at any time they want. There is no
restriction on the moves.

Pacing - Each team can only add one of their
stones onto the board per time frame (relaxation
period). The purpose of this is to slow the game
down to give players an opportunity to plan the
best move for their team.

Turn based - All teams are randomly ordered
before the game starts. Every team has much time
as they want to make their move, but they can only
make a move when it is their turn. This blocking
scheme can slow the game down considerably.
Each board has their own order list of team turns.

Forced delay - This incorporates the turn-based
theory where teams are randomly ordered at the
start of the game but time plays a factor in this.
After a stone from another team has been placed
onto the board, the next team in order has to wait
an amount of time (w) to observe the board, and

then they are given an amount of time (m) to
complete their move. If no move was
attempted during the m amount of time,
the team in play will miss their chance
to add a stone onto the board.
However, if the m amount of time is
infinite, then blocking is introduced,
leaning towards a turn-based approach
with a delay. Forced delay is
introduced to slow down the game, but
it improves the result of the game
where teams are forced to observe the
game longer to prevent hasty moves,
and at the same time are given a chance
to attempt a move.

A different timing scheme can be
specified for each board in the game.

Alternatively the timing schemes can be specified
on a team by team basis. The team based timing
selection allows for the pacing scheme with a
different relaxation period possible for each team.
Giving teams a shorter relaxation period can
provide a significant advantage as they are
potentially able to make more moves.

3.2. Action Processor

The Action Processor rule module checks accepted
actions to make sure that they comply with the
game rules. Firstly, it must be verified that the
position onto which the stone is being placed is
available. Secondly there are some Go rules which
may need to be checked against (if they are
enabled) to prevent placement of stones which
result in self capture (suicide, KO). If the action is
legal, process actions will create an entity to
represent that stone in the simulation store.
Placement of the stone may result in the capture of
prisoners from another team. The Actions Process
rule module is responsible for working out which
stones were captured and for updating the entity
states in the simulation store accordingly.

3.3. Illegal Action

The Illegal Action rule module processes all the
illegal actions and stores the illegal moves as
player attributes in the simulation store. The status
sensors will report illegal moves back to the
players that attempted them.

3.4. Scoring

The Scoring rule module maintains and updates
the scoring systems for each board in the game.
There are a number of possible scoring systems
and it is possible to configure different scoring
systems for different boards in the same game. The

Illegal
Action
[Rule Module]

Action
Processor
[Rule Module]

Illegal
Actions

Turn Scheduler
[Rule Module]

SimulationStore

Illegal
Actions

Accepted
Actions

Proposed
Actions

Proposed
Actions

Illegal
Moves

Entity
States

Illegal
Actions

Accepted
Actions

Create
Remove
Entities

Illegal
Moves

Perceived
Action

Sensor
Illegal
Moves

Status Sensor Visibility Sensor

(Place Stone)

Figure 3. Processing Place Stone Request

829

scoring rule module gets the score systems for
each board from the simulation store as well as the
team alliance information. The rule module uses
the score systems for each board to update the
territory count and prisoner count for each team in
the simulation store.

When stones are surrounded/captured by allied
teams, there needs to be a rule to define the owner
of the prisoner stones. The Scoring rule module
provides three prisoner ownership rules for the
game host to use. The definitions of these rules are
as follows:

Majority Prisoner Ownership Method:

Initial counting phase - each allied team is counted
as one team. All other teams are independent. In
this context, the winning team refers to the team
that successfully captured the group/unit of dead
stones.

Scenarios - if there is a tie between the allied and
independent teams with regards to the number of
stones used to capture the dead stones, the
independent team takes priority, thus they get the
captured stones.

If an allied team has the most stones used for
capturing a group/unit of stones, the winning team
of the alliance is the one with the most stones used
to capture the stones. If a tie occurs, the last stone
placed onto the board that caused the capture to
occur, determines the winning team (using the
stone's team id). If there's a tie between the allied
teams (there can be more than one allied team), the
winning allied team is the team with the last stone
placed onto the board that caused the capture to
occur. Then scenario 2 applies. If an independent
team has the most stones used to cause a capture,
they are the winning team.

Final phase - the number of captured stones
(prisoners) is added to the winning team's prisoner
count.

Proportional Prisoner Ownership Method:

Each team involved in the stone capture is given
an even amount of divided prisoners.

Scenarios - If the number of teams involved can
evenly divide the number of prisoners, then all
teams involved will receive an evenly divided
number of prisoners captured.

If scenario one applies but there are still some
prisoners left (can’t be evenly split across all
teams), then scenario three applies.

If there are more teams involved than the number
of prisoners acquired, then the prisoners will be
distributed one by one to the most recent teams in
order that caused the capture to occur.

Capturing Stone Prisoner Ownership Method:

The team that placed the last stone onto the board
that caused a capture receives all of the prisoners
captured.

The game host can change these prisoner
ownership rules at any time during the game. In
Go*Team the winning team is the team with the
most territory points occupied on the board
together with the number of prisoners captured.
The overall winner is the player from the winning
team with the most stones remaining on the board.
When this has been determined (using the
information from the simulation store), all players
are notified of the winning teams and players on
each game board.

4. GO*TEAM SENSORS

Each client has their own Status and Visibility
sensor. These sensors are created by the clients
when they join the game. They exist on the game
host to report a perception of the current game
state to the clients that created them. The sensors
are executed after all rule modules are processed.
The Status sensor reports any change to the game
status, team configuration, alliance structure,
inappropriate stone movements and the winners
attribute while the Visibility sensors records any
changes to the server action attribute in the global
repository store. The visibility sensor has to work
out which of the stones currently on the board are
visible to which players. The algorithm for
determining visibility could be just about anything.
In the Go*Team case the following simple
visibility rules are applied:

• from their own team stones, a player can
only see their own stones. All other stones
from the same team will not be visible to
the player.

• from the opposition teams’ stones, a
player can only see those opposition
stones which are closer (or same distance)
to their own stones than any of their team
mates stones. If another player on that
player’s team has a closer stone to the
opposition, then the other player will see
the stone

Alliances have no effect on visibility, allied teams
are still treated as opposition teams for the purpose
of visibility.

830

Figure 6. Game Setup

Figure 7. Host View of the Go*Team Game

An implication of these visibility rules is that if
only one player from a team has placed stones onto
a board, that player will have complete visibility of
every stone on that board. Conversely if a player
has not placed any stones onto a board they will
not see anything on that board.

The Game Host can see everything that is
happening on all boards of a game. The game
clients can only see the boards that their team is
playing on. The player visibility sensor further
limits what each player actually sees on their game
boards. The Go*Team visibility rules can all be
demonstrated using a simple example. Consider a
situation in which 2 players from the same team
are playing on the same board. White player 1 has
placed one stone onto the board. White player 2
has not placed any stones on the board yet, and so
they cannot see anything. White player 1 can see
everything. The Game Host can see everything.
The numbering on the stones at the Game Host
shows the order in which the stones were placed
onto the board (see Figure 4).

Now if white player 2 places a stone onto the
board, the visibility of black stones changes for
both players as follows (see Figure 5).

When white player 2 places stone (4) onto the
board, black stone (2) is no longer visible to white
player 1 because someone on their team has a
stone closer to stone(2) than they do. White player
2 can now see black stone (2) because they have a
stone closer to it, but they are not able to see the

other black stone (1). Note also that neither of the
white players can see each other’s stones.

5. GAME CONFIGURATION

The Game set up allows for configuration of the
number of boards, game duration, board sizes,
scheduling schemes, stone allocation and the
number of teams alliances (see Figure 6).

The host has a complete view of all boards and all
stones, including the order of placement of stones
(see Figure 7). On the game host all stones placed

by players appear on the game board. Each stone
has a red number indicating when the stone was
placed at that location. The most recent stone to be
placed on the board has a blue square. The host
does not show which stones were placed by which
players.

6. CONCLUSION

The Go*Team game has been designed as a
research vehicle for investigating collaboration and
cooperation between team members in a
competitive and dynamic environment. The
Go*Team computerized game environment
exhibits many of the features of a NCW

1 2

3

White player
1

Game
Host view

White player
1 view

White player
2 view

Figure 4. White Player 1 places a stone

Game
Host view

White player
1 view

White player
2 view

White player
2

1 2

3

4

Figure 5. White Player 2 places a stone

831

environment with its inherent uncertainties,
ambiguities and complexities, information sharing,
integration and overload issues, tempo,
communication technologies, and the necessity of
cooperation and coordination as well as the
inevitable competition that seems to occur between
different individuals and groups in such situations.
The Simulation Framework was a natural feat for
the implementation of the Go*Team requirements.

7. AKNOWLEDGMENTS

The authors are grateful to Nicholas Tay for his
contribution into the design and development of
the Go*Team game.

8. REFERENCES

Alberts, D.S., J.J Garstka, F.P. Stein (1999),
Network Centric Warfare – 2nd Edition,
Sun Microsystems Federal Inc.

http://en.wikipedia.org/wiki/Network-
centric_warfare

http://www.britgo.org/intro/intro1.html,Introductio
n to the game of Go

Jagiello, J., M. Eronen (2007), A Simulation
Framework, MODSIM, Christchurch, NZ.

832

