
Applying Enterprise Application Architectures in
Integrated Modelling

Knapen M.J.R. 1, Verweij P.J.F.M. 1 and Wien J.J.F. 1

1 Alterra, Environmental Sciences Group, Wageningen University and Research Centre, Wageningen
Email: rob.knapen@wur.nl

Keywords: software architecture, information systems, information economics, model integration

EXTENDED ABSTRACT

Software systems that support integrated policy
assessment need to work with models from
different domains and provide a framework to link
these models together. They need to store model
results, intermediate and raw data, and have one or
more user interfaces for input and presentation.
Such software can be built with an inside-out
focus, emphasising the model linking, but also
from an outside-in perspective. Here the features
and technical development is primarily driven by
usability and business requirements.

The inside-out view can very well satisfy the needs
of the modellers and framework builders involved,
but might not be enough for all other requirements
of the many stakeholders in an integrated
assessment, and in the project at a larger scale.

Thus the outside-in view must also be considered
for the software to be successful. Looking from
this perspective the software system is similar in
basic functionality to other data intensive
enterprise applications and common architectures
and design patterns could be used for its
construction.

Figure 1: Layered Architecture

Enterprise applications (e.g. used for banking or
insurance) typically have an architecture that
separates functionality into 5 distinct layers
(Figure 1). This includes a persistence layer for
storage of domain object state, the domain layer
for the domain model and domain logic, a services
layer that controls transactions and contains the
business logic, an application layer for use-case
workflows, syntactic validation and interaction
with the services layer and finally a presentation
layer for the user interfaces. Following such
separation of concerns, helped by some well
known design patterns like data transfer objects,
service layer, command pattern and CRUD (a
pattern that organizes the persistence operations
into Create, Read, Update and Retrieve operations
that are implemented by a persistence layer) will
improve the maintainability, possibilities for re-use
and systems interoperability.

In this paper the software architecture of the
SENSOR and SEAMLESS 6th framework EU
projects will be used as case studies to illustrate
the use of the layered architecture and the
mentioned design patterns. Both these projects
deal with environmental integrated assessments
and include the construction of a decision support
software system. They will illustrate the increased
importance of the outside-in perspective and
following standard software engineering practices
to improve the interoperability and possibilities for
re-use of components of the systems build.

798

INTRODUCTION

1.1. Integrated Assessments

Societies see the emergence of new governance
concepts, based on the assumption that processes
of planning and decision taking are no longer
hierarchical but the product of complex
interactions between governmental and non-
governmental organizations, and the general public
(the model of “co-production of knowledge”
Callon, 1999). All involved are seeking to
influence the collectively binding decisions that
have consequences for their interests.

To account for this changing governance and the
increased number of stakeholders involved,
decisions need to be assessed in an integrated
context. Such Integrated Assessment has been
defined as “an interdisciplinary and participatory
process combining, interpreting and com-
municating knowledge from diverse scientific
disciplines to allow a better understanding of a
complex phenomena (Rotmans and Van Asselt,
1996). It requires that information needs to be
made accessible in a way such that all different
types of stakeholders achieve a common
understanding of the problems, objectives and
possible solutions.

1.2. Resulting Requirements

Due to the nature of this integrated assessment, the
multiple stakeholders involved (most likely from
several domains), software systems that seek to
support this process need to be able to work with
different types of calculation and simulation
models and provide a framework for linking them
together. Integrated assessment systems therefore
mostly are integrated modelling systems.

What is signifying is that these models and the
data involved come from different domains and
use their own language and concepts. This is not a
small problem that needs to be overcome and is the
focus of several research efforts. Using ontology’s
to resolve the issues and harmonize the knowledge
concepts used in data and models is one promising
solution (Wien et al. 2007).

However besides being able to link the models,
raw data must be made accessible for these models
and intermediate and final calculation results
stored. And of course all this must be supported by
intuitive user interfaces. Often it can not be one
and more of them are needed due to the different
roles each of the stakeholders can fulfil (Van der
Wal et al. 2005).

Additionally there is a trend for follow ups once
the integrated assessment system is build. It needs
to be maintained, maybe re-used or connected to
another integrated assessment system.

1.3. Multiple Views

Any software system (and its architecture) can be
viewed from multiple perspectives. In fact this is
needed for its design and implementation, where
owner, designer and builder all look at the same
system from a different point of view (Zachman,
1987).

Even within one of those points of view, e.g. that
of the designer (or architect), there is more then a
single perspective to consider. According to Perry
and Wolf (1992) the distinction between a
processing, data and connections view is rather
important.

Naturally all these views are intertwined. However
looking at the design and construction of an
integrated assessment system we can distinguish
two broad overall approaches, the inside-out and
the outside-in way of thinking.

Integrated assessment systems tend to be studied
and build as part of (large) research projects where
the approach is mostly inside-out. This emphasises
the linking of the models and perhaps the
development (or use) of a framework to support it.
Possibilities of the models and the created links
between then, and the framework’s flexibility are
then put behind a (most of the time rather
technical) user interface (if any).

The same system could also be thought of from an
outside-in perspective. This is more of a User
Centred Design (UCD) (Raskin, 2000) approach
where usability and business requirements drive
the features and technical development. Tell-
tailing would be that the user interface would be
build first, and its usefulness studied with the
intended users (or user types).

The inside-out view serves mostly the modellers
and framework builders, and the outside-in all the
other (end) users that most likely pay (in some way
or another) for the development of the system and
only care to a limited level about the intricate
internal machinery of connected interdisciplinary
models. To them, in essence it is a data intensive
software system that has to provide usable
information at the right moment (timely for the
decision taking process).

Data intensive software systems are well known to
software engineering, for example consider the

799

large banking and insurance systems. These are
commonly called (business) Information Systems,
or Enterprise Applications.

If we regard integrated modelling systems from
this perspective, would it make sens to apply to
them some of the same software design rules – or
software architecture, as used for other enterprise
applications?

2. ENTERPRISE APPLICATION
ARCHITECTURE

2.1. Enterprise Architecture

Enterprise application architecture tells us
something about the design of an information
system. A common mistake is to confuse it with
enterprise architecture, a methodology for
structuring an organization itself. However
enterprise application architecture usually is part of
an enterprise architecture, since information
systems play a large role within organizations. The
enterprise architecture at its strategic level sets
boundaries for any enterprise application
architecture and also provides necessary input
when Information Economics (Van der Wal et al.
2003) are used to decide whether an (enterprise)
application should be build or not.

Due to their size and importance to organizations
careful planning and construction of enterprise
applications is required. Zachman (1987) already
noted that the increased scope of design and levels
of complexity of information systems
implementations is forcing the use of some logical
construct (or architecture) for defining and
controlling the interfaces and the integration of all
the components of the system.

Over time plenty of enterprise systems have been
build, traditional administrative applications come
to mind first. For software design the shared
aspects are studied and formalized as software
architectures so that they can be used as a
framework for satisfying requirements; as basis for
cost estimations and process management; to help
reuse and for (system) analysis purposes.

2.2. Software Architectures

There is not one software architecture, there are
many. Even worse, architecture is relative. What
you think architecture is depends on what you are
doing (Zachman, 1987).

According to Perry and Wolf (1992) we can see a
software architecture as defined by elements, form
and rationale. It is a set of design elements

(processing elements, data elements and
connecting elements) that have a particular form.
This form consists of weighted properties and
relationships. The properties are used to constrain
the choice of architectural elements, and the
relationships constrain their “placement”. The
rationale for various choices made in defining an
architecture is an integral part of it.

Where architecture is a formal arrangement of
architectural elements, architectural style is that
which abstracts elements and formal aspects from
various specific architectures. For example a
distributed style or a multi-processor style. There
is no hard dividing line between architecture and
architectural styles.

Architecture helps in comparing software systems
and reusing components. Possibilities for re-use
are the greatest where specifications for the
components are constrained the least – at the
architectural level. Component re-use at the
implementation level is usually too late because
the implementation elements often embody too
many constraints. Moreover, consideration of re-
use at the architectural level may lead development
down a different (but still valid) solution path.

From the many existing software architectures
there is one that is very often used for enterprise
applications, the layered architecture. “Layered”
applies mostly to the form aspect of the
architecture. It will be the focus of the remainder
of this paper to see how well it can be applied to
systems for integrated assessment.

2.3. Layered Architecture

The principle of dividing a software system into
layers reaches back to the early days of computer
science (Dijkstra, 1968). Originally the idea was
used for the design of operating systems but it
applies equally well to other types of software.

In the layered software architecture the system’s
functionality is usually separated in up to 5 layers
(see Figure 1). Included are a persistence layer for
storage of domain object state, a domain layer for
the domain model and domain logic, a services
layer that controls transactions and contains the
business logic, an application layer for use-case
workflows, syntactic validation and interaction
with the services layer and finally a presentation
layer for the user interfaces.

As a general rule each layer has only dependencies
on those below it, not above, limiting the effect of
changes and increasing maintainability. In a way

800

each layer acts as a client to the tier below and as a
server to the tier above.

All layers can be located on a single computer, or
they can be divided amongst a number of systems.
For example the top one or two layers
(presentation and application) can be filled in with
web-based clients (see 2.4), or the persistence
layer can be implemented by a relational database
running on a different server. This is referred to as
a multi-tier architectural style.

A well known two-tier architecture style is that of
the client-server model used for dumb terminals
connected to large time-sharing mainframe
systems.

2.4. Clients

The client-server model is still in use today, not
only for mainframe systems but also for remote
systems that provide services over the Internet.
Think of e-mail clients using mail storage servers
or applications running inside a web browser.

Confusingly “client” is used for software as well
as hardware. In general clients are classified as "fat
clients", "thin clients", or "hybrid clients".

 Local storage Local processing
Fat Client Yes Yes

Hybrid Client No Yes
Thin Client No No

Table 1: Types of Clients

A fat client (also known as a thick client or rich
client) is a client that performs the bulk of any data
processing operations itself, and does not
necessarily rely on the server.

A thin client is a minimal sort of client, its
functionality limited to the presentation layer. Thin
clients use the resources of the host computer. A
thin client's job is generally just to graphically
display pictures provided by an application server,
which performs the bulk of any required data
processing.

A hybrid client is a mixture of the above two client
models. Similar to a fat client, it processes locally,
but relies on the server for storage data. These are
also known as rich clients and implement both
presentation and application layers.

In designing a multi-tier architecture, there is a
decision to be made as to which parts of the task
should be done on the client, and which on the
server. This decision can crucially affect the cost

of clients and servers, the robustness and security
of the application as a whole, and the flexibility of
the design for later modification, porting and re-
use.

2.5. Design Patterns

The layered software architecture and its multi-tier
style is a common solution to a recurring problem.
It is known as a (architectural) design pattern
(Fowler, 2007). Other design patterns exist, not
only for the architectural level. These patterns
provide a mechanism for providing design advice
in a reference format. A classical well-known book
about design patterns for software systems is that
of the Gang of Four (Gamma et al. 1994).

In the next paragraphs a few design patterns will
be further described because of their significant
relevance to the integrated assessment systems
discussed. In particular these are:

• Data Transfer Objects: A way to optimise
remote method calls.

• Service Layer: To centralize access to
business logic.

• Messaging: For exchange of information
between applications.

• CRUD: A method for data persistence.

These design patterns apply mostly to the design
elements of the architecture.

Data Transfer Objects

A data transfer object (DTO) is an object that
holds all the data required for a call to a remote
interface. Typically this is a call from one layer to
a lower layer, which might not be on the same
system.

Such a call will be expensive (considering time
and other resources required) so the number of
calls should be minimized. Instead of using a large
number of parameters all the data is passed in a
DTO. DTO’s must be serialized to go across a
connection (to another system).

A factory class (or encoder / decoder) can be used
to create DTO’s from domain objects and vice
versa, illustrated by Figure 2. This separates the
required logic from the rest of the system.

801

Figure 2: DTO Factory

Service Layer / Command pattern

Enterprise applications typically require different
kinds of interfaces to the data they store and the
logic they implement: data loaders, user interfaces,
integration gateways, and others. Despite their
different purposes, these interfaces often need
common interactions with the application to access
and manipulate its data and invoke its business
logic. The interactions may be complex, involving
transactions across multiple resources and the
coordination of several responses to an action.
Encoding the logic of the interactions separately in
each interface causes a lot of duplication.

A Service Layer defines an application’s boundary
and its set of available operations from the
perspective of interfacing client layers. It
encapsulates the business logic, controlling
transactions and coordinating responses in the
implementation of its operations.

Several patterns exists to implement a service
layer, e.g. the Session Façade pattern or the
Command pattern illustrated in the following
diagram:

Figure 3: Command Pattern Classes

Messaging

Messaging is an important aspect of distributed
(multi-tier) software architectures. And not only is
it relevant within a single application, it also plays
a role in integrating several applications.

Messaging can be synchronous or asynchronous,
and usually it uses some kind of middleware that
provides the “plumbing” such as data transport,
data transformation and routing. An example of
such middleware is the Message Bus: a combi-
nation of a common data model, command set, and
a infrastructure to allow different systems to
communicate.

Figure 4: Message Bus

Asynchronous messaging is fire-and-forget
information exchange. The sender of the message
does not have to wait for a response from the
recipient because they can rely on the middleware
to ensure delivery (of the request and eventually
the response). Unlike synchronous messaging it
does not rely on direct connections.

Representational State Transfer (REST; the
architectural style of e.g. HTTP; Fielding, 2000)
and web services are examples of asynchronous
messaging and a good strategy for integration of
enterprise applications. They promote a loosely
coupled solution and force the developers to
recognize that working with remote applications is
slower. This also encourages design of
components with high cohesion (local processing)
and low adhesion (remote work).

CRUD pattern

Almost all applications include some form of
persistence storage and have to perform Create,
Retrieve, Update and Delete (CRUD) operations
on it (Kilov, 1990). This is the task of the
persistence layer. However for most software it is
also important for the user interface that should at
least allow these operations on some of the domain
objects.

3. CASE STUDIES

The discussed layered architecture with the multi-
tier style, and the design patterns for DTO, service
layer, messaging and CRUD appear to be useful
for building integrated assessment applications. In
this chapter two of such projects / applications will
be investigated to see how the architectural
elements presented here are applied. The

802

SEAMLESS and SENSOR projects are both long
term (4 years) EU projects, approaching their final
research and development phase.

3.1. SEAMLESS

Project

SEAMLESS (www.seamless-ip.org), a EU-FP6
Integrated Project, aims at generating an integrated
framework of computer models. This framework
can be used for assessment of how future
alternative agricultural and environmental polices
affect sustainable development in Europe.

Software

Within the project the second major prototype of
the software (SEAMLESS-IF) as been delivered
(2007). It completes the transition from a desktop
application (the first prototype) to a multi-tier (web
based) application. This also will be the
architecture for the final version. The following
diagram illustrates this architecture:

Figure 5: SEAMLESS Architecture

In the top line some possible applications are
shown that implement user interfaces, and fill in
the presentation and application layers of the
system. As part of SEAMLESS-IF the Seam:GUI
and Seam:PRES will be developed. These hybrid
clients use REST (at the moment implemented
through stateless servlets) to communicate with
SeamFrame, the server component. SeamFrame
implements the Service Layer. DTO’s and the
command pattern are used for this. An OpenMI
(www.openmi.org) based processing environment
is part of SeamFrame and handles the linked
models.

SeamFrame uses the domain model and classes
generated for it from the SEAMLESS ontology by
the knowledge manager. Through a Hibernate

based object relational mapping the domain model
is stored in databases.

3.2. SENSOR

Project

The EU-FP6 Integrated Project SENSOR
(www.sensor-ip.org) will develop science based
ex-ante Sustainability Impact Assessment Tools
(SIAT) to support decision making on policies
related to multifunctional land use in European
regions.

Sustainability of land use in European regions is a
central point of policy and management decisions
at different levels of governance. Implementation
of European policies designed to promote and
protect multifunctional land use requires the urgent
development of robust tools for the assessment of
different scenarios impacts on the environmental,
social and economic sustainability in European
regions. SENSOR will built, validate and
implement Sustainability Impact Assessment Tools
(SIAT), including databases and spatial reference
frameworks for the analysis of land and human
resources in the context of land use policies for
Europe.

Software

The first major prototype of the SENSOR software
was, like SEAMLESS first prototype and
NitroEurope a single system desktop application
with limited layered architecture.

Architectural design for the second prototype is at
the time of writing still under consideration. First
drafts indicate also a transition to a multi-tier
layered architecture style based on web services.
Main reasons for this are integration with
applications from other SENSOR project partners
(WMS, 3D landscape web services), integration
with SEAMLESS, re-use of SEAMLESS
components and simplified software distribution.

Figure 6: SENSOR Architecture

803

4. CONCLUSION

The layered software architecture found in many
enterprise applications and the design patterns
described here proof to be useful for integrated
assessment systems. They help structuring the
software when looking at it from the outside-in.

From the network perspective both projects show
an increase use of the simpler RESTful web
services over full SOAP implementations. The
reduced complexity improves the maintainability
of the systems and re-usability of its components.

It is also clear that the rationale is an integral part
of the initial architecture. Both the projects
(SEAMLESS and SENSOR) move from a desktop
application to a multi-tier implementation, because
they see added value in that. For possible re-use,
future follow-up projects or integration.
Organizations can use information economics in
taking these decisions, but this leads back to a
need for enterprise (application) architecture.

5. ACKNOWLEDGEMENTS

The sixth framework programme for Research and
Technological Development (FP6) is a collection
of the actions at EU level to fund and promote
research. With a budget of 17.5 billion euros for
the years 2002 - 2006 it represents about 4 to 5
percent of the overall expenditure on RTD in EU
Member States. The main objective of FP6 is to
contribute to the creation of the European
Research Area (ERA) by improving integration
and co-ordination of research in Europe.

6. REFERENCES

Callon, M. (1999), The Role of Lay People in the
Production and Dissemination of Scientific
Knowledge. Science, Technology, and
Society, 4(1), 81-94.

Dijkstra, E.W. (1968), The structure of the 'THE'-
multiprogramming system, Communi-
cations of the ACM 11(5): 341 – 346.

Fielding, R. (2000), Architectural Styles and the
Design of Network-based Software
Architectures. Dissertation. University of
California. http://www.ics.uci.edu/~fielding

Fowler M. (2007), Patterns of Enterprise
Application Architecture. Addision Wesley,
ISBN: 0321513754.

Gamma E., Helm, R., Johnson R. and Vlissides J.
(1994), Design Patterns: elements of

reusable object-oriented software. Addison
Wesley, ISBN: 0201633612.

Kilov, H. (1990), From semantic to object-oriented
data modeling. Proceedings of the First
International Conference on Systems
Integration. 23-26 Apr 1990, Page(s): 385 –
393.

Perry, D.E. and Wolf, A.L. (1992), Foundations
for the study of software architecture. ACM
SIGSOFT Software Engineering Notes,
17:40--52, October 1992.

Pulkkinen, M. (2006), Systematic Management of
Architectural Decisions in Enterprise
Architecture Planning. Four Dimensions
and Three Abstraction Levels.

Raskin, J. (2000), The Humane Interface: New
directions for designing interactive systems.
ACM Press. ISBN: 021379376.

Rotmans, J. and M. B. A. van Asselt (1996),
Integrated assessment: a growing child on
its way to maturity. Climatic Change. 34:
327-36.

Van der Wal, T., Wien, J.J.F., Otjens, A.J. (2003),
The Application of Frameworks increases
the Efficiency of Knowledge Systems.
Proceedings of the 4th EFITA conference on
ICT in agriculture.

Van der Wal, T., Knapen, R., Svensson, M.,
Athanasiadis, I. and Rizzoli, A.E. (2005),
Trade-offs in the design of cross-
disciplinary software systems. In Zerger, A.
and Argent, R.M. (eds) MODSIM 2005
International Congress on Modelling and
Simulation. Modelling and Simulation
Society of Australia and New Zealand,
December 2005 ISBN: 0-9758400-2-9.
Pages 732-737.

Wien, J.J.F., Knapen, M.J.R., Janssen, S., Verweij,
P.J.F.M., Athanasiadis, I.N., Li, H., Villa,
F. and De Zeeuw, C.J. (2007), Using
ontology to harmonize knowledge concepts
in data and models. MODSIM 2007
International Congress on Modelling and
Simulation. Modelling and Simulation
Society of Australia and New Zealand,
December 2007. Submitted.

Zachman, (1987), A Framework for Information
Systems Architecture. IBM Systems
Journal, vol. 26, no. 3, 1987. IBM
Publication G321-5298.

804

