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ABSTRACT

Traditionally, defence analysts adopted what are
known as Lanchester Equations to model and
theorise about combat attrition, such as ELAN,
JANUS, CASTFORME, ModSAF and OneSAF. With
the recognition of the limitations of Lanchester
Equations, the idea that combat can be modelled
as a complex adaptive system has widely been
accepted recently. This has led to the emergence
of a number of multi-agent combat systems, or
agent-based distillation systems (ABDs), such as
ISAAC (Ilachinski 2000), EINSTein (Ilachinski 1999;
Ilachinski 2004), MANA (Lauren and Stephen 2002),
BactoWars (White 2004) and CROCADILE (Barlow
and Easton 2002). These ABDs have facilitated the
analysis and understanding of combat. However, these
ABDs adopted the reactive agent architecture, where
agents only react to their environment; (i.e. there is no
coordination mechanism among the agents). The lack
of planning and coordination limited the capacity of
these ABDs to study group behaviours in combat.

The concept of fitness landscape was first introduced
by Wright (1932) in biology to represent adaptive
evolution as the population navigates on a moun-
tainous surface where the height of a point specifies
how well the corresponding organism is adapted to
its environment. The structure and property of the
fitness landscape play a major role in determining
the success of the search method and the degree
of problem difficulty (Horn and Goldberg 1999;
Kallel et al. 2001; Teo and Abbass 2003; Vassilev
and Miller 2000; Stadler 2002). In this paper we
analyse the fitness landscapes generated by ABD
with coordination mechanism and compare those with
those from ABD without coordination mechanism to
identify if group coordination is a necessity in agent-
based combat modelling.

We adopt version II of WISDOM (the Warfare
Intelligent System for Dynamic Optimisation of
Missions) (Yang et al. 2005; Yang et al. 2006; Yang
et al. 2006b) as a simulation platform. It is built
on a novel multi-agent architecture, called NCMAA

(Network Centric Multi-Agent Architecture) (Yang
et al. 2005) which allows the analyst to easily model
group coordination in multi-agent system. Three
scenarios: Goal Oriented (GOL), Aggressive (AGG)
and Defensive (DEF) are created as in (Yang et al.
2006a). The configurations of the environment, initial
position and the number of agents are the same as
in (Yang et al. 2006a). Each scenario involves
repeating the simulation 100 repeats, each for 500
time steps. The same objective function and fitness
function are adopted as in (Yang et al. 2006a). And
ten different random walks are taken, each of length
10,000 solutions using two fitness functions (average
and normalized). Each stochastic neighbourhood in
the search space was obtained by adding a random
number drawn from a Gaussian distribution with zero
mean and 0.1 standard deviation to each variable in the
genotype. If the value of any personality is out of the
range [−1, 1], the value is truncated. The generated
fitness landscape associated with each scenario is
then analysed by using information analysis approach
proposed by Vassilev, Fogarty, and Miller (2000)
to characterise the search space. The results are
compared with those from WISDOM-I which does
not have a coordination mechanism (Yang, Abbass,
and Sarker 2006a). The difference conforms that
modelling group coordination is crucial in ABDs.

Although the findings are based on an analysis in
the defence domain, it can also be extended and
applied into other domains. For example, in water
resource management, if each end user is modelled
as an agent, coordination among agents in the same
state, same city or same suburb should be modelled
and interactions between states, cities and suburbs can
then be studied.
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1 INTRODUCTION

Simulation has been used to study combat for a very
long time with both human-based and computer-based
systems. Although human-based simulation is more
realistic, it is extremely expensive and does not allow
defence analysts to investigate all aspects of combat.
Recently, complex adaptive systems (CAS) and multi-
agent systems (MAS) have widely been accepted as
two valuable tools in military analysis. The idea
that combat can be modelled as a CAS has widely
been accepted and adopted in the field. This has
led to the emergence of a number of multi-agent
combat systems, or agent-based distillation systems
(ABDs), such as ISAAC (Ilachinski 2000), EINSTein
(Ilachinski 1999; Ilachinski 2004), MANA (Lauren
and Stephen 2002), BactoWars (White 2004) and
CROCADILE (Barlow and Easton 2002). These
ABDs have facilitated the analysis and understanding
of combat. However, these ABDs adopted the
reactive agent architecture, where agents only react
to their environment; (i.e. there is no coordination
mechanism among the agents). The lack of planning
and coordination limited the capacity of these ABDs
to study group behaviours in combat.

In this paper, we adopt version II of WISDOM (the
Warfare Intelligent System for Dynamic Optimisation
of Missions) (WISDOM-II) (Yang et al. 2005; Yang
et al. 2006; Yang et al. 2006b) as a simulation
platform. three scenarios are created and the fitness
landscape associated with each scenario is analysed
to characterise the search space. The results is then
compared with those in (Yang et al. 2006a), which are
generated from version I of WISDOM, which mimics
MANA where there is not group coordination. The
difference shows that the results obtained from ABDs
where there is no coordination among agents can be
misleading and cannot be generalized. In the rest of
the paper, we first briefly review the basic concepts
and methodologies of fitness landscape analysis
adopted in this study followed by a description of the
scenarios and experiments, then the analysis of the
results. Finally conclusions are drawn.

2 METHODOLOGY - FITNESS LANDSCAPE
ANALYSIS

The concept of fitness landscape was first introduced
by Wright (1932) (Wright 1932) in biology to
represent adaptive evolution as the population
navigates on a mountainous surface where the height
of a point specifies how well the corresponding
organism is adapted to its environment. The landscape
is usually perceived as mountains with a number
of local peaks, valleys, and flat areas representing
solutions with equal fitness values. The fitness
landscape is rugged when there are many local peaks

surrounded by deep valleys. Vassilev (Vassilev
et al. 2000) proposed an approach to analyse fitness
landscape, where a fitness landscape is picturised as
a set of basic objects each of which is represented
by a point and the possible outcomes that may be
produced by the corresponding evolutionary operators
at that point. Four measures (Vassilev et al. 2000)
were proposed for characterizing the structure of a
fitness landscape L through analyzing the time series
of fitness values {ft}n

t=1, which are real numbers
taken from the interval I and obtained by a random
walk on this fitness landscape : Information content
H(ε), Partial information content M(ε), Information
stability (ε∗) and density-basin information h(ε).

Information content (H(ε = 0)) approximates the
variety of shapes in the fitness landscape, thus it
evaluates the ruggedness of the landscape path with
respect to the flat area in the path. The modality
encountered during a random walk on a fitness
landscape can be characterized by partial information
content (M(ε = 0)). When the partial information
content is zero, there is no slope in the path and
the landscape is flat. If the partial information
content is one, the landscape path is maximally multi-
modal. The information stability (ε∗) is defined as
the smallest value of ε for which the fitness landscape
becomes flat. The higher the information stability is,
the flatter the fitness landscape. The density-basin
information evaluates the density and the isolation of
the peaks in the landscape. Thus it is an indication
of the variety of flat and smooth areas of the fitness
landscape. Higher density-basin information means a
number of peaks are within a small area while lower
density-basin information means isolated optima.

3 EXPERIMENTAL SETUP

In Yang, Abbass, and Sarker (2006a), we identified
three classes of scenarios: Goal Oriented (GOL)
and Balanced (BAL), Defensive (DEF) and Coward
(COW), and Aggressive (AGG) and Very Aggressive
(VAG) based on the characteristics of the fitness
landscape. In this paper, three strategies, one from
each group, (see Table 1) are chosen for the red team
while the strategy (a vector of personalities) of the
blue team is allowed to vary.

Table 1. Strategies for the red team used in the
experiments

Scenario Friend Enemy Goal
Goal Oriented (GOL) Neutral Neutral Target
Aggressive (AGG) Neutral Attack Neutral
Defensive (DEF) Cluster Neutral Neutral

In order to identify the role of group coordination,
all unique features of WISDOM-II are turned off
except two decision making mechanisms: “strategic”
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Figure 1. The best solution found over time by using the average fitness (on left) and normalized fitness (on right)
for random walk. The order for top to bottom is: GOL, AGG, and DEF

which guides the movement of the whole group,
and “tactical” which guides the movement of each
individual. In WISDOM-II, the decision variables
are represented with a vector of 18 real numbers
representing different characteristics of personalities
(Yang et al. 2005). All personalities (decision
variables) are real numbers in the range of [−1, 1].

The configurations of the environment, initial position
and the number of agents are the same as in (Yang
et al. 2006a). For each scenario, ten different random
walks are taken, each of length 10,000 solutions using
two fitness functions (average and normalized). Each
stochastic neighbourhood in the search space was
obtained by adding a random number drawn from a
Gaussian distribution with zero mean and 0.1 standard
deviation to each variable in the genotype. If the value
of any personality is out of the range [−1, 1], the value
is truncated. A single evaluation of the game involves
repeating the simulation 100 repeats, each for 500
time steps. The same fitness functions (Equation 1
and 2) are adopted as in (Yang et al. 2006a). F2 has a
strong bias for stable solutions.

F1 =
∑

(InitHealthb + Dmgr −Dmgb)
100

(1)

F2 =
F1

1 + standard deviation
(2)

4 RESULTS

Figure 1 depicts the time series of the best solution
found so far for random walk by using the average
fitness and the normalized average fitness. According
to the average fitness, one may see that the best
solution found in the AGG scenario is higher than that
in the GOL scenario or DEF scenario. As discussed
in (Yang et al. 2006a), in the scenario when the red
team would always like to attack its enemy, it may
lose coordination among the red agents, for example,
in the AGG scenario. Therefore the blue team may
easily damage the red team. However, the result from
WISDOM-II shows the normalized average fitness
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Figure 2. The fitness value over time for random walk using average fitness (on left) and normalized average fitness
(on right). The order from top down is: GOL, AGG, DEF, respectively

value of the best solution found in the DEF scenario
is the highest among these three scenarios. The very
low value of the normalized average fitness in the
GOL and AGG scenario suggests that the searching
process in both scenarios involves a large amount of
variations. The stochasticity plays a critical role in
both GOL and AGG scenarios.

Figure 1 also shows that the improvement mostly
occurs at the start of the search stage for both
average fitness and normalized average fitness. The
improvement almost stops for both AGG and GOL
scenarios after 2000 steps. However better solutions
can still be found in the DEF scenario after 2000 steps,
especially when using the normalized average fitness.

When compared with the corresponding table in
(Yang et al. 2006a), similar patterns can be
observed except that the normalized average fitness
is lower in WISDOM-II than in WISDOM-I for the
GOL scenario. This implies that the influence of
the stochasticity is higher in WISDOM-II than in
WISDOM-I.

Figure 2 presents some representative examples of
the time series of fitness value for random walk.
Obviously the fitness landscape is quite rugged for
both average fitness and normalized average fitness.
In this chapter, a good solution is defined as that the
blue damage is less than the red damage. That is, the
fitness value of the average fitness is larger than 200. It
is very hard to find a good solution for both GOL and
DEF scenario. Only few good solutions can be found
and are highly separated by a number of bad solutions.
For the AGG scenario, lots of solutions found are good
solutions.

The low fitness value of the normalized average fitness
in all three scenarios in Figure 2 suggests that all the
solutions found in all three scenarios, especially in
the GOL and DEF scenario, are unstable. This is
consistent with the above findings about the role of
the stochasticity.

When compared with the corresponding figure in
(Yang et al. 2006a), one may easily see the difference.
The signal-worst solutions, as defined in (Yang et al.
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Figure 3. Histogram for random walk by using the average fitness (on left) and normalized fitness (on right). The
order for top to bottom is: GOL, AGG, and DEF

2006a), are lower (and therefore better) in both
average fitness and normalized average fitness for all
three scenarios in WISDOM-II than in WISDOM-I.
This is because WISDOM-II has a strategic decision
making mechanism to coordinate the behaviours of
the agents. Since WISDOM-I does not have this kind
of coordination mechanism, the fitness value of the
worst solution searched is higher in WISDOM-II than
in WISDOM-I.

The tit-for-tat situation also does not appear in
WISDOM-II. As discussed in (Yang et al. 2006a),
the tit-for-tat behaviour is common when the game
is symmetric. However, the game is no longer
symmetric in this study by using WISDOM-II. The
red team can not take advantage of the strategic
decision making mechanism while the blue team can.

Figure 3 is the histogram of the fitness value by two
fitness functions for the random walk. In order to
facilitate the comparison between WISDOM-I and
WISDOM-II, the figures use the same scale as in
(Yang et al. 2006a). For the average fitness function,

the fitness value of most solutions found in the GOL
scenario is between 100 and 200, in the DEF scenario
it is between 120 and 200, and in the AGG scenario
it is between 170 and 245. Only few solutions are
GOOD solutions in either GOL or DEF scenario. For
the GOL and DEF scenario, peaks around the point
with the fitness value of 200 shows that there is a high
probability to find a solution with the fitness value of
200. However in the AGG scenario, there are two
small peaks with the fitness value of 190 and 240
respectively and with similar height. It suggests that it
is more likely to find a solution with the fitness value
of either 190 or 240 than any other values in the AGG
scenario.

For the normalized average fitness function, the fitness
value of most solutions found in all three scenarios
is less than 20. In the GOL scenario, there is a big
peak at the point with the fitness value of 10 and a
small peak around the point with the fitness value of
20. It suggests that the fitness value of the solution
found in the GOL scenario is more likely to be around
10. In the AGG scenario, almost all solutions fall into
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Table 2. The information theoretic measures using both fitness functions for random walk

ε∗ H(ε = 0) M(ε = 0) Exp. # of Optima
Average GOL 105.00 ± 5.27 0.41 ± 0.00 0.59 ± 0.00 2969.40 ± 13.44
Fitness AGG 80.00 ± 0.00 0.41 ± 0.00 0.58 ± 0.01 2887.00 ± 29.40

DEF 89.00 ± 9.94 0.42 ± 0.00 0.59 ± 0.01 2949.60 ± 27.10
Normalized GOL 23.70 ± 1.49 0.41 ± 0.00 0.61 ± 0.01 3048.00 ± 32.19

Average AGG 16.80 ± 1.32 0.41 ± 0.00 0.62 ± 0.00 3081.30 ± 18.99
Fitness DEF 73.00 ± 3.50 0.40 ± 0.00 0.60 ± 0.00 3012.10 ± 15.27

Table 3. Comparison of the fitness landscape generated by WISDOM-I and WISDOM-II

WISDOM-I WISDOM-II
Influence of stochasticity high
Signal-worst high low
Tit-for-Tat common not common
Attractor at the fitness of 200 No
Information content similar in both systems
Partial information content low high
Information stability high low
# of expected optima low high
Progress of search most improvements occurs at the beginning

the fitness range of 10 to 20. That means it is almost
impossible to find a solution with fitness value above
20. However for the DEF scenario, although there is a
big peak between 10 and 20, there are a lot of solutions
found between 20 and 40. There are two peaks in both
GOL and AGG scenarios while there is only one peak
in the DEF scenario. This implies that the effect of
stochasticity is higher in both GOL and AGG scenario
than that in the DEF scenario.

When compared with the corresponding figure in
(Yang et al. 2006a), one can see that only in the
AGG scenario can a good solution be easily found
for both WISDOM-I and WISDOM-II. For both GOL
and DEF scenarios, there is an attractor at the point
with the fitness value of 200 in WISDOM-I while
there is no such attractor in WISDOM-II. Looking at
the normalized average fitness, for both WISDOM-
I and WISDOM-II, there are many solutions found
with fitness value less than 20. This implies that the
solutions in all scenarios are very unstable for both
systems.

Table 2 lists the results of the fitness landscape
analysis using the information content approach. It
is clear that the landscapes using both average fitness
and normalized average fitness are very similar, and
the landscapes of all three scenarios are also very
similar in terms of H(ε = 0), M(ε = 0) and
expected number of optima. This means the degree
of ruggedness and modality of the landscape in these
three landscapes is almost the same. However,
in terms of ε∗, the landscapes are different. The
highest information stability is obtained in the GOL
scenario when using average fitness while the highest
information stability is observed in the DEF scenario

when using normalized average fitness. That is,
the highest difference between two neighbouring
peaks is observed in the GOL scenario using average
fitness while the highest difference between two
neighbour peaks is observed in the DEF scenario
using normalized average fitness. One may also
notice that the information stability is similar between
the landscapes using average fitness and normalized
fitness in the DEF scenario. This suggests that there
are higher peaks in the DEF scenario than that in the
GOL and AGG scenario.

When compared with the corresponding table in
(Yang et al. 2006a), H(ε = 0) is similar between
WISDOM-I and WISDOM-II while M(ε = 0) is
higher in WISDOM-II than that in WISDOM-I. That
is, the ruggedness is similar while the modality is
higher in WISDOM-II. It can also be reflected by
the number of expected optima. ε∗ in WISDOM-I
is much higher than that in WISDOM-II according
to the average fitness. This is caused by the same
reason as the lower value of the fitness signal-worst
in WISDOM-II. Since the fitness value of the worst
solution found is higher in WISDOM-II than that in
WISDOM-I, the difference between two neighbour
solutions is obviously lower in WISDOM-II than
in WISDOM-I. In terms of the normalized average
fitness, it is consistent with the previous finding that
there is no attractor in the GOL and DEF scenarios in
WISDOM-II.

5 CONCLUSION

In this paper, a fitness landscape analysis based
on WISDOM-II is used to study the effect of

675



coordination. Three scenarios requiring different
strategies are chosen for the red team: GOL, AGG and
DEF while the strategy of the blue team is evolved.
All the configurations are the same as in (Yang et al.
2006a).

For all three scenarios, the fitness landscapes are
rugged and multi-modal. The difficulty of the blue
team in finding a good solution (a combination of
the personalities for the blue agents) to win the game
is largely dependent on the strategy the red team
takes. The characteristics of the fitness landscape
change when the strategy of the red team changes.
The degree of difficulty for the blue team to find
a good solution increases in the order of: AGG,
DEF and GOL. All these findings are consistent
with those in (Yang et al. 2006a). However,
there are also many differences between the fitness
landscapes generated by WISDOM-I, which does
not have group coordination and WISDOM-II, which
has group coordination. Table 3 is a summary of
these difference. As discussed above, the strategic
decision making mechanism (group coordination) has
been identified as the major cause leading to some
differences between landscapes. Therefore, modelling
group coordination is crucial in multi-agent systems.
Although the findings are based on an analysis in
the defence domain, it can also be extended and
applied into other domains. For example, in water
resource management, if each end user is modelled
as an agent, coordination among agents in the same
state, same city or same suburb should be modelled
and interactions between states, cities and suburbs can
then be studied.

6 REFERENCES

Barlow, M. and A. Easton (2002). CROCADILE - an
open, extensible agent-based distillation engine.
Information & Security 8(1), 17–51.

Horn, J. and D. E. Goldberg (1999). Genetic algorithm
difficulty and the modality of fitness landscapes. In
L. D. Whitley and M. D. Vose (Eds.), Foundations
of Genetic Algorithms 3, pp. 243–269. San Fran-
cisco, CA: Morgan Kaufmann.

Ilachinski, A. (1999). Enhanced isaac neural sim-
ulation toolkit (EINSTein), an artificial-life labo-
ratory for exploring self-organized emergence in
land combat. Beta-Test User’s Guide CIM 610.10,
Center for Naval Analyses.

Ilachinski, A. (2000). Irreducible semi-autonomous
adaptive combat (ISAAC): An artificial life ap-
proach to land combat. Military Operations Re-
search 5(3), 29–46.

Ilachinski, A. (2004). Artificial War: Multiagent-
Based Simulation of Combat. Singapore: World
Scientific Publishing Company.

Kallel, L., B. Naudts, and C. R. Reeves (2001). Prop-
erties of fitness functions and search landscapes.
In L. Kallel, B. Naudts, and A. Rogers (Eds.), The-
oretical Aspects of Evolutionary Computing, pp.
175– 206. Berlin: Springer-Verlag.

Lauren, M. K. and R. T. Stephen (2002). MANA:
Map-aware non-uniform automata. a new zealand
approach to scenario modelling. Journal of Battle-
field Technology 5(1), 27–31.

Stadler, P. F. (2002). Fitness landscapes. In M. Lässig
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