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Abstract Allometric scaling models are a common tool for describing and quantifying relationships between
biological measurements. Recent years have seen a lively debate on the parameter values for certain relation-
ships. For example, allometric scaling of basel metabolic rate with body mass has historically been found to
follow Kleiber’s law, a 3/4 power relationship, in contrast to the 2/3 power expected from simple geometry. In
this paper we examine some of the issues involved in estimating parameter values for power law models. We
will illustrate some simple techniques that can be used to enrich this area of biological modelling.
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1 INTRODUCTION

Recent years have seen a surge of interest in bio-
logical power laws. A prime example is the mod-
elling of metabolic rate with body mass. Allometric
scaling of basel metabolic rate with body mass has
generally been found to follow Kleiber’s law, a 3/4
power relationship (Kleiber, 1961). This is in con-
trast to the 2/3 power expected from simple geom-
etry, and its wide applicability has been difficult to
explain. West et al. (1999) have shown that a fractal
model of nutrient supply networks can lead to the
3/4 power, while Darveau et al. (2002) use a dis-
tributed control model to explain this and the differ-
ent powers that arise for maximum metabolic rates.
Dodds et al. (2001) take an opposing view, suggest-
ing that there is in fact little evidence to reject the
2/3 power.

The estimation of the parameters in these “laws”,
particularly the exponent, is thus an important topic.
The aim of this paper is to use a case study to com-
pare some simple methods for parameter estimation
and discuss the issues associated with them. Sec-
tion 2 describes the data set and how its observations
were obtained. Section 3 shows estimates using
standard linear regression, while Section 4 presents
the obvious alternative of nonlinear fitting. In Sec-
tion 5 we use the bootstrap to provide confidence
intervals for parameter estimates in both methods,
and this approach is extended to multiple nonlinear
regression in Section 6.

2 DATA

The data used in this paper came from experimental
work by Wilson and Franklin (2000) on the burst
swimming performance of tadpoles. The aim of
the work was to quantify the relationships between
various indicators of swimming performance, such
as maximum velocity and acceleration, with body
characteristics, such as total body length. The ex-
periments were conducted at two different tempera-
tures to see whether water viscosity had an effect on
these relationships.

Tadpoles of the Striped Marsh Frog (Limnodynastes
peronii) were collected in Brisbane and kept in
aquaria at 24◦C for 6 weeks. Individuals with a
range of body lengths were selected for the ex-
periment but all came from a similar developmen-
tal stage, using a standard method for classification
(Gosner, 1960). This helped eliminate the develop-
mental stage as a confounding variable and should
thus provide clearer patterns of association between
the attributes of interest.

Each tadpole’s swimming performance was mea-
sured from 10 swimming sequences. These se-
quences were recorded using a high-speed video
camera and then analyzed frame by frame to de-
termine maximum velocity and acceleration. The
fastest of the 10 sequences was taken as the measure



of maximum performance. The distance moved in
this sequence between the first full tail beat was also
recorded to calculate stride length. The time taken
for the first full tail beat was used to calculate tail-
beat frequency.

This data set is useful for our purposes since obser-
vations were made on a number of variables which
exhibit a range of allometric relationships. The au-
thors Wilson and Franklin (2000) report power re-
lationships involving a number of different expo-
nents, some significant and some not. We will look
at the effect of total body length,L, on the max-
imum velocity, U , the maximum acceleration,A,
and the tail-beat frequency,F . The experiment was
repeated with the water cooled to 10◦C. Researchers
are also interested in how the performance measure-
ments might change as temperature,T , changes.

To give an idea of the scales involved here, Table 1
shows summary statistics for these four variables of
interest. It is clear from these values that tempera-
ture does have an effect on burst swimming perfor-
mance. The question is whether the nature of the
relationship with body length is the same at the dif-
ferent temperatures. This can be answered by com-
paring estimates of the allometric exponentb.

Table 1: Summary statistics for total length (L),
maximum velocity (U ), maximum acceleration (A)
and tail-beat frequency (F )

Units T Mean St Dev

L cm - 2.76 0.6864
U m/s 24◦C 0.48 0.1839

10◦C 0.24 0.0804
A m/s2 24◦C 1.96 0.7414

10◦C 0.54 0.2414
F Hz 24◦C 22 4.116

10◦C 7.8 1.479
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Figure 1: Maximum tadpole velocityU (m/s) at
24◦C and total lengthL (cm)

Figure 1 shows a plot of maximum velocity against
total length for the trials at 24◦C. The bulk of the

relationship appears quite linear but we will see that
there is evidence of an exponent greater than 1.

3 LINEAR REGRESSION

The task of allometric modelling is to estimate the
parametersa and b in the functiony = axb. The
standard approach to this problem is to start by tak-
ing logarithms of both sides, giving

log y = log a + b log x.

This is then a linear relationship betweenlog y and
log x, andlog a andb can be estimated using sim-
ple linear regression. Figure 2 shows a log-log plot
of the relationship between maximum velocity and
total length for the 24◦C trials.
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Figure 2: Log-log plot maximum velocity (U ) by
total length (L)

The least-squares fit the the log-transformed data es-
timatesa = 0.114 andb = 1.40, giving the power
law U = .114L1.40. This equation is plotted with
the original data in Figure 3. The tadpole that was
4.5 cm long is an influential point in this data. How-
ever, its maximum velocity of 1.09 m/s fits the gen-
eral pattern well; removing it only changes the ex-
ponentb from 1.40 to 1.37. Table 2 gives the log-
based estimates of the other parameters of interest
for the two trial temperatures.

Table 2: Log-based estimates of allometric equa-
tions for maximum velocity (U ), maximum acceler-
ation (A) and tail-beat frequency (T )

T â b̂

U 24◦C 0.114 1.40
10◦C 0.061 1.33

A 24◦C 0.524 1.21
10◦C 0.171 1.08

F 24◦C 26.0 -0.200
10◦C 9.59 -0.228



Regression analysis can be used to construct a 95%
confidence interval for the underlying linear rela-
tionship in the log-transformed data. This range can
be inverse transformed to obtain a 95% interval for
the allometric estimates, as shown in Figure 3.
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Figure 3: Allometric fits of maximum velocity (U )
by total length (L) using log-based method with
95% confidence intervals

4 NONLINEAR LEAST-SQUARES

Using log-transformed data is an easy approach to
parameter estimation and also brings with it the the-
ory of linear models. The calculations required can
all be performed by hand, particularly for small data
sets, and so this method has been historically use-
ful. However, with computational assistance it is
straightforward to fit a power function directly. In
Section 5 we will then use the bootstrap to give con-
fidence limits for these estimates.

Here we can use Newton’s method to find the values
of a andb which minimize the sum of the squared
deviations between the curvey = axb and the
observed data. This provides a good comparison
with the linear least-squares method, but other al-
gorithms can also be used to fit non-differentiable
criteria such as minimizing the maximum deviation
or the sum of absolute deviations (Bulmer and Ec-
cleston, 1998). Table 3 gives the resulting estimates
for the variables of interest.

Table 3: Nonlinear estimates of allometric parame-
ters

T â b̂

U 24◦C 0.112 1.43
10◦C 0.072 1.18

A 24◦C 0.548 1.28
10◦C 0.178 1.09

F 24◦C 26.8 -0.216
10◦C 10.3 -0.284

For example, this approach fits the maximum ve-
locity data using the allometric equationU =
0.112L1.426. Figure 4 shows of plot of this fit to
the original data, along with the log-based fit. The
main difference between these two fits is that the
nonlinear estimates are somewhat affected by the
unusually long tadpole. Whereas dropping this ob-
servation for the log-based method resulted in only
a small change inb, here its removal changesb from
1.43 to 1.32. Looking at Figure 2 we see that the
log transform reduces the vertical influence of this
point, whereas the nonlinear fit has to deal with the
increasing scale of variability asL increases.
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Figure 4: Allometric fits of maximum velocity (U )
by total length (L) using log-based method (black)
and nonlinear method (grey)

5 BOOTSTRAP ESTIMATION

The advantage of linear regression is that its associ-
ated model can be used routinely to give confidence
bounds for response estimates. However, these are
based on certain assumptions, such as the normality
and constant scale of variability in the response. In
this section we use the bootstrap (Efron and Tibshi-
rani, 1993) to provide nonparametric bounds for the
parametersa andb, and for estimates based on the
resulting allometric equation.

Bootstrap estimates were computed by taking a
random sample, with replacement, of observations
from the data set. The allometric parameters were
then estimated, using either the log-based or non-
linear method. This process was then repeated 200
times to give 200 estimates for each parameter. The
middle 95% of the range of estimates was then taken
as a 95% bootstrap confidence interval. Table 4
shows the results for the variables on interest using
log-based fitting, while Table 5 shows the results us-
ing the nonlinear method.



Table 4: 95% bootstrap intervals based on 200 esti-
mates using log-based fitting

T a b

U 24◦C (0.090, 0.145) (1.18, 1.61)
10◦C (0.047, 0.088) (1.03, 1.59)

A 24◦C (0.431, 0.722) (0.92, 1.53)
10◦C (0.103, 0.257) (0.62, 1.63)

F 24◦C (19.2, 33.2) (-0.447, 0.064)
10◦C (6.87, 13.2) (-0.519, 0.059)

Table 5: 95% bootstrap intervals based on 200 esti-
mates using nonlinear fitting

T a b

U 24◦C (0.092, 0.153) (1.11, 1.61)
10◦C (0.059, 0.089) (1.00, 1.35)

A 24◦C (0.383, 0.717) (0.99, 1.61)
10◦C (0.099, 0.261) (0.69, 1.65)

F 24◦C (20.4, 34.7) (-0.469, 0.025)
10◦C (7.30, 15.1) (-0.643, 0.056)

The bootstrap distributions of the maximum veloc-
ity exponent at 24◦C and 10◦C can be seen in Fig-
ure 5. It seems that the exponents for the two re-
lationships are quite similar, as noted from stan-
dard statistical procedures by Wilson and Franklin
(2000).
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Figure 5: Distribution of log-based bootstrap es-
timates of maximum velocity exponentb at 10◦C
(black) and 24◦C (grey)

We saw in Figure 4 that the nonlinear method gave
quite similar results to the standard approach of fit-
ting a straight line to log-transformed data. How-
ever, Figure 6 shows that the bootstrap distributions
of the exponent have quite different locations to
those seen in Figure 5. The difference between these
can be attributed to the influential observation. Ex-
cluding this tadpole results in distributions that are
very similar.
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Figure 6: Nonlinear bootstrap distributions of max-
imum velocity exponent at 10◦C (black) and 24◦C
(grey)

Bootstrap resampling can also be used to quantify
the variability in the resulting estimates made from
the model. This role is analogous to the calculation
of 95% confidence interval bands in Figure 3.
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Figure 7: Nonlinear fit of maximum velocity with
95% bootstrap intervals

It is again useful to look at the bootstrap distribu-
tions in more detail. Figure 7 is essentially showing
a series of 95% bootstrap intervals which have had
their end points joined together into the two bands.
Figure 8 shows the bootstrap distributions behind
7 of these intervals. Nonparametric density curves
were computed for each distribution using a FFT
with a Gaussian kernel (Silvermann, 1986).
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U

Figure 8: Bootstrap distributions of estimated max-
imum velocity



The following figures summarize the two fits to
some of the other variables. Each includes 95%
bootstrap intervals computed from 200 resamples.
Figure 9 gives a comparison for maximum velocity
in the trials at 10◦C. Figures 10 and 11 gives simi-
lar comparisons for maximum acceleration and tail-
beat frequency, respectively. Note that the model
for tail-beat frequency has a negative exponent, al-
though the results in Tables 4 and 5 suggest that
there is no significant association with total length.
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Figure 9: Allometric fits of maximum velocity
(U ) at 10◦C using log-based (solid) and nonlinear
(dashed) methods with 95% bootstrap intervals
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Figure 10: Allometric fits of maximum acceleration
(A) at 10◦C using log-based (solid) and nonlinear
(dashed) methods with 95% bootstrap intervals
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Figure 11: Allometric fits of tail-beat frequency
(F ) at 10◦C using log-based (solid) and nonlinear
(dashed) methods with 95% bootstrap intervals

6 MULTIPLE REGRESSION

The linear fit to the log-transformed data showed
no evidence of a difference in the maximum veloc-
ity exponentb between the two temperatures. As-
suming a common exponent, Wilson and Franklin
(2000) estimated the effect of temperature on maxi-
mum velocity by fitting the function

log U = log a + b log L + cT,

whereT is the temperature. This leads to slightly
odd looking power law (see below) but it is linear
in the three parameters,a, b, andc. These can be
estimated by least-squares, as for the simple linear
case. Here we obtain the fit

log U = −3.34 + 1.36 log L + 0.05T.

WhenT = 10 this givesU = .058L1.36 and when
T = 24 we haveU = .118L1.36.

Regression theory can be used to compute confi-
dence intervals for these three parameter estimates,
as given in Table 6.

Table 6: 95% confidence intervals for multiple re-
gression parameters in maximum velocity model

Parameter 95% Interval
a (0.030, 0.043)
b (1.21, 1.52)
c (0.045, 0.056)

Inverse transforming the above linear function
above gives the power function

U = aecT Lb.

As in Section 4, we can estimatea, b, andc by di-
rectly minimizing the sum of squared deviations be-
tween this function and the observed values. This
is a more complicated optimization problem than
before. The Levenberg-Marquardt method (Mar-
quardt, 1963) for nonlinear fitting was found to
work well for a range of data sets, as is needed by
bootstrap estimation. The parameter estimates ob-
tained give the function

U = .034e.052T L1.38.

When T = 10 this is U = .057L1.38 and when
T = 24 we haveU = .118L1.38. These are es-
sentially the same values as those obtained by stan-
dard multiple regression. Table 7 gives 95% boot-
strap confidence intervals from 200 resamples, also
in good agreement to those in Table 6.



Table 7: 95% bootstrap intervals for nonlinear max-
imum velocity model

Parameter 95% Interval
a (0.027, 0.045)
b (1.15, 1.56)
c (0.047, 0.057)

However, we saw earlier from the bootstrap distri-
butions that the assumption of a common nonlin-
ear exponent might not be plausible in this case.
We could extend the model by adding an interaction
term to give

U = aecT Lb+dT ,

whered is a new parameter which captures the ef-
fect of temperature on the exponent. The nonlinear
least-squares fit gives

U = .056e.028T L.94+.02T .

When T = 10 this simplifies toU = .074L1.14

and whenT = 24 we haveU = .110L1.42. Boot-
strap intervals for the four parameters are given in
Table 8. Since 0 is just within the interval ford, we
would conclude that there is only weak evidence, if
any, of a difference in exponent between the tem-
peratures.

Table 8: 95% bootstrap intervals for extended non-
linear maximum velocity model

Parameter 95% Interval
a (0.033, 0.085)
b (0.54, 1.41)
c (0.004, 0.055)
d (-0.004, 0.044)

7 CONCLUSIONS

The allometric modelling presented in biological
studies often relies entirely on the use of least-
squares fitting to log-transformed data and associ-
ated statistical procedures, such as regression and
analysis of variance. In this paper we have taken
an example of biological research and given an
overview of other simple possibilities for analysis.

Computationally intensive methods, such as nonlin-
ear fitting and bootstrap resampling, can be used to
enrich standard statistical modelling. We have seen
that these methods can simply validate existing re-
sults or can show further details not apparent in the

initial analysis. In particular, robust methods like
the bootstrap are useful for validating results when
it is not clear that the standard model assumptions
hold.

As illustrated by Darveau et al. (2002), there are
also important scientific issues in parameter esti-
mation that precede this analysis. Richer mod-
elling tools can feed back into the science by giving
greater insight into the results.
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