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Abstract:  Estimating average environmental pollution concentrations and it=s variance is a fairly straight 
forward task in stratified random sampling. A more challenging concept is the introduction of the cost factor 
into this environmental model. Traditional statistical techniques have incorporated costs from sampling 
within a stratum as well as stratum weights to determine the stratum size and overall required sample size. 
Information in the form of informative prior distributions to determine a more coherent  variance in the 
system yield a more precise Bayesian approach to the sample size and cost calculations. This approach results 
in a more efficient sampling strategy in terms of cost when considering a pre specified margin of error for the 
sampling mean as well as the more complicated situation of correlation among the strata samples. 
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1.  INTRODUCTION 

The Traditional statistical approaches to 
calculating overall and stratum sample sizes in a 
stratified random sample are fairly straight 
forward. The procedure is somewhat complicated 
with the incorporation of cost as well as the 
possibility of correlation among the stratum 
samples. Applications of such approaches 
employing several monitoring strategies are well 
known (Thornton et. al, 1982, Nelson and Ward, 
1981, Reckhow and Chapra, 1983, and Gilbert, 
1987).  Our focus here is to consider a pond water 
environment in which the strata are basically 
depth levels. Weighting of the strata as well as the 
overall variance of the sample mean are the main 
components in our derived statistics to determine 
sample size within the stratum. The three 
situations considered are that of pre specified 
margin of error, pre specified fixed cost and 
correlation among the strata samples. Cost 
efficiency is seen for most situations with the 
introduction of Bayesian methodology   (Dayal 
and Dickey, 1976, Bartolucci and Dickey, 1977, 
Birch and Bartolucci, 1983 and Bartolucci et. al., 
1998).  The thrust of the Bayesian approach is 

through the derivation of the posterior estimate of 
the variance derived from coherent inference on a 
normal variance in the Behren=s Fisher context 
(Dayal and Dickey, 1976, Bartolucci et. al.,   
1998). Comparisons of the traditional or classical 
and Bayesian methodologies are presented using 
summary data from determining the phosphorous 
concentration in a pond water sampling 
environment. 

 

 

2.  TRADITIONAL SETUP 

 

Let N=total number of population units in the 
target population. Nh   is the number of population 
units within each of the h stratum, h=1,......L. 

 

Clearly N=∑ .  With reference to the sample, 

n=total number of sampling units in the target 
sample.  Likewise as above, n= n
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as Wh=Nh/N. The mean, µ, of the population of N 
units is:  

where for N64, 
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and z1-α/2 is the usual100(1-α/2) critical value of 
the standard normal distribution.  Thus the 
optimum nh for the hth stratum is 
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where µh is the mean of the h stratum and is 
estimated by 
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ii)  Pre Specified Fixed Cost 
where xhi= ith observation in stratum, h. An 
unbiased estimate of u is   

We define the overall cost of the sampling as 
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1Let Nh/N = nh/n in all strata, then  
where ch is the cost per population unit in the hth 
stratum and co is the fixed overhead cost.  This is 
a standard cost representation.  Thus the optimum 
n can be derived as (Aczel,1999), 
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 We define Var(mh )= 
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variance of the h stratum. We estimate the stratum 
variance by  
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As above the optimum nh per stratum is 
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It will be important to note the robustness of this 
sample mean variance in the Bayesian context. One can examine equation (10) in terms of its 

sensitivity to changes in the PMOE. Let Wh=nh/n. 
 

 
 

Then (10) can be rewritten as  
3. COMPUTING THE OPTIMUM n 
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We give a brief overview of three methods to 
compute the optimum n. 

If we assume unequal PMOE, dh , for sampling 
within stratum then we can write nh=(Z1-α/2sh/dh).  
(See Cochran, 1977, Aczel, 1999).  Thus equation 
(12) can now be examined with respect to 
sensitivity to changes in dh.  

 

i) Pre Specified Margin of Error (PMOE) 

 

Letting d=|mst-µ|, we denote d as the pre specified 
margin of error, (Gilbert, 1987). The value d is 
such that  

 

iii)  Correlation among Depth Stratum 
  

                                 P(|mst-µ|∃d)=α                   (6) Let ρc = average correlation among all possible 
lags in the depth sampling environment.  For 
example if L is the number of strata or depths and 
ρl=the correlation of the lth lag, then  

for small α.  The optimum n (Cochran, 1977) is 
thus  
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where B=υ+τ. If nh is the number to be sampled in each of the L 
strata or  nh = stratum size, then  

Thus substituting
h

2ε  for  in (7), (10), (12), and 

(14) yields the Bayesian estimates of n and n
hs2

h.   
Thus in the following section we apply the 
Bayesian analysis to these expressions to 
demonstrate and determine the efficiency of these 
expressions in terms of the sample size 
requirements and cost of sampling. 
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4. BAYESIAN CONSIDERATIONS 

 
 

Examining equations (7), (10), (12) and (14) we 
see that they all involve the expression for the 
stratum variance, s2

h. We reevaluated these 
expressions adding a prior structure to the 
variance (Dayal and Dickey, 1977, Bartolucci et. 
al. 1998) and then estimating the posterior 
expression for the variance, normal σ2.  We 
assumed an underlying normal distribution with 
both mean, µ, and variance, σ2 unknown.  In this 
context we define the likelihood function for n 
observations: 

 

5. EXAMPLE 

 

We wish to estimate the average phosphorous 
concentration (µg/100 ml) in pond water.  The 
concentration of 100 ml aliquot from each 1 liter 
sample will be measured.  The statistics for a 
classical representation of the data using the pre 
specified margin of error (PMOE) are given in 
Table 1.  There are 5 depth strata to the pond in 
which N=total number of 100 ml water samples in 
the pond.  Nh is the number of aliqots in stratum 
h. The weights, number samples from each strata, 
mean and variance of each strata are given as well 
all derived from our previous formulations above.  
We have assigned costs to each strata.  For the 
sake of simplicity and without loss of generality 
we have reduced the costs to integer units.  The 
cost for sampling stratum 1 and 2 are each 1.  The 
costs assigned to strata 3, 4, and 5 are 2, 2, and 3 
respectively - the assumption being that costs 
increase as the depth increases.  Thus the overall 
cost of sampling is 74 units.  Using the PMOE 
approach in Table 2 demonstrates the Bayesian 
results using empirical prior sampling information 
and incorporating that into the variance 
calculation overall.  One sees that for realistic 
prior assignments of  υ, τ and  g in (13) that one 
realizes a reduction in assigned number per strata 
overall as well as a cost reduction.  In Table 3 
using  pre specified overall cost did not yield any 
savings using the classical (top row) vs. the 
Bayesian approach (bottom row) this makes sense 
somewhat in that the cost is already fixed.  
However, we did examine these results using (12) 
in which we varied the PMOE , dh

 , to determine 
the effect on cost using sensitivity changes and 
the classical and Bayesian results remained fairly 
equal.   Table 4 summarizes the data results 
introducing correlation among the strata as per 
(14).  The average correlation is in the first 
column.  One can see that as you increase the 
average correlation , (13), then the required 
number sampled within each strata will increase, 
but at a slower rate in the Bayesian context. 
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for v=n-1, nm=x1+x2+........+xn,   vs2=(x1-m)2 + 
(x2-m)2 +............(xn-m)2 and  ∝  denotes a 
proportional relationship. Consider the t-density,   
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The prior for µ is 
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for υo64. 

 

The prior for σ2 is  

               p(σ2) τg∝ 2/ 2  ,   τ>0, g>0             (18) 
τ

χ

Where  is chi square on τ degrees of freedom.  

Thus considering expressions (15), (17), and (18) 
the posterior variance is 

τ
χ 2

                             ε2=(υs2+τg2)/B                     (19) 



Overall it appears that: Compared to the classical 
sampling analysis for the pre specified margin of 
error approach as well as the correlational 
approach, the Bayesian analysis resulted in a 
reduction in required samples thus lowering the 
cost, especially when realistic (empirical) prior 
hyperparameters are utilized. Also there was no 
serious impact on the posterior standard error of 
the estimates of the mean concentration. 
However, there were no real differences between 
the classical and Bayesian approaches in the pre 
specified fixed cost analysis. Given the current 
computational tools the Bayesian calculations 
proved to be fairly straight forward. Also given 
the current availability of databases, future 
Bayesian approaches to environmental sampling 
should be given serious consideration especially 
where costs are concerned. 
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Table 1.   Data for stratified random sampling to estimate samples per strata (PMOE) 

Classical Approach (υ =1, τ =0, g =1)  s2(mst) = 0.0140, Cost=74 

 

 

 
 Strata 

 
 Nh 

 
 Wh  nh  mh 

 
 s2

h 
 
     1    

 
 4.25M 

 
 0.266 

 
 10 

 
 1.67 

 
 0.4376 

 
 2 

 
 3.96M 

 
 0.248 

 
 9 

 
 2.83 

 
 0.4228 

 
 3 

 
 3.23M 

 
 0.202 

 
 8 

 
 3.59 

 
 0.5339 

 
 4 

 
 2.85M 

 
 0.178 

 
 9 

 
 4.23 

 
      0.7222 

 
 5 

 
 1.70M 

 
 0.106 

 
 7 

 
 5.31 

 
      1.3920 

 
 Total 

 
15.99M 

 
 1.000 

 
 43 

 
 - 

 
 - 

 

 

Table 2.  Bayesian Results (PMOE) 

 
 
 (υ,τ,g) 

 
 n1 

 
 n2 

 
 n3 

 
 n4 

 
 n5 

 
 Total 

 
 s2(mst) 

 
 Cost 

 
35,1,0.5 

 
 9 

 
 9 

 
 8 

 
 8 

 
 7 

 
 41 

 
0.0140 

 
 71 

 
35,2,0.5 

 
 9 

 
 8 

 
 8 

 
 8 

 
 7 

 
 40 

 
0.0141 

 
 70 

 
20,1,1.0 

 
 9 

 
 8 

 
 8 

 
 8 

 
 6 

 
 39 

 
0.0138 

 
 67 

 
40,35,0.2 

 
 5 

 
 5 

 
 4 

 
 4 

 
 4 

 
 22 

 
0.0143 

 
 38 

 
40,35,0.5 

 
 7 

 
 7 

 
 6 

 
 6 

 
 4 

 
 30 

 
0.0195 

 
 42 

 

 

Table 3.  Pre specified fixed cost 

 
 
C-c0 

 
 υ 

 
 τ 

 
 g 

 
 n 

 
 n1 

 
 n2 

 
 n3 

 
 n4 

 
 n5 

 
 50 

 
 - 

 
 - 

 
 - 

 
 31 

 
 7 

 
 7 

 
 6 

 
 6 

 
 5+ 

 
 50 

 
 40 

 
 35 

 
 0.12 

 
 31 

 
 7 

 
 7 

 
 6 

 
 6 

 
 5 

 

 



Table 4.  Example Using the Correlation Structure,  ρc. 

 
 
prior (υ,τ,g) 

 
 Classical  

 
 (35,1,0.5) 

 
 (20,1,0.1) 

 
  (40,35,.2)   

 
 ρc 

 
 nh      Cost 

 
nh      Cost 

 
nh      Cost 

 
nh      Cost 

 
 0.05 

 
10      90 

 
10      90 

 
10     90 

 
05     45     

 
 0.10 

 
12     108  

 
12     108 

 
11     108 

 
06     48 

 
 0.15 

 
14     126 

 
13     117 

 
13     117 

 
07     63 

 
 0.25 

 
17     153 

 
16     144 

 
16     144 

 
09     81 

 
 0.35 

 
21     189 

 
20     180 

 
19     171  

 
11     99 

 
 0.45 

 
24     216 

 
23     207 

 
22     176 

 
12    108  

 
 0.55 

 
28     252 

 
26     234  

 
25     225 

 
14    126   

 

 

 

 

 

 


