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Abstract: By a theorem due to Sklar, a multivariate distribution can be represented in terms of its
underlying margins by binding them together using a copula function. By exploiting this represen-
tation, the “copula approach” to statistical modelling proceeds by specifying distributions for each
margin and a copula function. In this paper, a number of families of copula functions are given, with
attention focusing on those that fall within the Archimedean class. Members of this class of copulas
are rich in various distributional attributes that are desired when modelling. The paper then pro-
ceeds by applying the copula approach to construct statistical models for the Roy model of switching
regimes. When models are constructed using copulas from the Archimedean class, the resulting ex-
pressions for the log-likelihood and score facilitate maximum likelihood estimation. The literature on
sample selection models is almost exclusively based on multivariate normal specifications. The copula
approach permits modelling based on multivariate non-normality.

Keywords: Roy model of switching regimes; Sample selection; Copula; Sklar’s theorem; Copula
representation; Copula approach; Families of copulas; Archimedean.

1. INTRODUCTION

This article sets out to demonstrate the applica-
tion of the “copula approach” to model specifi-
cation in the context of the extended or utility-
based Roy model of switching regimes (e.g. see
Vijverberg (1993)). Over the last thirty to forty
years, a large volume of literature on sample se-
lection models, including the Roy model, has
been built up in economics and econometrics;
see, for example, Vella (1998) for a recent sur-
vey. However, the vast majority of analyses
have depended on the statistical assumption of
multivariate normality. Although ubiquitous
throughout all facets of econometric modelling,
the adequacy of inference based on the assump-
tion of multivariate normality has often been
questioned, and often found to be wanting in
the context of sample selection models. Unfor-
tunately, relaxing multivariate normality by re-
placing it with an alternative multivariate dis-
tribution has received relatively little attention.
In the main, this was because of the additional
computational burdens that were expected to
arise. Instead, the literature developed by fo-
cusing on semi-parametric and non-parametric

versions of these models, where modelling im-
provements might be brought about by the use
of flexible functions of parameters and the co-
variates of the random variables. The aim of
this article is to return to the issue of replac-
ing multivariate normality with an alternative
multivariate distribution (or, more precisely, a
class of multivariate distributions). The adverse
computational consequences are, if anything,
mitigated under the proposed method of model
specification: the so-called copula approach.

The copula approach is a modelling strategy
whereby a joint distribution is induced by spec-
ifying marginal distributions, and a function
that binds them together: the copula. The
copula parameterises the dependence structure
of the random variables, thereby capturing all
of the joint behaviour. This then frees the
location and scale structures to be parame-
terised through the margins, one at a time.
Most importantly, the copula approach permits
specifications other than multivariate normal-
ity, although it does retain that distribution
as a special case. Examples of its use in eco-
nomics and econometrics includes Bouyé et al
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(2000), Patton (2001) and Dardanoni and Lam-
bert (2001). Perhaps the most accessible con-
tribution to date is a series of five studies re-
ported in Joe (1997, Ch.11) that estimate cop-
ula models for various multivariate and longitu-
dinal data sets. The specification method sug-
gested by Lee (1983) for modelling self-selection
provides an example of the copula approach;
Smith (2003) provides extensive details.

As all multivariate distributions have a copula
representation (per Sklar’s Theorem), it might
seem that the copula approach is nothing more
than the reworking of an old theme. Might the
advantage derived by the copula approach sim-
ply be that econometricians are better practiced
at modelling univariate distributions than they
are multivariate ones? The ideal, of course, is
to choose the right statistical model a priori,
and hence the right copula. However, when
working with empirical data it is rare to have
such insight. The specification problem is fur-
ther compounded in most sample selection mod-
els due to latency of the underlying utilitarian
variables, and the presence of covariates. When
faced with such difficulties, it is advantageous
to have at hand a range of potential candidate
models from which a preferred fit can emerge.
Under a copula approach, families of models can
be constructed according to classes of copula
functions: of particular interest here is the class
of Archimedean copulas. Archimedean copulas
can display a range of distributional behaviour
such as joint asymmetry, excess joint skewness
and joint kurtosis. When applied in the spec-
ification of selectivity models, relatively simple
formulae for likelihood and score functions re-
sult, thereby facilitating estimation by maxi-
mum likelihood (ML hereafter).

2. COPULA THEORY

2.1. Sklar’s Theorem

With a view to the main result that is embod-
ied in Sklar’s theorem, the copula for an n-
dimensional multivariate distribution function
F with given one-dimensional marginal distri-
bution functions F1, ..., Fn, is the function that
binds together the margins in such manner as
to form precisely the joint distribution function.
The action performed by the copula implies that
it serves to represent the dependence charac-
teristics that associate each of the underlying
random variables, irrespective of the form the
margins take. To date, most uses of copula
theory have concentrated on the study of the

association between random variables and, to a
slightly lesser extent, the establishment of limit-
ing (Fréchet) bounds on distributions. For these
details see Dall’Aglio (1991), Schweizer (1991)
and Nelsen (1999).

The main result of interest here is a theorem
due to Sklar (given below for the bivariate case).
Sklar’s theorem shows that there exists a copula
function which acts to represent the joint cu-
mulative distribution function (cdf hereafter) of
random variables in terms of its underlying one-
dimensional margins. Let the margins F1(x1)
and F2(x2) denote, respectively, the cdf of the
random variables X1 and X2; that is, Fi(xi) =
Pr(Xi ≤ xi), where xi ∈ IR (i = 1, 2; IR denotes
the extended real line IR∪ {−∞,+∞}), and let
F (x1, x2) = Pr(X1 ≤ x1,X2 ≤ x2) denote the
joint cdf. Then, for some two-place function C,
the joint cdf has the representation (e.g. Nelsen,
1999, Theorem 2.3.3)

F (x1, x2) = C(F1(x1), F2(x2)) (1)

where C is termed the copula function. The
copula representation is a re-formulation of the
joint cdf such that it separates the margins F1
and F2 from their interaction. So while the cop-
ula function takes as arguments the margins F1
and F2 in the representation (1), the function
itself is independent of those margins. The cop-
ula serves to capture the dependence character-
istics that exist between the random variables
X1 and X2. Nelsen (1999, Section 2.3) provides
a proof of (1) that follows the method given
in Schweizer and Sklar (1983, Ch.6) where the
multivariate version of the theorem is proved.

If F1 and F2 are continuous functions, then (1)
is unique for any (x1, x2) ∈ IR
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. On the other

hand, if either or both X1 and X2 are discrete
random variables that take values on some lat-
tice of points Ω, then (1) is unique provided
(x1, x2) ∈ Ω, but not elsewhere; this does not
cause any great harm, for regions outside of the
supporting lattice are rarely of interest. Implicit
in (1) is C(u, v) = 0 if either or both u and v are
zero, and C(1, v) = v and C(u, 1) = u, where
the pair (u, v) ∈ II2 (II denotes the closed inter-
val [0, 1] of the real line).

2.2. Examples of Copulas

Three bivariate copulas of some importance
are, respectively, the Product copula Π = uv,
the Fréchet lower bound for (bivariate) copulas
W = max(u + v − 1, 0) and the Fréchet up-
per bound for copulas M = min(u, v), where



(u, v) ∈ II2. Π corresponds to stochastic inde-
pendence; that is, if two random variables are
independent, then Π is the copula of their joint
distribution. The closed interval [W,M ] has
the property of containing all bivariate copulas;
namely, for all copulas C on II2, W ≤ C ≤ M.
These bounds - the Fréchet bounds for copulas
- were obtained by Hoeffding.

For the purposes of statistical modelling it is
desirable to parameterise the copula function so
that data can be used to shed light on the extent
of association between the random variables of
interest. Let θ denote the association parame-
ter of the bivariate distribution (possibly vector
valued) and write the parameterised copula as
per

Cθ(u, v)

where (u, v) ∈ II2. This notation denotes a fam-
ily of copulas, where the members are indexed
according to values assigned to θ. Provided that
the margins F1 and F2 do not depend on θ, the
representation (1) holds for all members of a
given family; this assumption is imposed here-
after. There are numerous examples of fami-
lies of bivariate copulas given in Joe (1997) and
Nelsen (1999). For example, the family of Bi-
variate Normal copulas is given by

Cθ(u, v) = Φ2(Φ
−1(u),Φ−1(v); θ) (2)

where −1 ≤ θ ≤ 1, here, Φ(·) denotes the
cdf of a standard normal variate, and Φ2(·, ·; θ)
the cdf of a bivariate standard normal variate
with Pearson’s product moment correlation co-
efficient θ. Note that setting u = Φ(x1) and
v = Φ(x2) in (2) recovers the bivariate standard
normal cdf. A second example is the Farlie-
Gumbel-Morgenstern family of copulas (FGM
hereafter):

Cθ(u, v) = uv + θuv(1− u)(1− v) (3)

where −1 ≤ θ ≤ 1. The FGM family can be
useful in analytic work due to its mathematical
simplicity.

The ability of a given family of copulas to rep-
resent differing degrees of association can be
examined in terms of the extent to which it
covers the interval between the lower and up-
per Fréchet bounds for copulas [W,M ]. This is
generally determined at the extremes of the pa-
rameter space for θ. For example, for the Bi-
variate Normal family (2), C−1(u, v) = W and
C1(u, v) =M, so that this family has full cover-
age. Furthermore, the family of Bivariate Nor-
mal copulas is said to be comprehensive, where

this nomenclature means that a given family in-
cludes W, M and Π amongst its members, or as
limiting cases. Comprehensive families of copu-
las therefore parameterise the full range of asso-
ciation and, by (1), this property holds irrespec-
tive of the form of the margins. However, there
are typically many other features of the data
that are of interest, and these may not neces-
sarily be well-modelled if attention is restricted
to using comprehensive families of copulas.

There are many copula families that are not
comprehensive, one example is the FGM fam-
ily (3): it includes Π, but not W and M. For
such families it is desirable to assess coverage
in terms of measures of association. The most
familiar measure is Pearson’s product moment
correlation coefficient, but due to its lack of in-
variance with respect to the margins, the prop-
erties of this measure are dominated by others
such as Kendall’s τ (Joe (1997, Section 2.1.9)).
τ is a concordance measure that is bounded be-
tween [−1, 1] : equal to −1 at W, 1 at M and
0 for Π. Importantly, it is invariant to strictly
increasing transformations of the variables, im-
plying that it depends only on the copula of the
joint distribution, and not the margins. For in-
dependent pairs (X1i,X2i), i = 1, 2, that are
copies of (X1,X2), τ is defined as

τ = Pr((X11 −X12)(X21 −X22) > 0)

− Pr((X11 −X12)(X21 −X22) < 0)

Should (X1,X2) be a pair of continuous random
variables, with the copula of the joint distribu-
tion given by C, then τ may be simplified:

τ = 4

Z Z
II2
C(u, v)dC(u, v)− 1

= 4E[C(U, V )]− 1

Here, U and V denote standard uniform random
variables with joint cdf C. For the FGM family
of copulas it can be shown that τ = 2θ/9; clearly
−2/9 ≤ τ ≤ 2/9 for this family.

2.3. The Archimedean Class

Of particular importance in this article is the
class of Archimedean copulas. This class en-
compasses many families of copulas, a num-
ber of which can be of use in statistical mod-
elling. The mathematical properties of the
Archimedean class are captured by an additive
generator function ϕ : II → [0,∞], which is a
continuous, convex decreasing function (ϕ0(t) <
0 and ϕ00(t) > 0, for 0 < t < 1), with terminal



ϕ(1) = 0. ϕ may also be indexed by the associ-
ation parameter θ, thus an entire family of cop-
ulas can be Archimedean. Any function ϕ that
satisfies these conditions can be used to generate
a valid bivariate cdf. The advantage in mathe-
matics of working with Archimedean copulas is
the achievement of reduction in dimensionality:
while the copula of an n-variate distribution is
an n-place function, the generator ϕ only ever
takes a single argument. In econometrics, this
property of Archimedean copulas has the poten-
tial to be of use in models of limited dependent
variables, especially those requiring some prob-
abilistic enumeration on high-dimensional sub-
spaces, for evaluation then becomes essentially
a univariate task.

In the bivariate case, the means by which ϕ gen-
erates the copula is according to:

ϕ (C(u, v)) = ϕ(u) + ϕ(v) (4)

Note that the generator is unique up to a scal-
ing constant. Particular examples are ϕ(t) =
− log t and ϕ(t) =

¡
t−θ − 1¢ /θ, which are, re-

spectively, the generators of the Product copula
Π and the Clayton family of copulas:

Cθ(u, v) =
¡
u−θ + v−θ − 1¢−1/θ (5)

where θ ≥ 0. Note that neither the Bivariate
Normal family nor the FGM families are mem-
bers of the Archimedean class. Nelsen (1999,
Table 4.1) lists numerous single-parameter fam-
ilies of Archimedean copulas.

If the terminal ϕ(0) = ∞, the generator is
termed strict, and the inverse function ϕ−1 ex-
ists. The generators of Π and (5) are strict. In
this instance, from (4), the copula is recovered
by:

C(u, v) = ϕ−1 (ϕ(u) + ϕ(v))

Nelsen (1999, Ch.4) gives extensive details
about Archimedean copulas (strict and non-
strict); see also Genest and MacKay (1986),
Genest and Rivet (1993), Jouini and Clemen
(1996) and Mari and Kotz (2001, Section 4.6).

2.4. The Copula Approach

For the purposes of statistical modelling, it is
the converse of the copula representation of the
joint cdf given by Sklar’s theorem that is rele-
vant. In other words, given models for the mar-
gins and a copula function that binds them to-
gether, this then has the effect of constructing
a statistical model for the random variables of
interest, as a joint cdf is specified. Consider, for

example, a bivariate setting in which X1 and
X2 denote the variables of interest. Required
is a statistical model for the true, but unknown
joint distribution of X1 and X2; naturally, this
distribution may depend on parameters and co-
variates. Under a copula approach, models for
the margins F1(x1) and F2(x2) are proposed, as
well as a selection of a copula family Cθ. Then,
by (1), these selections have the effect of speci-
fying the joint cdf of X1 and X2. Intuitively, the
copula approach determines each component of
the overall model, then engineers them together
using a copula function.

An added boon for modelling that results by
adopting a copula approach concerns the free-
dom to specify each margin; for example, iden-
ticality in distribution of the margins need not
be imposed. Indeed, because the copula repre-
sentation is unique on the domain of support of
the random variables in question, multivariate
models can be constructed using a copula ap-
proach whose margins can be either continuous
or discrete, or mixtures of both.

3. THE ROY MODEL

3.1. Model and Likelihood

Sample stratification, or sample selection, is
commonplace amongst microeconometric data,
whereby underlying individual choices can
themselves influence the observations collected
on the random variables of interest. Models of
increasing complexity have been constructed to
account for stratification in its various guises,
should it be present, and a number of these are
discussed in texts such as Amemiya (1985) and
Maddala (1983). In this section, attention fo-
cuses on the Roy model of switching regimes,
based on a binary indicator S that governs
which regime is observed.

The Roy model of switching regimes arises when
observations on the trio of random variables
(S, Y2, Y3) are generated according to the fol-
lowing observation rules

S = 1{Y ∗1 > 0} Y2 = S Y ∗2 Y3 = (1− S)Y ∗3

where 1{A} denotes the indicator function, tak-
ing value 1 if event A holds, and 0 other-
wise. Here, (Y ∗1 , Y ∗2 , Y ∗3 ) denotes latent utili-
tarian variables with margins that have cdf and
pdf denoted respectively by Fi(y

∗
i ) and fi(y

∗
i ),

for y∗i ∈ IR (i = 1, 2, 3). It is assumed that these
margins depend on covariates and parameters,
however, their specification is not of concern at
this stage. Basically, Y ∗2 is observed whenever



Y ∗1 > 0, otherwise it is Y ∗3 that is observed; the
switching mechanism S is binary. Note that
dummy values of 0 are assigned to Y2 and Y3
as required, according to the outcomes of the
switch S. Here, Fi(y∗i ) is assumed continuous
throughout the support of Y ∗i , for i = 2, 3. Vi-
jverberg (1993) cites a number of empirical ap-
plications of this model.

Let (sj , y2j , y3j) denote the jth observation on
(S, Y2, Y3), j = 1, ..., n. For a random sample of
size n, the likelihood is given by

Y
0

∂

∂y3
F13(0, y3)

Y
1

µ
f2 − ∂

∂y2
F12(0, y2)

¶

where
Q
0 indicates the product over those ob-

servations for which sj = 0, and
Q
1 the prod-

uct over those observations for which sj = 1,
and the bivariate margin F1i(y∗1 , y∗i ) = Pr(Y

∗
1 ≤

y∗1 , Y
∗
i ≤ y∗i ) with pdf f1i, i = 2, 3. The like-

lihood is expressed in terms of the underlying
margins, where the presence of the differentials
are due to the continuity assumptions on Y ∗2
and Y ∗3 . For convenience, the observation index
j is suppressed throughout.

From the general form of the likelihood it is
clear that any association parameters that may
exist between Y ∗2 and Y

∗
3 cannot be identified as

L is not a function of these parameters (L does
not depend on the bivariate margin F23 nor on
the trivariate F ). This implies that it is super-
fluous to specify F, the trivariate distribution
of (Y ∗1 , Y ∗2 , Y ∗3 ). However, under the further as-
sumption that Y ∗1 is continuous, it is possible
to give bounds on the association between Y ∗2
and Y ∗3 in terms of Kendall’s concordance mea-
sure τ23 that can be tighter than −1 ≤ τ23 ≤ 1,
namely:

−1 + |τ12 + τ13| ≤ τ23 ≤ 1− |τ12 − τ13|

where τ1i is Kendall’s measure between Y ∗1
and Y ∗i (i = 2, 3; see Joe (1997, Theorem
3.12)). This contrasts against the bounds given
by Viverberg (1993, equation (3)) that are ex-
pressed in terms of Pearson’s product moment
correlation coefficients.

Under the copula approach, modelling pro-
ceeds by specifying margins Fi, and the cop-
ulas that represent the bivariate margins F12
and F13. Supposing that the copula of F12 is
Archimedean with generator ϕ, and, likewise,
that the copula of F13 is Archimedean with gen-
erator η, then the derivatives appearing in the

general form of the likelihood simplify to

∂

∂yi
F1i(0, yi) =

∂

∂v
C·(F1, v)

¯̄̄̄
v→Fi

× ∂Fi
∂yi

=


ϕ0(F2)
ϕ0(C12

θ )
f2 when i = 2

η0(F3)
η0(C13

λ )
f3 when i = 3

where ϕ0(t) = ∂
∂tϕ(t), η

0(t) = ∂
∂tη(t), and θ and

λ collect the association parameters between,
respectively, Y ∗1 and Y ∗2 , and Y ∗1 and Y ∗3 . The
notation F1 = F1(0), F2 = F2(y2), F3 = F3(y3),
f2 = f2(y2), f3 = f3(y3), C

12
θ = ϕ−1(ϕ(F1) +

ϕ(F2)) and C13λ = η−1(η(F1) + η(F3)). Substi-
tution into the likelihood yieldsY

0

η0(F3)
η0(C13λ )

f3
Y
1

µ
1− ϕ0(F2)

ϕ0(C12θ )

¶
f2 (6)

As the functional forms of ϕ0(t) and η0(t) are
generally quite easy to derive, the likelihood is
relatively easy to code. For example, if both ϕ
and η are Clayton (5), then the likelihood isY

0

µ
C13λ
F3

¶λ+1
f3
Y
1

Ã
1−

µ
C12θ
F2

¶θ+1!
f2

Of course, there is no need to restrict ϕ and η to
generate the same family of copulas. It is also
straightforward to derive the score function,
and then to evaluate it and the log-likelihood
for purposes of ML estimation using a Quasi-
Newton algorithm.

3.2. Remarks

Under the copula approach, parametric mod-
els for the margins can be constructed using
generalised linear methods. This flexibility is
a distinct advantage of the copula approach,
as the margins need not be restricted to the
same family of distributions. However, other
approaches are also possible; for example, using
semi- and non-parametric methods to specify
the margins. For the copula functions, this ar-
ticle advocates selecting families of copulas from
the Archimedean class.
Given the relatively simple functional form
for the likelihood function under a pair of
Archimedean copulas (6), ML estimation can
be employed to jointly estimate all parameters.
As general analytical expressions for the score
function can be derived, it is relatively easy
to implement well-known Quasi-Newton opti-
misation algorithms such as DFP and BFGS.
Accordingly, the use of Archimedean copulas
in model specification satisfies the need iden-
tified by Vella (1998, p.132) to maintain ease



of implementation as the model assumption
departs from multivariate normality, while re-
maining in the framework of ML estimation.
Unfortunately, obtaining the analytic form of
the Hessian of the log-likelihood is a tedious
exercise, so if implementation of the Newton-
Raphson algorithm is desired, then, when de-
riving the Hessian matrix, it is perhaps bet-
ter to use numerical methods that can approxi-
mate derivatives. These considerations also im-
pact on estimation of the asymptotic variance-
covariance matrix of the ML estimator. The
method advocated here is to use as the esti-
mate the final iterate of the approximation to
the inverse Hessian that is generated at each
step of the BFGS algorithm. Other variance-
covariance matrix estimators include the OPG
estimator, although this is known to be prone
to inflate standard errors in small samples. Es-
timation using the inverse Information matrix
does not seem practicable here due to the diffi-
culties induced by non-linearity in the variables
of the model.

It seems quite plausible that the usual suite
of asymptotic properties of the ML estimator
will hold. However, it remains an open ques-
tion for research to prove those regularity con-
ditions under which the ML estimator is consis-
tent, asymptotically normal and efficient under
Archimedean copulas (or more generally for any
pair of copulas).

Given empirical data, model selection across dif-
fering specifications is an a posteriori consider-
ation, for it is rare that the true data generating
mechanism is known a priori. Setting aside for
now the specification of the margins, differing
families of copulas are, in general, parametri-
cally non-nested, even if the families compared
are Archimedean. Consequently, following the
suggestion of Joe (1997, Section 10.3), informa-
tion measures such as AIC and BIC applied to
each fitted model can be used as the selection
criterion amongst competing models.
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