
Designing and implementing computer simulation
models for portability and reuse

E. Post

Centre for Advanced Computational Solutions, Lincoln University, Lincoln, Canterbury, New Zealand
poste@lincoln.ac.nz

Abstract: As computers become more powerful it becomes feasible to develop computer models that more
accurately approximate the real systems they are simulating. However, such models are increasingly
complex, perhaps taking years to develop, so it is important to maximise reuse of existing models and design
new models to facilitate reuse. Unfortunately many existing models are not easily reused for various reasons.
For instance, the computer language used to write the model may not be portable, or may be a proprietary
system requiring a licence or particular operating system, or it may not have been written in such a way that
it can easily be extended. Furthermore, computer hardware and operating systems are continuously changing
and high-performance computing, such as parallel computing on a Linux cluster, is increasingly available. It
is limiting and potentially expensive if a computer model cannot be ported to another system without being
rewritten. In these days of reduced research funding it is becoming increasingly important to use such
funding more effectively. One way to enable more strategic use of research funding would be to increase the
reusability of computer models so as to build on the work of others rather than duplicate it. This is
particularly so in cases where the cost of the validation exercise is high. This paper makes a number of
recommendations for developing reusable, user-friendly, robust, flexible, extendible and generic computer
models. These include such issues as choosing an appropriate language, using appropriate programming
techniques, designing for possible portability to another operating system or environment or parallelization. It
also discusses the use of a framework and replaceable components for a model of a complex system rather
than a monolithic application.

Keywords: software design; programming; portability; reuse

1. INTRODUCTION

Scientists have used computers for research since
computers first became commercially available.
This usage has increased dramatically since
personal desktop PCs became commonly
available in the 1970’s and 1980’s and scientists
could teach themselves to program and perform
their own computing. However, in these last 2 to
3 decades there have been some significant
changes in computing.

• Computers have increased tremendously in
power available, thus making it possible to
achieve nowadays on a desktop PC what
could formerly only be done on a
supercomputer.

• Computer programs have increased
significantly in both size and complexity
making it much more difficult to create such
a large and complex program, especially if it
is incorporating pre-existing units.

• Computer programming has become
increasingly more complex and difficult. For
instance, the introduction of Graphical User
Interfaces (GUIs) and the object-oriented

paradigm mean it is no longer as simple for
an amateur programmer to write good
software as it was using the simpler
languages and computer environments of the
1980’s.

• It is increasingly expensive to perform
laboratory tests or run field trials to validate
computer simulation models. Such validation
tests, especially for field trials, can easily cost
far more than the software itself. If possible it
is much more effective to re-use existing
models that have already been validated,
rather than develop new models still
requiring validation.

• It is increasingly difficult to get research
funding so it is important to use what funds
one has effectively. This means it is
important to consider the possibility of re-
using software that already exists rather than
starting from scratch each time.

These are just some of the factors that need to be
considered when developing scientific software.
The rest of this paper gives some suggestions to
help scientists develop better, more flexible and
effective software by making it more easily

possible for others to re-use, thus making more
effective use of scarce resources.

2. INVESTIGATE WHETHER WHAT YOU
WANT ALREADY EXISTS

Before spending considerable time and resources
developing software do some research to see if
someone else has already developed such
software and will make it available for you to use,
either free or for a reasonable fee. Recognize that
even if you have to pay for this software it may
well cost far less than it would cost for you to
develop it yourself, in particular if the existing
software has already been validated. Also using
existing software will allow you to obtain results
far quicker and publish earlier!

3. OPERATING SYSTEMS

First consider which operating system the
program may be run under. Scientists work on a
range of different operating systems, such as
Microsoft Windows, Apple, VMS, various
flavours of Unix, including Linux, and others.

If the software you plan to develop is ever likely
to be used by scientists in other institutions then
you should seriously consider choosing a
programming language or package that is
available for the most common operating systems,
especially Linux and Windows. Programs
developed in such languages under one operating
system should then easily be able to be ported and
recompiled on another and should require no
more than minimal changes.

4. ANTICIPATE POSSIBLE
PARALLELIZATION

Not all languages are easily parallelizable, so it is
important to consider this question before
choosing a language.

Consider whether you (or anyone else) are ever
likely to want to run your program on a computer
with better performance, such as a parallel
computer. Many modern scientific applications
are so complex that they can take a very long time
to run and it becomes important to parallelize
them to run in less time. Also, sometimes a
computer simulation model originally developed
as a stand-alone program may later be
incorporated as part of a larger system that runs
on a parallel computer. In these cases it is most
likely that the high performance computer will be
using a Unix operating system. Thus the issues
described in section 3 become important as it may
become necessary to port your application to
another operating system in order to parallelize it.

Most parallel programs are written in C, C++ or
Fortran, often using MPI (Message_Passing
Interface), and may also be written in Python. It
can be very difficult, although not necessarily
impossible, to parallelize programs written in
other languages. Post (2002) describes a case of
parallelizing a Smalltalk application.

5. CHOOSE AN APPROPRIATE
PROGRAMMING LANGUAGE

Then you need to choose which language to use.
In this paper we will consider primarily the case
where scientific programs are being developed in
conventional programming languages, rather than
for instance specialised mathematical, statistical
or simulation packages.

There are several factors to consider, such as
which programming paradigm to use, which
language to use and which compiler to use.

5.1. Choice of programming paradigm

In the 1980’s most programmers used a
procedural or functional approach, using
languages such as Basic, Fortran, Pascal or C.
However there are inherent difficulties in such
languages that greatly restrict the ability to
program correctly, in a way that the program can
easily be maintained, extended or used, especially
with the much larger programs of today.

Therefore, if at all possible use the Object-
oriented (OO) paradigm when designing and
developing software. Objects map well onto
objects and systems in the real world, and the OO
approach will facilitate future reuse and
extension. If you cannot use an OO language then
still design the software with the OO paradigm as
far as possible, making all code units modular,
passing data into these units with parameters and
returning results from each routine.

Suitable object-oriented languages are Python,
C++, and in some circumstances Java, Delphi,
Smalltalk or C#, but see below for other
considerations regarding these last four
languages.

5.2. Availability of languages across
operating systems

If at all possible use standard languages, such as
C++, C, Fortran, or Python that are widely
available (even free) for various computer
architectures and operating systems. (You cannot
necessarily predict that your model will never be
used on another operating system.) Of these it is
strongly recommended that you use Python, or
perhaps C++, if at all possible as they are object-
oriented. Avoid using C or Fortran if you can.

Especially if you are an amateur programmer you
should probably choose Python as it is simpler to
learn and perhaps less likely to cause problems.

Some other languages, such as Java, Delphi, C#
and Smalltalk are available for different operating
systems, such as for both Windows and Linux.
Delphi is known as Kylix for the Linux operating
system. Note though that programs written in
Delphi are not exactly the same as Kylix
programs and may not port completely without
trouble, with problems most likely to occur with
relation to the GUI. A version of C# runs on
Linux in an interpreter. Other issues to be
considered are discussed further below

5.3. Availability and cost of compilers and
licences

You also need to consider the cost and availability
of compilers for various languages or perhaps
licences for specialised environments.
Researchers often have little money and may not
be able to afford to buy commercial compilers.
And if, for instance your model needs to run in a
specialised environment such as ACSL, then the
cost of licences may restrict re-use of your model
by others.

For instance, reasonably good quality free Python,
C, C++ and Fortran compilers are available for
several platforms for standard versions of these
languages. However, if you really have to use
Fortran then it is advisable to use Fortran 77 for
which compilers are widely available at no cost
on many platforms. Currently there are no free
compilers for Fortran 90 or Fortran 95 for Linux,
although there have been in the past and some
versions are presently under development.

Delphi, although a very good language, is
proprietary and it costs money to pay for the
compiler, although not very much. Java is freely
available for most common operating systems,
although this is usually, but not always,
interpreted rather than compiled. Smalltalk
interpreters from the same company for different
operating systems do exist in versions that are
free for non-commercial use.

5.4. Virtual machines

Some languages, such as Java, C# and Smalltalk,
are interpreted rather than compiled, although
Java compilers do exist. In these languages the
interpreted code is executed on a virtual machine.
This can mean that you do not usually achieve as
good performance as you would with a compiled
languages such as C++. Python is usually
interpreted, but executes very fast, and can also be
compiled. Python can also be parallelized.

In particular, if there is a possibility your program
may later be parallelized, then it is better to avoid
languages using a virtual machine as it is very
difficult to parallelize them, although not
impossible. See Post (2002). For performance
reasons it is usually preferable to choose a
compiled language rather than an interpreted one.

6. AVOID PROPRIETARY OR
SPECIALISED ENVIRONMENTS

Avoid using proprietary and specialised
environments such as ACSL, Microsoft, Borland.
Developing software in such environments may
limit the re-usability of the model, either because
it becomes too expensive to convert the software
to a new environment or because of the cost of
licence fees, which may be prohibitive, especially
in a parallel processing environment where the
licence fee may be per processor.

If you must use a proprietary environment for
development, such as for instance Microsoft
Visual C++, use standard features and libraries in
these languages and avoid using implementation-
specific libraries. (The documentation should
indicate whether features are standard (usually
ANSI) or implementation-specific.) Generally
most programs written for Unix will port easily to
Windows. However, the reverse is not generally
the case because there are so many proprietary
products for Windows.

If it is useful to use for instance a specialised
simulation or statistical or mathematical
environment or language for developing a model
because of the features it provides, try and choose
an environment which will allow the export of the
model in standard C or Fortran code that can be
compiled and which will run independently and
does not have to run in a proprietary environment.
Then this exported code could be incorporated as
a component model for another system.

If it is essential to use specialised libraries, such
as for instance mathematical or engineering
libraries, choose those which are well-known and
widely available on different platforms, such as
NAG or Portland Group. Otherwise develop your
software so that it would be relatively easy to use
alternative libraries if necessary.

7. USE THE MODEL-VIEW-
CONTROLLER APPROACH

Use the Model-View-Controller concept when
developing software, where the user interface is
completely independent of the code implementing
the actual model, with these two layers connected
by an intermediate controller or transaction layer.

This is described more fully in VisualWorks
(2001) and many other sources.

The many advantages of this approach are well-
known, such as for internationalisation. However,
in the modelling context some of the main
advantages are that it increases the portability of
the code for the model. Most incompatibilities
between implementations on different operating
systems and architectures occur in the GUI which
may involve considerable change when porting an
application. However, usually the code for the
model itself will port with minimal trouble
providing it has been written in a standard
language using standard libraries. This separation
of the model from the GUI is also important in
modelling as quite often it will be necessary to
run the model independent of its GUI, such as for
instance when it becomes a component of a large
system or in parallel processing. If this approach
is not taken it can take considerable work to
separate model code from GUI code.

8. GENERAL PROGRAMMING
TECHNIQUES

No matter what programming language you
eventually choose there are several techniques
that should be used to make your code more
maintainable, flexible, extendable and re-usable.

8.1. Avoid using global data

Not only does global data make it difficult to keep
modules independent in the application but it can
contribute to difficulty during parallelization.

8.2. Define interfaces between modules
carefully

Ensure that all modules (whether methods,
procedures, functions, sub-routines or just blocks
of code) of your program have a well-defined
interface for calling that routine, passing
parameters into it, and returning results. Modules
should not depend on for instance using global
data, as this makes them liable to error if changes
are made elsewhere in the program, and less
easily re-used as they are dependent on outside
information to run correctly.

8.3. Use standard data types

Use standard data types such as integers, IEEE
floats and doubles and be sure that interacting
applications know whether they are using for
instance 1, 2, 4 or 8 byte integers. Also be sure to
be aware of whether the code is using either 1-
byte or Unicode chars and be consistent. Avoid
using implementation-specific data-types such as
the Pascal 6-byte Real.

8.4. Consider computer architecture issues

If the model may be ported to a computer of
different architecture be aware that there may also
be issues with whether integers are little-endian or
big-endian, for instance when reading and writing
data files. This is also important if parallelizing a
program for a heterogeneous system. If you can
use MPI for inter-processor communication this
will automatically be taken care of, but if you are
using sockets you will need to take care of it
yourself, although there are functions available
for use with sockets that will help with this.

8.5. Use in-code documentation

One of the biggest problems when trying to re-use
someone else’s code, or even your own after a
long time, is that frequently it is poorly
documented, or even not documented at all,
making it extremely hard to understand.

To increase understandability of your program
you should try to choose good descriptive
variable and function names, so that one can
almost read the code as if it is in a natural
language such as English. If your program is
likely to be used internationally it is helpful if you
use an internationally recognized language for
naming variables and functions such as English.

It is also extremely important to document your
program well. This is best done in the code as
separate documentation is frequently not kept up
to date, or may even be lost. Also such in-code
documentation can frequently be used by
document-generating tools to produce up-to-date
technical documents describing the application. It
is not necessary to be excessive about using
comments. However, the following are good
habits to develop:

• At the beginning of the file containing the
main function of your program put:

•

•

•

•

•

the name of your program

the name of the programmer and contact
details, including email address

the date it was started

a brief description of what it is about,
including any important references to
scientific papers

Every time the program is revised add
further information as in the points
above, but instead relating to the
revision and why it was done. e.g. bug-
fixes or new features or both, and list
everything new done to that revision.

• It is also good to allocate version and release
numbers to different versions of your
program. Every time there are major changes
it should be a new version, and every time
there are minor changes it should be a new
release. e.g. 2.3 is version 2, release 3. If this
information is kept in the comments and
other people use your program then they can
tell you what version they are using if they
need changes. It is good practice to use a
version control system such as CVS.

• Every module, variable and function should
have a comment describing what it is for.

•

•

If it is a variable there should also be a
comment describing any units, and
perhaps minimum and maximum valid
values.

If it is code it should also describe what
the parameters are for, any relevant
units, and what values are returned. In
addition, any piece of code for which it
is not immediately obvious what it does,
should have comments explaining it.

• If code is implementing equations from some
reference work, such as scientific papers,
then there should be a comment giving the
full reference of the source of the equation.

8.6. Avoid “hard-coding” items that may
change

Don’t build in such items as file names and paths
into your program as these may change between
different computers. Rather allow your program
to read path and file names in from a text file.
This gives greater flexibility in using the program
especially if changing between operating systems

Also avoid programming actual initial values of
variables where it is likely they may change
between runs of the program. Rather allow the
program to read in files of initial data. This will
allow a user to change start-up parameters
without having to re-code the program.

8.7. Initializing data and inter-changing data
between modules and applications

In most cases it is advisable to use text files rather
than binary files for inputting such initialising
data as described in section 8.6. This makes it
easier for a user to use a text processor to edit the
data files before running the program using them.

It is sometimes also useful to use text files for
outputting data that may be read into a
spreadsheet or another program. You can separate
data items by spaces, tabs, commas or semi-
colons if necessary.

In both cases it is important to put comments in
the text files to describe each item, or column or
row of items, including units used., and valid
maximum and minimum values. You may also
need to put a full reference to the source of your
information for making this decision. It is
common practice to indicate that a line in a data
file is a comment by making the first character of
the line in column 1 a #.

8.8. Avoid duplicating other software

If other software exists that will post-process your
data and produce the graphs and statistics you
need, then do not waste time (and money)
programming these features into your program.
Rather just export the result data in a file suitable
for import into the other software.

9. COMPLEX SYSTEMS

Twenty to thirty years ago it was a considerable
achievement just to write a computer simulation
model for a fairly small component. Also,
because computers were so slow the models could
not be very complex or they ran for too long.
However, with the huge increase in computing
power it is now possible to run much more
complex and detailed models very quickly. In
addition science has moved on and many simple
systems are now well understood. As a result
there is now significant interest in modeling large
complex systems.

Complex systems can be programmed as huge
monolithic systems. However, the disadvantages
there are it is difficult to change a part of the
system to reflect new research.

A good alternative is to model a complex system
by creating a framework that manages the system
but that interacts with component models. For
instance, a farm may include management
strategies, climate information, animals and
pastures (or other food). If this is modeled by
using a framework to manage the daily, weekly,
monthly or annual cycle of a farm then this
framework can interact with different models for
the other components, such as using cows or
sheep or other animals.

Advantages of this approach are that:

• One can re-use existing models already
created by yourself or other researchers

• One can substitute different models, perhaps
representing different research, for the same
component. e.g. different models of cows.

• One can substitute models of different levels
of complexity for different simulation
experiments.

To achieve this type of complex system however
requires extremely good programming techniques
such as described in this paper. However, the
potential savings in cost and increased flexibility
in using the simulation model for research make it
worth considering whether to spend the time and
effort to achieve this. Neil et al. (1999) and
Sherlock et al.(1999) describe the implementation
of a complex system to simulate a dairy farm by
using a framework and components.

10. RECOGNISE COMPUTING AS A
HIGHLY-SKILLED PROFESSION

In the 1980s it was relatively easy for someone
who was not a trained computing professional to
teach him or herself to program and then develop
their own scientific software. However,
computing has increased so much in both
complexity and also the potential of what can be
done on computers by experts. Therefore if
scientists want to make most effective use of
computers and get the greatest benefit from them
they should strongly consider employing
computing experts to do their programming for
them. Experience has shown that a computing
expert can usually achieve excellent (and better)
results in a considerably shorter time than an
amateur. This approach would assist a scientist to
use time far more productively in doing science
rather than dabbling in programming and taking
very much longer to achieve results which are
probably not as good as those that would be
achieved by an expert. Scientists are not expected
to build their own very advanced technological
laboratory equipment, so why should they be
expected to create their own software?

11. CONCLUSION

If new simulation models are developed
considering the issues and using the techniques
described in this paper then there is a far greater
likelihood that such software can be re-used and
extended. This should thus lead to less wastage of
time and money and more effective use of scarce
resources.

Even if you do not expect your software to be re-
used it is good programming practice to consider
the issues described in this paper and implement
the techniques suggested. Then, if someone does
want to re-use your software in the future it is in a
state where this can be done.

12. ACKNOWLEDGEMENTS

I am very grateful for the help given to me by
Rob Sherlock in discussing these issues. I also
appreciate all that I have learned over the years
from many scientific programmers, both for the

good techniques learned, and also for what not to
do!

13. REFERENCES

Neil, P.G., Sherlock, R.A. and Bright, K.P.
Integration of legacy sub-system
components into an object-oriented
simulation model of a complete pastoral
dairy farm. Environmental Modelling and
Software, 14, 495-502, 1999.

Post, E. Adventures with Portability, Third LCI
International Conference on Linux
Clusters: The HPC Revolution 2002,
Florida, USA, October 2002

Sherlock, R.A. & Bright, K.P. An object-oriented
framework for farm system simulation.
MODSIM99 – Proceedings of the
International Conference on Modelling and
Simulation, Modelling and Simulation
Society of Australia and New Zealand Inc.,
eds. L. Oxley, F. Scrimgeour, and A.
Jakeman, Hamilton, New Zealand, 783-
788, 1999.

VisualWorks Internet Connectivity Cookbook,
Cincom Systems Ltd., Cincinnati, Ohio,
2001. http://www.cincom.com/newsmall
talk/prodinformation/pdf/vwiccb.pdf

References to software websites

ACSL (Advanced Continuous Simulation

Language) Home Page
http://www.acsl.com/

Cincom Smalltalk Home Page,
http://www.cincom.com/scripts/smalltalk
.dll/index.ssp

CVS Home Page,
http://www.cvshome.org/

Delphi Home Page,
http://www.borland.com/delphi/

Java Home Page http://java.sun.com

Kylix Home Page,
http://www.borland.com/Kylix/

MPI Home Page,
http://www-unix.mcs.anl.gov/mpi/

Numerical Algorithms Group (NAG) Home Page,
http://www.nag.co.uk/

Python Home Page http://www.python.org/

Portland Group (PGI) CDK Cluster Development
Kit - Software for Linux,
http://www.pgroup.com/products/cdkindex
.htm

http://www.cincom.com/scripts/smalltalk
http://www.borland.com/delphi/
http://www.borland.com/Kylix/
http://www-unix.mcs.anl.gov/mpi/
http://www.python.org/
http://www.pgroup.com/products/cdkindex.htm
http://www.pgroup.com/products/cdkindex.htm

	INTRODUCTION
	INVESTIGATE WHETHER WHAT YOU WANT ALREADY EXISTS
	OPERATING SYSTEMS
	ANTICIPATE POSSIBLE PARALLELIZATION
	CHOOSE AN APPROPRIATE PROGRAMMING LANGUAGE
	Choice of programming paradigm
	Availability of languages across operating systems
	Availability and cost of compilers and licences
	Virtual machines

	AVOID PROPRIETARY OR SPECIALISED ENVIRONMENTS
	USE THE MODEL-VIEW-CONTROLLER APPROACH
	GENERAL PROGRAMMING TECHNIQUES
	Avoid using global data
	Define interfaces between modules carefully
	Use standard data types
	Consider computer architecture issues
	Use in-code documentation
	Avoid “hard-coding” items that may change
	Initializing data and inter-changing data between modules and applications
	Avoid duplicating other software

	COMPLEX SYSTEMS
	RECOGNISE COMPUTING AS A HIGHLY-SKILLED PROFESSION
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	
	References to software websites

